首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aim At broad geographical scales, species richness is a product of three basic processes: speciation, extinction and migration. However, determining which of these processes predominates is a major challenge. Whilst palaeontological studies can provide information on speciation and extinction rates, data are frequently lacking. Here we use a recent dated phylogenetic tree of mammals to explore the relative importance of these three processes in structuring present‐day richness gradients. Location The global terrestrial biosphere. Methods We combine macroecological data with phylogenetic methods more typically used in community ecology to describe the phylogenetic history of regional faunas. Using simulations, we explore two simple phylogenetic metrics, the mean and variance in the pairwise distances between taxa, and describe their relationship to phylogenetic tree topology. We then use these two metrics to characterize the evolutionary relationships among mammal species assemblages across the terrestrial biome. Results We show that the mean and variance in the pairwise distances describe phylogenetic tree topology well, but are less sensitive to phylogenetic uncertainty than more direct measures of tree shape. We find the phylogeny for South American mammals is imbalanced and ‘stemmy’ (long branches towards the root), consistent with recent diversification within evolutionarily disparate lineages. In contrast, the phylogeny for African mammals is balanced and ‘tippy’ (long branches towards the tips), more consistent with the slow accumulation of diversity over long times, reflecting the Old World origin of many mammal clades. Main conclusions We show that phylogeny can accurately capture biogeographical processes operating at broad spatial scales and over long time periods. Our results support inferences from the fossil record – that the New World tropics are a diversity cradle whereas the Old World tropics are a museum of old diversity.  相似文献   

2.
The grasses (Poaceae) are the fifth most diverse family of angiosperms, including 800 genera and more than 10 000 species. Few phylogenetic studies have tried to investigate palaeo‐biogeographical and palaeo‐ecological scenarios that may have led to present‐day distribution and diversity of grasses at the family level. We produced a dated phylogenetic tree based on combined plastid DNA sequences and a comprehensive sample of Poaceae. Furthermore, we produced an additional tree using a supermatrix of morphological and molecular data that included all 800 grass genera so that ancestral biogeography and ecological habitats could be inferred. We used a likelihood‐based method, which allows the estimation of ancestral polymorphism in both biogeographical and ecological analyses for large data sets. The origin of Poaceae was retrieved as African and shade adapted. The crown node of the BEP + PACCMAD clade was dated at 57 Mya, in the early Eocene. Grasses dispersed to all continents by approximately 60 million years after their Gondwanan origin in the late Cretaceous. PACCMAD taxa adapted to open habitats as early as the late Eocene, a date consistent with recent phytolith fossil data for North America. C4 photosynthesis first originated in Africa, at least for Chloridoideae in the Eocene at c. 30 Mya. The BEP clade members adapted to open habitats later than PACCMAD members; this was inferred to occur in Eurasia in the Oligocene. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 162 , 543–557.  相似文献   

3.
We present a new, broadly applicable measure of the spatial restriction of phylogenetic diversity, termed phylogenetic endemism (PE). PE combines the widely used phylogenetic diversity and weighted endemism measures to identify areas where substantial components of phylogenetic diversity are restricted. Such areas are likely to be of considerable importance for conservation. PE has a number of desirable properties not combined in previous approaches. It assesses endemism consistently, independent of taxonomic status or level, and independent of previously defined political or biological regions. The results can be directly compared between areas because they are based on equivalent spatial units. PE builds on previous phylogenetic analyses of endemism, but provides a more general solution for mapping endemism of lineages. We illustrate the broad applicability of PE using examples of Australian organisms having contrasting life histories: pea-flowered shrubs of the genus Daviesia (Fabaceae) and the Australian species of the Australo-Papuan tree frog radiation within the family Hylidae.  相似文献   

4.
There is increased evidence that incorporating evolutionary history directly in conservation actions is beneficial, particularly given the likelihood that extinction is not random and that phylogenetic diversity (PD) is lost at higher rates than species diversity. This evidence is even more compelling in biodiversity hotspots, such as Madagascar, where less than 10% of the original vegetation remains. Here, we use the Leguminosae, an ecologically and economically important plant family, and a combination of phylogenetics and species distribution modelling, to assess biodiversity patterns and identify regions, coevolutionary processes and ecological factors that are important in shaping this diversity, especially during the Quaternary. We show evidence that species distribution and community PD are predicted by watershed boundaries, which enable the identification of a network of refugia and dispersal corridors that were perhaps important for maintaining community integrity during past climate change. Phylogenetically clustered communities are found in the southwest of the island at low elevation and share a suite of morphological characters (especially fruit morphology) indicative of coevolution with their main dispersers, the extinct and extant lemurs. Phylogenetically over-dispersed communities are found along the eastern coast at sea level and may have resulted from many independent dispersal events from the drier and more seasonal regions of Madagascar.  相似文献   

5.
Anthropogenic activities are having devastating impacts on marine systems with numerous knock-on effects on trophic functioning, species interactions and an accelerated loss of biodiversity. Establishing conservation areas can not only protect biodiversity, but also confer resilience against changes to coral reefs and their inhabitants. Planning for protection and conservation in marine systems is complex, but usually focuses on maintaining levels of biodiversity and protecting special and unique landscape features while avoiding negative impacts to socio-economic benefits. Conversely, the integration of evolutionary processes that have shaped extant species assemblages is rarely taken into account. However, it is as important to protect processes as it is to protect patterns for maintaining the evolutionary trajectories of populations and species. This review focuses on different approaches for integrating genetic analyses, such as phylogenetic diversity, phylogeography and the delineation of management units, temporal and spatial monitoring of genetic diversity and quantification of adaptive variation for protecting evolutionary resilience, into marine spatial planning, specifically for coral reef fishes. Many of these concepts are not yet readily applied to coral reef fish studies, but this synthesis highlights their potential and the importance of including historical processes into systematic biodiversity planning for conserving not only extant, but also future, biodiversity and its evolutionary potential.  相似文献   

6.
Explaining how heterogeneous spatial patterns of species diversity emerge is one of the most fascinating questions of biogeography. One of the great challenges is revealing the mechanistic effect of environmental variables on diversity. Correlative analyses indicate that productivity is associated with taxonomic, phylogenetic, and functional diversity of communities. Surprisingly, no unifying body of theory have been developed to understand the mechanism by which spatial variation of productivity affects the fundamental processes of biodiversity. Based on widely discussed verbal models in ecology about the effect of productivity on species diversity, we developed a spatially explicit neutral model that incorporates the effect of primary productivity on community size and confronted our model's predictions with observed patterns of species richness and evolutionary history of Australian terrestrial mammals. The imposed restrictions on community size create larger populations in areas of high productivity, which increases community turnover and local speciation, and reduces extinction. The effect of productivity on community size modeled in our study causes higher accumulation of species diversity in productive regions even in the absence of niche‐based processes. However, such a simple model is not capable of reproducing spatial patterns of mammal evolutionary history in Australia, implying that more complex evolutionary mechanisms are involved. Our study demonstrates that the overall patterns of species richness can be directly explained by changes in community sizes along productivity gradients, supporting a major role of processes associated with energetic constraints in shaping diversity patterns.  相似文献   

7.
Recent years have seen a debate over various methods that could objectively prioritize conservation value below the species level. Most prominent among these has been the evolutionarily significant unit (ESU). We reviewed ESU concepts with the aim of proposing a more unified concept that would reconcile opposing views. Like species concepts, conflicting ESU concepts are all essentially aiming to define the same thing: segments of species whose divergence can be measured or evaluated by putting differential emphasis on the role of evolutionary forces at varied temporal scales. Thus, differences between ESU concepts lie more in the criteria used to define the ESUs themselves rather than in their fundamental essence. We provide a context-based framework for delineating ESUs which circumvents much of this situation. Rather than embroil in a befuddled debate over an optimal criterion, the key to a solution is accepting that differing criteria will work more dynamically than others and can be used alone or in combination depending on the situation. These assertions constitute the impetus behind adaptive evolutionary conservation.  相似文献   

8.
9.
The European snow vole Chionomys nivalis has a patchy distribution restricted to rocky habitats across southern Europe and the Near and Middle East. We carried out a phylogeographic study to provide a biogeographic scenario, based on molecular data, outlining the major processes that determined the current distribution of the species. The samples include 26 snow voles from 14 different populations across the entire species range from Spain to Anatolia and Israel. Nearly complete sequences (1037 bp) of the mitochondrial gene for cytochrome b were sequenced. Relationships among haplotypes were inferred with neighbour-joining, maximum likelihood, maximum parsimony analyses and minimum spanning network. An analysis of mismatch distribution was used to cast light on past demographic expansion. We found 22 different haplotypes that fall into six distinct lineages, all but one is supported by high bootstrap values with all methods. Four lineages are allopatric (Tatra Mts., Iberia, Balkans and Middle East) while divergent haplotypes from two lineages show sympatry in the Alps and the Apennines. The basal relationships of these lineages could not be established by any tree. The mean pairwise genetic distance between lineages ranges from 2.4 to 4.2%. The shape of the mismatch distribution indicated a past expansion event dating back to between 158 000 and 84 000 years ago. These data can be interpreted with the existence of southern glacial refugia (Iberia, Balkans, Middle East and Italy) and one additional northern glacial refugium. The lack of phylogenetic resolution among lineages and the shape of mismatch distribution are indicative of a simultaneous and rapid splitting due to a relatively fast initial expansion of populations. Moreover, the analysis supports the hypothesis of the European origin of C. nivalis and its subsequent eastward dispersion during the Middle Pleistocene.  相似文献   

10.
The role of Beringia as a refugium and route for trans-continental exchange of fauna during glacial cycles of the past 2million years are well documented; less apparent is its contribution as a significant reservoir of genetic diversity. Using mitochondrial DNA sequences and 14 microsatellite loci, we investigate the phylogeographic history of caribou (Rangifer tarandus) in western North America. Patterns of genetic diversity reveal two distinct groups of caribou. Caribou classified as a Northern group, of Beringian origin, exhibited greater number and variability in mtDNA haplotypes compared to a Southern group originating from refugia south of glacial ice. Results indicate that subspecies R. t. granti of Alaska and R. t. groenlandicus of northern Canada do not constitute distinguishable units at mtDNA or microsatellites, belying their current status as separate subspecies. Additionally, the Northern Mountain ecotype of woodland caribou (presently R. t. caribou) has closer kinship to caribou classified as granti or groenlandicus. Comparisons of mtDNA and microsatellite data suggest that behavioural and ecological specialization is a more recently derived life history characteristic. Notably, microsatellite differentiation among Southern herds is significantly greater, most likely as a result of human-induced landscape fragmentation and genetic drift due to smaller population sizes. These results not only provide important insight into the evolutionary history of northern species such as caribou, but also are important indicators for managers evaluating conservation measures for this threatened species.  相似文献   

11.
Aim To determine how the distribution and cover of different vegetation types are affected by physical factors and livestock in a mountain range with a long evolutionary history of grazing. Location Upper vegetation belt of the Córdoba mountains (1700–2800 m a.s.l., 31º34′ S, 64º50′ W) in central Argentina. Methods Using GIS, we analysed the relationships of plant cover types to physical features (physiography and topography) and indicators of accumulated livestock pressure (distance to human settlements and roads) through multinomial logistic regression. We predicted a present vegetation map which was validated with a real map. We then constructed two maps simulating minimum and maximum values of accumulated livestock pressure for the whole area. Map comparisons allowed evaluation of the possible influence of livestock, both in extension and intensity. Results Both physical features and livestock pressure influenced the occurrence of vegetation units. The overall accuracy of the predicted map at the pixel level was low (26%) indicating low habitat specificity of the vegetation units. We suggest that some part of the unaccounted for variance was due to livestock pressure patterns that were not fully captured by our indicators. Our models proved adequate for predicting the total percentages of vegetation units at coarser scales. The extrapolations showed that under a history of low livestock pressure, such as in sites far away from human settlements and roads, the area would be dominated by woodlands, tussock grasslands and natural rock outcrops. Under a history of heavy livestock pressure, in turn, rock exposed by erosion, tussock grasslands and natural rock outcrops would dominate. Main conclusions Vegetation units showed low habitat specificity, and were associated with accumulated livestock pressure, indicating that livestock and its associated activities are important factors structuring the landscape and have important consequences for the integrity of the ecosystem. Results suggest that although this system evolved with large herbivores, it has experienced irreversible degradation processes, and intensification of current domestic livestock pressure is likely to lead to even more land degradation.  相似文献   

12.
13.
We need to set priorities for conservation because we cannot do everything, everywhere, at the same time. We determined priority areas for investment in threat abatement actions, in both a cost-effective and spatially and temporally explicit way, for the threatened mammals of the world. Our analysis presents the first fine-resolution prioritization analysis for mammals at a global scale that accounts for the risk of habitat loss, the actions required to abate this risk, the costs of these actions and the likelihood of investment success. We evaluated the likelihood of success of investments using information on the past frequency and duration of legislative effectiveness at a country scale. The establishment of new protected areas was the action receiving the greatest investment, while restoration was never chosen. The resolution of the analysis and the incorporation of likelihood of success made little difference to this result, but affected the spatial location of these investments.  相似文献   

14.
Aim To investigate the molecular phylogenetic divergence and historical biogeography of cave crickets belonging to the genus Dolichopoda (Orthoptera, Rhaphidophoridae). Location Caves in continental and insular Greece. Methods We sequenced 1967 bp of mitochondrial DNA, corresponding to three fragments of the small and large subunit of the ribosomal RNA (16S and 12S rRNA, respectively) and to the subunit I of cytochrome oxidase (COI), to reconstruct phylogenetic relationships among all 30 known Greek species of Dolichopoda. Alternative hypotheses about the colonization of the Hellenic Peninsula by Dolichopoda species were tested by comparing the degree of discordance between species trees and gene trees under four plausible biogeographical scenarios. Results The present study revealed a rather well resolved phylogeny at species level, identifying a number of clades that represent long‐separated lineages and diverse evolutionary histories within the genus Dolichopoda. Two main clades were revealed within Hellenic–Aegean species, identifying a north‐western and a south‐eastern species group. Based on Bayesian analysis, we applied a relaxed molecular clock to estimate the divergence times between the lineages. The results revealed that the origins of eastern Mediterranean lineages are much older than those of previously studied western Mediterranean Dolichopoda. Tests of alternative biogeographical hypotheses showed that a double colonization of the Hellenic Peninsula, following separate continental and trans‐Aegean routes during the Messinian stage, best accounts for the present distribution of Greek Dolichopoda species. Main conclusions Reconstruction and biogeographical hypothesis testing indicated that the colonization of Greece by Dolichopoda species comprised two episodes and two different routes. The southern lineage probably arose from a trans‐Aegean colonization during the Messinian salinity crisis (5.96–5.33 Ma). The northern lineage could be the result of dispersal from the north through the Balkan Peninsula. The opening of the Mid‐Aegean Trench could have promoted an initial diversification within the uprising Anatolian Plateau, while the Messinian marine regression offered the conditions for a rapid dispersal through the whole Aegean–Hellenic region. In addition, climatic events during the Plio‐Pleistocene may have been responsible for the speciation within each of the two different phylogeographical units, principally attributable to vicariance events.  相似文献   

15.
Identifying general patterns of colonization and radiation in island faunas is often hindered by past human-caused extinctions. The insular Caribbean is one of the only complex oceanic-type island systems colonized by land mammals, but has witnessed the globally highest level of mammalian extinction during the Holocene. Using ancient DNA analysis, we reconstruct the evolutionary history of one of the Caribbean''s now-extinct major mammal groups, the insular radiation of oryzomyine rice rats. Despite the significant problems of recovering DNA from prehistoric tropical archaeological material, it was possible to identify two discrete Late Miocene colonizations of the main Lesser Antillean island chain from mainland South America by oryzomyine lineages that were only distantly related. A high level of phylogenetic diversification was observed within oryzomyines across the Lesser Antilles, even between allopatric populations on the same island bank. The timing of oryzomyine colonization is closely similar to the age of several other Caribbean vertebrate taxa, suggesting that geomorphological conditions during the Late Miocene facilitated broadly simultaneous overwater waif dispersal of many South American lineages to the Lesser Antilles. These data provide an important baseline by which to further develop the Caribbean as a unique workshop for studying island evolution.  相似文献   

16.
We screened genetic variation in a polytypicorganism, whose populations are oftendistributed into numerous isolated habitats,and integrated the results into a critique ofdefining ``units' of conservation for organismswith highly fragmented populations. Sixteenpopulations of brown trout Salmo truttaL. across 8 Portuguese river basins werescreened for variation at 5 loci (mtDNA andallozymes). Population history based on mtDNArevealed a mosaic pattern driven by pastfragmentation and restricted gene flow withlittle correspondence to major river drainagesor recently proposed OCUs on the IberianPeninsula. Such patterns of variation offer achallenge to conservation strategies that basethemselves on defining units of conservation,particularly if such units intend to reflect ahierarchical evolutionary structure. Wesuggest that geographically mosaic patterns ofevolutionary lineages, as well as adaptivelysignificant traits are common characteristicsof many freshwater organisms. Thus,large-scale units, even if diagnosed by mtDNAclades, are often too heterogeneous to considera ``unit' of conservation. Alternatively, abottom-up perspective that prioritizespopulations or metapopulations is both morepractical and more effective in recognizing andpreserving evolutionary diversity.  相似文献   

17.
Planipapillus, a clade of onychophorans from southeastern Australia, exhibits substantial chromosomal variation. In the context of a robust phylogeny based on nuclear and mitochondrial sequence data, we evaluate models of chromosomal evolution and speciation that differ in the roles assigned to selection, mutation, and drift. Permutation tests suggest that all chromosome rearrangements in the clade have been centric fusions and, on the basis of parsimony and maximum-likelihood methods with independent estimates of branch lengths, we conclude that at least 31 centric fusions have been fixed in Planipapillus. A likelihood-ratio test approach, which is independent of our point estimates of ancestral states, rejects an evolutionary model in which the mutation rate is constant and centric fusions are effectively neutral. In contrast to the nucleotide sequence data, which are consistent with neutrality and rate constancy, centric fusions in Planipapillus are underdominant, spontaneous fusion rates vary among lineages, or both. We predict an inverse relationship between rates of chromosomal evolution and historical population size. Chromosomal evolution may play a role in speciation in Planipapillus, both by interactions between centric fusions with monobrachial homology and by the accumulation of multiple weakly underdominant fusions.  相似文献   

18.
19.
Quaternary climatic oscillations have been considered decisive in shaping much of the phylogeographic structure around the Mediterranean Basin. Within this paradigm, peripheral islands are usually considered as the endpoints of the colonization processes. Here, we use nuclear and mitochondrial markers to investigate the phylogeography of the blue tit complex (blue tit Cyanistes caeruleus, Canary blue tit C. teneriffae and azure tit C. cyanus), and assess the role of the Canary Islands for the geographic structuring of genetic variation. The Canary blue tit exhibits strong genetic differentiation within the Canary Islands and, in combination with other related continental species, provides an ideal model in which to examine recent differentiation within a closely related group of continental and oceanic island avian species. We analysed DNA sequences from 51 breeding populations and more than 400 individuals in the blue tit complex. Discrepancies in the nuclear and mitochondrial gene trees provided evidence of a complex evolutionary process around the Mediterranean Basin. Coalescent analyses revealed gene flow between C. caeruleus and C. teneriffae suggesting a dynamic process with multiple phases of colonization and geographic overlapping ranges. Microsatellite data indicated strong genetic differentiation among the Canary Islands and between the Canary archipelago and the close continental areas, indicating limited contemporary gene flow. Diversification of the blue tit complex is estimated to have started during the early Pliocene (≈ 5 Ma), coincident with the end of Messinian salinity crisis. Phylogenetic analyses indicated that the North African blue tit is derived from the Canary blue tits, a pattern is avian 'back colonization' that contrasts with more traditionally held views of islands being sinks rather than sources.  相似文献   

20.
SUMMARY The evolution of multicellular organisms involved the evolution of specialized cell types performing distinct functions; and specialized cell types presumably arose from more generalized ancestral cell types as a result of mutational event, such as gene duplication and changes in gene expression. We used characters based on gene expression data to reconstruct evolutionary relationships among 11 types of lymphocytes by the maximum parsimony method. The resulting phylogenetic tree showed expected patterns including separation of the lymphoid and myeloid lineages; clustering together of granulocyte types; and pairing of phenotypically similar cell types such as T-helper cells type 1 and T-helper cells type 2 (Th1 and Th2). We used phylogenetic analyses of sequence data to determine the time of origin of genes showing significant expression difference between Th1 and Th2 cells. Many such genes, particularly those involved in the regulation of gene expression or activation of proteins, were of ancient origin, having arisen by gene duplication before the most recent common ancestor (MRCA) of tetrapods and teleosts. However, certain other genes with significant expression difference between Th1 and Th2 arose after the tetrapod–teleost MRCA, and some of the latter were specific to eutherian (placental) mammals. This evolutionary pattern is consistent with previous evidence that, while bony fishes possess Th1 and Th2 cells, the latter differ phenotypically in important respects from the corresponding cells of mammals. Our results support a gradualistic model of the evolution of distinctive cellular phenotypes whereby the unique characteristics of a given cell type arise as a result of numerous independent mutational changes over hundreds of millions of years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号