首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Summary Subunits of wheat endosperm proteins have been fractionated by two-dimensional electrophoresis. To determine which subunits in the two-dimensional electrophoretic pattern belong to gliadin or glutenin the endosperm proteins have also been fractionated by a modified Osborne procedure and by gel filtration on Sephadex G-100 and Sepharose CL-4B prior to separation by two-dimensional electrophoresis.The control of production of five major grain protein subunits is shown to be determined by chromosomes 6A, 6B and 6D by comparing two-dimensional electrophoretic protein subunit patterns of aneuploid lines of the variety Chinese Spring. From these and previous studies it is concluded that some , and gliadins (molecular weights by SDS-PAGE 30,000 to 40,000) are specified by genes on the short arms of homoeologous Group 6 chromosomes, the gliadins (molecular weights by SDS-PAGE 50,000 to 70,000) are specified by genes on the short arms of homoeologous Group 1 chromosomes and the glutenin subunits (molecular weights by SDS-PAGE > 85,000) are specified by genes on the long arms of homoeologous Group 1 chromosomes.No major gliadins or glutenin subunits were absent when any of the chromosomes in homoeologous Groups 2, 3, 4, 5 or 7 were deleted. However two gliadins whose presumed structural genes are on chromosome 6D were absent in aneuploid stocks of Chinese Spring carrying two additional doses of chromosome 2A. Two out of thirty-three intervarietal or interspecific chromosome substitution lines examined, involving homoeologous Group 2 chromosomes, lacked the same two gliadins. All the subunits in the other thirty-one chromosome substitution lines were indistinguishable from those in Chinese Spring. It is therefore concluded that the major variation affecting gliadin and glutenins in wheat is concentrated on the chromosomes of homoeologous Groups 1 and 6 but Group 2 chromosomes are candidates for further study.An endosperm protein controlled by chromosome 4D in Chinese Spring is shown to be a high molecular weight globulin.  相似文献   

2.
Summary The high-molecular-weight (HMW) subunits of glutenin from about 185 varieties were fractionated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). About 20 different, major subunits were distinguished by this technique although each variety contained, with only a few exceptions, between 3 and 5 subunits. Further inter-varietal substitution lines to those already described (Payne et al. 1980) were analysed and the results indicate that all the HMW subunits are controlled by the homoeologous group 1 chromosomes. All hexaploid varieties studied except ‘NapHal’ contained two major subunits controlled by chromosome 1D. Their genes were shown to be tightly linked genetically for only four different types of banding patterns were observed. The nominal molecular weights determined after fractionation in 10% polyacrylamide gels were between 110,000 and 115,000 for the larger of the two subunits and between 82,000 and 84,000 for the smaller. One quarter of the varieties contained only one major HMW subunit controlled by chromosome 1B whereas the rest had two. The chromosome 1B subunits were the most varied and nine different banding patterns were detected. All the subunits had mobilities which were intermediate between those of the two chromosome 1D-controlled subunits. Only two types of HMW subunit controlled by chromosome 1A were detected in all the varieties examined; a single variety never contained both of these subunits and 40% of varieties contained neither. The chromosome 1A-controlled subunits had slightly slower mobilities in 10% gels than the largest HMW subunit controlled by chromosome 1D. About 100 single grains were analysed from each of five different crosses of the type (F1 of variety A × variety B) × variety C. The results indicate that the genes on chromosome 1B which control the synthesis of subunits 6, 7, 13, 14 and 17 are allelic, as are the genes of the chromosome 1A-controlled subunits, 1 and 2.  相似文献   

3.
Three monosomic lines (MSLs) and three nullisomic lines (NSLs) of the homeologous group 1 and one euploid line of the bread wheat Triticum aestivum cultivar Courtot were used in a proteomic approach to investigate the effects of zero, one or two doses of chromosomes 1A, 1B and 1D on the amount of endosperm proteins. Polypeptides whose amounts changed significantly between each aneuploid line and the euploid line were identified using image analyses of two-dimensional gel electrophoresis patterns resulting from specific endosperm protein extractions. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry and electrospray ionization tandem mass spectrometry were also used for protein identification. Removing one chromosome or a chromosome pair allowed varying responses to be observed for the remaining endosperm protein genes. Compensation phenomena for the high molecular weight glutenin subunits (HMW-GS) were detected only in the MSLs. Subunits Bx7, By8 and Dy12 were the only HMW-GS overexpressed (from 152-737%) when chromosomes 1A or 1B or 1D were at hemizygous state. Thirteen new protein spots were detected only in the NSL1D, and seven were identified as HMW-GS analogs. These seven new spots may result from the expression of inactive genes. The HMW-GS were of significantly higher volume in MSLs, whereas the low molecular weight glutenin subunits and the gamma-gliadins were of lower volume in aneuploid lines. Most of the down-regulated proteins in the MSLs were storage proteins encoded at loci located on another chromosome pair. Complex regulations between chromosomes and loci of the homeologous groups 1 and 6 in bread wheat are discussed.  相似文献   

4.
Summary Glutenin subunits from nullisomic-tetrasomic and ditelocentric lines of the hexaploid wheat variety ‘Chinese Spring’ (CS) and from substitution lines of the durum wheat variety ‘Langdon’ were fractionated by reversed-phase high-performance liquid chromatography (RP-HPLC) at 70 °C using a gradient of acetonitrile in the presence of 0.1% trifluoroacetic acid. Nineteen subunits were detected in CS. The presence and amounts of four early-eluted subunits were found, through aneuploid analysis, to be controlled by the long arms of chromosomes 1D (1DL) (peaks 1–2) and 1B (1BL) (peaks 3–4). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that these four subunits are the high molecular weight subunits of glutenin, which elute in the order 1Dy, 1Dx, 1By, and 1Bx. Similar amounts of 1DL subunits were present (6.3 and 8.8% of total glutenin), but 1BL subunits differed more in abundance (5.4 and 9.5%, respectively). Results indicate that most late-eluting CS glutenin subunits were coded by structural genes on the short arms of homoeologous group 1 chromosomes: 6 by 1DS, 5 by 1AS, and 4 by 1BS. Glutenin of tetraploid ‘Langdon’ durum wheat separated into nine major subunits: 6 were coded by genes on 1B chromosomes, and 3 on 1A chromosomes. Gene locations for glutenin subunits in the tetraploid durum varieties ‘Edmore’ and ‘Kharkovskaya-5’ are also given. These results should make RP-HPLC a powerful tool for qualitative and quantitative genetic studies of wheat glutenin. The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned Stationed at the Northern Regional Research Center, Peoria.  相似文献   

5.
Brown JW  Kemble RJ  Law CN  Flavell RB 《Genetics》1979,93(1):189-200
The genetic control of major wheat endosperm proteins by homoeologous group 1 chromosomes has been studied by two-dimensional polyacrylamide gel electrophoresis. The control of at least 15 distinct protein subunits or groups of protein subunits has been allocated to chromosomes 1A, 1B and 1D of Chinese Spring wheat from the analysis of grains of aneuploid genotypes. In addition, six protein subunits have been shown to be controlled by chromosome 1Cu of the related species, Aegilops umbellulata, from studies of wheat lines carrying disomic substitutions of 1Cu chromosomes. On the basis of protein subunit patterns, chromosome 1Cu is more closely related to chromosome 1D of wheat than to chromosomes 1A or 1B.  相似文献   

6.
Summary The electrophoretic mobilities of the high-molecular-weight (HMW) subunits of glutenin from 7 varieties were compared by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate (SDS). In total, 12 subunits were clearly resolved and they had nominal molecular weights of between 95,000 and 140,000. The chromosomes which control their synthesis were determined using monosomic lines and inter-varietal substitution lines. All subunits were shown to be controlled by the homoeologous group 1 chromosomes. Each variety contains between 3 and 5 HMW subunits; two are under the control of the 1D chromosome, 1 or 2 are controlled by chromosome 1B and 0 or 1 by chromosome 1A. The segregation of two 1D-controlled subunits of similar electrophoretic mobilities were analysed in the F2 progeny of crosses between Chinese Spring and Holdfast. The results suggest that the genes which code for the two proteins are allelic.  相似文献   

7.
Summary One-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) of reduced total protein extracts from the endosperm of hexaploid wheat revealed a new set of faintly-stained bands, having slower electrophoretic mobility than the high-molecular-weight (HMW) glutenin subunits. These new bands have been termed the E group of glutenin subunits. Analysis of aneuploid stocks of Chinese Spring wheat has shown that three of the E bands, in order of increasing electrophoretic mobility, are controlled by genes on the short arms of chromosomes 1B, 1A and 1D, respectively. The E bands are expressed only in the presence of the long arm of chromosome 1B indicating an interaction between two or more genes involved in their production in wheat endosperm. The gene on the short arm of chromosome 1D controlling an E subunit recombined freely with Tri-D1 and the centromere but not at all with Gli-D1, indicating additional complexity at the Gli-DI locus in wheat.  相似文献   

8.
Summary The seed proteins of Chinese Spring wheat stocks which possess single chromosomes from other plant species related to wheat have been separated by gel electrophoresis in the presence of sodium dodecyl sulphate. Marker protein bands have been detected for both arms of barley chromosome 5, chromosome E (= 1R) and B (= 2R) of rye, chromosomes A,B (= 1Cu) and C (= 5Cu) of Aegilops umbellulata and chromosomes I and III of Agropyron elongatum. These studies, and previous findings, indicate that chromosome 5 of barley, chromosome 1R of rye, chromosome I of Ag. elongatum and possibly chromosome 1Cu of Ae. umbellulata are similar to chromosomes 1A, 1B and 1D in hexaploid wheat in that they carry genes controlling prolamins on their short arms and genes controlling high-molecular-weight (apparent molecular weight greater than 86,000) seed protein species on their long arms. These findings support the idea that all these chromosomes are derived from a common ancestral chromosome and that they have maintained their integrity since their derivation from that ancestral chromosome.  相似文献   

9.
Genome characterization of 14 hexaploid lines that spontaneously appeared in octoploid Triticales was carried out by sequential genomic in situ hybridization and fluorescence in situ hybridization, high molecular weight glutenin subunits and SSR marker analyses. All of the lines showed a chromosome constitution of complete A and B genomes, and a composite genome consisting of the chromosomes of D and R genomes. The composite genome of the 11 lines consisted of chromosomes 1R, 2D, 3R, 4R, 5R, 6R and 7R, that of the two lines were 1D, 2D, 3R, 4R, 5R, 6R and 7R, and that of one line was 1R, 2D, 3R, 4R, 5R, 6D and 7R. The incompatibility of the D and R genomes in common wheat genetic background, preferential retention of chromosome 2D and importance of these lines for the development of hexaploid Triticale are discussed in this report.  相似文献   

10.
M Ghaemi  A Sarrafi  R Morris 《Génome》1995,38(1):158-165
Reciprocal substitutions for all chromosomes between the hard red winter wheat cultivars Wichita and Cheyenne were used to investigate the effects of individual chromosomes, as well as their interactions with the genetic background, on androgenesis. Duplicate lines for each chromosome were included to check background homogeneity. Six experiments, two for each genome, were performed. In each experiment, 14 substitution lines, their 14 duplicate lines, and the two parental genotypes ('Cheyenne' and 'Wichita') were studied. The experimental design was a randomized block with three replications. 'Wichita' and 'Cheyenne' differed significantly in embryo yield and green plant regeneration (except green plant regeneration for the B-genome tests) and were equal for albino and total plant regeneration. Embryogenesis was influenced by some chromosomes of the A, B, and D genomes; green plant production was influenced by all chromosomes of the A and D genomes except 5D; albino and total plant regeneration were affected by some chromosomes of the B and D genomes. Reciprocal effects were obtained with chromosomes 1A, 7A, 1B, 5B, 1D, and 2D for embryogenesis, chromosomes 2D and 7D for green plant regeneration, and chromosome 2D for total plant regeneration. Reciprocal substitution lines revealed reciprocal effects of homologous chromosomes, as well as interactions between substituted chromosomes and their specific genetic background.  相似文献   

11.
Triticale lines tend to become less resistant to stripe rust and other fungal diseases over time and exhibit relatively limited genetic diversity. Therefore, it is important that new triticale varieties with superior agronomic traits are continually produced to enrich the available genetic pool. In this study, a new hexaploid triticale line (K14-827-1), which was derived from the progenies of a wheat–rye–Psathyrostachys huashanica trigeneric hybrid, was identified and analyzed using genomic and fluorescence in situ hybridizations, seed protein profiling, and molecular markers. Meiotic pairing studies suggested that the mean chromosomal configuration of K14-827-1 was 2n = 42 = 0.24 I + 18.23 II (ring) + 2.65 II (rod). The in situ hybridization karyotyping results indicated that K14-827-1 was a 4D (4B) substitution line, consisting of complete R and A genomes and chromosomes 4D, 1B–3B, and 5B–7B. Simple sequence repeat analysis of K14-827-1 confirmed that wheat chromosome 4B had been substituted by chromosome 4D. The seed protein profiling results uncovered polymorphic 75K γ-secalin and low-molecular-weight glutenin subunits between K14 - 827-1 and its recurrent triticale parent (Zhongsi828). Furthermore, the K14-827-1 plants were highly resistant to the stripe rust pathogen (Puccinia striiformis f. sp. tritici) prevalent in China, including race V26/Gui22, than Zhongsi828 plants at the seedling and adult stages. This new hexaploid triticale line may be useful for diversifying triticale germplasms and breeding new varieties with improved forage grass traits.  相似文献   

12.
Structural alterations of chromosomes are often found in wheat-rye hybrids. In the majority of cases modifications are observed for rye chromosomes, yet chromosome aberration cases are described for wheat, including the progeny of Triticum aestivum disomic and monosomic addition lines. Since wheat-rye substitution and translocation lines are the source of rye chromatin in wheat breeding programs, the information on possible chromosome changes in the genomes of introgressive forms is important. Chromosome behavior in F1 meiosis and chromosomal composition of F2 karyotypes for double monosomics 1Rv-1A were studied by applying C-banding, genomic in situ hybridisation (GISH) using rye genomic DNA, and sequential in situ hybridization using repetitive sequences pAs1, pSc119.2 and centromere specific pAet-06 as probes. The double monosomics 1Rv-1A were obtained by crossing of disomic substitution line with chromosome 1A replaced by Secale cereale 1Rv in the bread wheat Saratovskaya 29 (S29) background with S29. The results indicated a high frequency of bipolar chromosome 1Rv orientation, as compared to 1A, at metaphase I (MI) (58.6 and 34.7 % of meiocytes, respectively), and, at anaphase I (AI), chromatid segregation of 1Rv compared to 1A (70.53 and 32.14 % of meiocytes, respectively). In few cases desynapsis of wheat homologues was observed, at AI, the chromosomes randomly distributed between the poles or underwent chromatid segregation. At AI, the two wheat homologues separated onto sister chromatids in 10.89 % of cells.The plants F2 karyotypes were marked with aneuploidy not only of chromosomes 1A and 1Rv, but also of 1D, 2D, 3D, 3B, 3A, 4A, 6D, 6B, 6A, and 7D. Structural changes were observed for the chromosomes of the first homoeologous group (1Rv, 1A, 1D, 1B), as well as for 2B, 5D, 6B, and 7B. The chromosomes 1Rv and 6B often demonstrated aberrations. The types of aberrations were centromeric break, deletions of various sizes, and a changed repeat pSc119.2 localization pattern.  相似文献   

13.
The effects of rye chromosomes 1R and 5R on androgenesis in cultured anthers of wheat–rye substitution lines was studied as dependent on the cultivar origin of the rye chromosomes and on the wheat genome (A or D) subjected to substitution. Chromosome 1R stimulated embryogenesis in anther cultures, while chromosome 5R suppressed it regardless of whether the corresponding wheat chromosomes were substituted in the A or D genome. The effect of chromosome 1R on embryogenesis proved to depend on its cultivar origin. Along with rye chromosome 1R, wheat chromosome 1A was shown to substantially affect total seedling regeneration. Regeneration of green seedlings was dramatically affected both by rye chromosome 1R and by wheat chromosome 1D. The results supported the published data that individual androgenesis parameters (embryogenesis, total plant regeneration, green plant regeneration) are controlled by different genetic mechanisms.  相似文献   

14.
The glutenin and gliadin proteins of wild emmer wheat, Triticum turgidum L. var. dicoccoides, have potential for improvement of durum wheat (T. turgidum L. var. durum) quality. The objective of this study was to determine the chromosomes controlling the high molecular weight (HMW) glutenin subunits and gliadin proteins present in three T. turgidum var. dicoccoides accessions (Israel-A, PI-481521, and PI-478742), which were used as chromosome donors in Langdon durum- T. turgidum var. dicoccoides (LDN-DIC) chromosome substitution lines. The three T. turgidum var. dicoccoides accessions, their respective LDN-DIC substitution lines, and a number of controls with known HMW glutenin subunits were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), urea/SDS-PAGE, and acid polyacrylamide gel electrophoresis (A-PAGE). The results revealed that all three T. turgidum var. dicoccoides accessions possess Glu-A1 alleles that are the same as or similar to those reported previously. However, each T. turgidum var. dicoccoides accession had a unique Glu-B1 allele. PI-478742 had an unusual 1Bx subunit, which had mobility slightly slower than the 1Ax subunit in 12% SDS-PAGE gels. The subunits controlled by chromosome 1B of PI-481521 were slightly faster in mobility than the subunits of the Glu-B1n allele, and the 1By subunit was identified as band 8. The 1B subunits of Israel-A had similar mobility to subunits 14 and 16. The new Glu-B1 alleles were designated as Glu-B1be in Israel-A, Glu-B1bf in PI-481521, and Glu-B1bg in PI-478742. Results from A-PAGE revealed that PI-481521, PI-478742, and Israel-A had eight, 12, and nine unique gliadin bands, respectively, that were assigned to specific chromosomes. The identified glutenin subunits and gliadin proteins in the LDN-DIC substitution lines provide the basis for evaluating their effects on end-use quality, and they are also useful biochemical markers for identifying specific chromosomes or chromosome segments of T. turgidum var. dicoccoides.Communicated by B. Friebe  相似文献   

15.
The effects of rye chromosomes 1R and 5R on androgenesis in cultured anthers of wheat--rye substitution lines was studied as dependent on the cultivar origin of the rye chromosomes and on the wheat genome (A or D) subjected to substitution. Chromosome 1R stimulated embryogenesis in anther cultures, while chromosome 5R suppressed it regardless of whether the corresponding wheat chromosomes were substituted in the A or D genome. The effect of chromosome 1R on embryogenesis proved to depend on its cultivar origin. Along with rye chromosome 1R, wheat chromosome 1A was shown to substantially affect total seedling regeneration. Regeneration of green seedlings was dramatically affected both by rye chromosome 1R and by wheat chromosome 1D. The results supported the published data that individual androgenesis parameters (embryogenesis, total plant regeneration, green plant regeneration) are controlled by different genetic mechanisms.  相似文献   

16.
The relationships of three wheat-Aegilops longissima chromosome addition lines A, C, and D with homoeologous wheat chromosomes were studied in PMC meiosis. Substitutions of alien chromosome A for wheat chromosome 6 B, chromosome C for 1 B and chromosome D for 4 B were obtained. The production of 4 BS/C and 7 BS/D chromosome translocations indicated cytogenetic relationships of C partially to homoeologous wheat chromosomes of group 1 and 4, and D partially to homoeologous wheat chromosomes of group 4 and 7.  相似文献   

17.
Wheat quality depends on protein composition and grain protein content. High molecular weight glutenin subunits (HMW-GS) play an important role in determining the viscoelastic properties of gluten. In an attempt to improve the bread-making quality of hexaploid wheat by elaborating novel HMW-GS combinations, a fragment of wheat chromosome 1D containing the Glu-D1 locus encoding the Dx2+Dy12 subunits was translocated to the long arm of chromosome 1A using the ph1b mutation. The partially isohomoeoallelic line selected was characterized using cytogenetical and molecular approaches to assess the amount of chromatin introgressed in the translocated 1A chromosome. Triple-target genomic in situ hybridization indicated that the translocated 1A chromosome had a terminal 1D segment representing 25% of the length of the recombinant long arm. The translocation was also identified on the long arm using molecular markers, and its length was estimated with a minimum of 91 cM. Proteome analysis was performed on total endosperm proteins. Out of the 152 major spots detected, 9 spots were up-regulated and 4 spots were down-regulated. Most of these proteins were identified as α-, β-, γ-gliadins assigned to the chromosomes of homoeologous groups 1 and 6. Quantitative variations in the HMW-GS were only observed in subunit Dy12 in response to duplication of the Glu-D1 locus.  相似文献   

18.
Barley yellow dwarf is the most damaging virus-caused disease in bread wheat (Triticum aestivum L.). A resistant line, SW335.1.2-13-11-1-5 (2n = 47), derived from a cross of T. aestivum x Lophopyrum ponticum was characterized by meiotic chromosome pairing, by in situ DNA hybridization and by expression of molecular markers to determine its chromosome constitution. All progeny of this line had three pairs of L. ponticum chromosomes from homoeologous chromosome groups 3, 5, and 6 and the 2n = 47 progeny had an additional L. ponticum monosome. The pairs from groups 3 and 6 were in the added state, while the group 5 pair was substituted for wheat chromosome 5D. Several wheat-wheat translocations with respect to the parental wheat genotype occurred in this line, presumably owing to the promotion of homoeologous chromosome pairing by L. ponticum chromosomes. It was hypothesized that homoeologous recombination results in homoeologous duplication-deletions in wheat chromosomes. An aberrant 3:1 disjunction creates the potential at each meiosis for replacement of these wheat chromosomes by homoeologous L. ponticum chromosomes. Wheat chromosomes 3A and 6A appeared to be in intermediate stages of this substitution process.  相似文献   

19.
Summary Salt-soluble proteins from the endosperms of wheat, barley, and rye have been separated by nonequilibrium electrofocusing x electrophoresis. Genes encoding 14 of the 25 components observed in wheat have been unambiguously assigned to 10 different chromosomes (1B, 3B, 3D, 4A, 4D, 5B, 6B, 6D, 7B, 7D) by analysis of the compensated nulli-tetrasomic series. Five more wheat proteins seem to be controlled by group 2 chromosomes. Analysis of wheat-barley and wheat-rye addition lines has led to the location of genes for 6 out of 20 barley proteins in 4 different chromosomes (1H, 3H, 4H, 6H; 1H is homoeologous to group 7 chromosomes of wheat) and of genes for 5 out of 20 rye proteins in two different chromosomes (2R, 4R). The relationship between the proteins reported here and previously characterized ones is discussed.  相似文献   

20.
Kota RS  Dvorak J 《Genetics》1988,120(4):1085-1094
A massive restructuring of chromosomes was observed during the production of a substitution of chromosome 6B(s) from Triticum speltoides (Tausch) Gren. ex Richter for chromosome 6B of Chinese Spring wheat (Triticum aestivum L.). Deletions, translocations, ring chromosomes, dicentric chromosomes and a paracentric inversion were observed. Chromosome rearrangements occurred in both euchromatic and heterochromatic regions. Chromosome rearrangements were not observed either in the amphiploid between Chinese Spring and T. speltoides or in Chinese Spring. No chromosome rearrangements were observed in the backcross derivatives; however, after self-pollination of a monosomic substitution (2n = 41) of chromosome 6B(s) for wheat chromosome 6B, 49 of the 138 plants carried chromosome aberrations. Chromosome rearrangements were observed in both wheat and T. speltoides chromosomes. The frequency of chromosome rearrangements was high among the B-genome chromosomes, moderate among the A-genome chromosomes, and low among the D-genome chromosomes. In the B genome, the rearrangements were nonrandom, occurring most frequently in chromosomes 1B and 5B. Chromosome rearrangements were also frequent for the 6B(s) chromosome of T. speltoides. An intriguing aspect of these observations is that they indicate that wheat genomes can be subject to uneven rates of structural chromosome differentiation in spite of being in the same nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号