首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mosaic origin of the mitochondrial proteome   总被引:1,自引:0,他引:1  
Szklarczyk R  Huynen MA 《Proteomics》2010,10(22):4012-4024
Although the origin of mitochondria from the endosymbiosis of an α-proteobacterium is well established, the nature of the host cell, the metabolic complexity of the endosymbiont and the subsequent evolution of the proto-mitochondrion into all its current appearances are still the subject of discovery and sometimes debate. Here we review what has been inferred about the original composition and subsequent evolution of the mitochondrial proteome and essential mitochondrial systems. The evolutionary mosaic that currently constitutes mitochondrial proteomes contains (i) endosymbiotic proteins (15-45%), (ii) proteins without detectable orthologs outside the eukaryotic lineage (40%), and (iii) proteins that are derived from non-proteobacterial Bacteria, Bacteriophages and Archaea (15%, specifically multiple tRNA-modification proteins). Protein complexes are of endosymbiotic origin, but have greatly expanded with novel eukaryotic proteins; in contrast to mitochondrial enzymes that are both of proteobacterial and non-proteobacterial origin. This disparity is consistent with the complexity hypothesis, which argues that proteins that are a part of large, multi-subunit complexes are unlikely to undergo horizontal gene transfer. We observe that they neither change their subcellular compartments in the course of evolution, even when their genes do.  相似文献   

2.
beta-Barrel membrane proteins have several important functions in outer membranes of Gram-negative bacteria and in the organelles of endosymbiotic origin, mitochondria and chloroplasts. The biogenesis of beta-barrel membrane proteins was, until recently, an unresolved process. A breakthrough was achieved when a specific pathway for the insertion of beta-barrel outer-membrane proteins was identified in both mitochondria and Gram-negative bacteria. The key component of this pathway is Tob55 (also known as Sam50) in mitochondria and Omp85 in bacteria, both beta-barrel membrane proteins themselves. Tob55 is part of the hetero-oligomeric TOB (topogenesis of mitochondrial outer-membrane beta-barrel proteins) or SAM (sorting and assembly of mitochondria) complex, which is present in the mitochondrial outer membrane. Tob55 belongs to an evolutionarily conserved protein family, the members of which are present in almost all eukaryotes and in Gram-negative bacteria and chloroplasts. Thus, is it emphasized that the insertion pathway of mitochondrial beta-barrel membrane proteins was conserved during evolution of mitochondria from endosymbiotic bacterial ancestors.  相似文献   

3.
Current theories of mitochondrial evolution assume that this organelle evolved either from endosymbiotic bacterial-like organisms which invaded other cells or by a gradual sequestering of functional cytoplasmic units within membranes. In either case there has been relatively little discussion of the origin of mitochondrial DNA. Because of the marked similarity in the size, physical properties, replication and sensitivity to acridine dyes and ethidium bromide of both bacterial plasmid and mitochondrial DNA, it is proposed that the plasmid of an ancestral bacterial-like organism evolved into the mitochondrial DNA of eukaryotes. This hypothesis is consistent with either theory of the whole organelle but is easier to explain if mitochondria evolved within a prokaryote by invagination of the plasma membrane.  相似文献   

4.
目前已在20多种变形虫和70多种鞭毛虫中发现细菌内共生体。大部分细菌内共生体位于宿主细胞质共生泡中,仅少数鞭毛虫的内共生体位于核质中。变形虫-细菌共生系统形成后,共生体影响宿主细胞基因,对其基因缺陷产生互补作用。灰胞藻类鞭毛虫-蓝绿藻共生体系统的研究表明,叶绿体起源于一种原始的共生蓝细菌。锥体亚目鞭毛虫细胞质内普遍含有双心体,该共生体可能是由来自波豆亚目的锥体类鞭毛虫遗传的。作者推测,继续研究鞭毛虫和原核生物共生关系起源的基本阶段,可阐明原生动物的共生系统起源的基本原则,并为真核细胞起源的理论提供进一步的证据;深入研究变形虫-细菌共生系统,可在遗传精细结构和代谢调节的进化方面为真核细胞内共生起源的理论提供分子水平上的证据。  相似文献   

5.
The ancestors of mitochondria, or proto-mitochondria, played a crucial role in the evolution of eukaryotic cells and derived from symbiotic α-proteobacteria which merged with other microorganisms - the basis of the widely accepted endosymbiotic theory. However, the identity and relatives of proto-mitochondria remain elusive. Here we show that methylotrophic α-proteobacteria could be the closest living models for mitochondrial ancestors. We reached this conclusion after reconstructing the possible evolutionary pathways of the bioenergy systems of proto-mitochondria with a genomic survey of extant α-proteobacteria. Results obtained with complementary molecular and genetic analyses of diverse bioenergetic proteins converge in indicating the pathway stemming from methylotrophic bacteria as the most probable route of mitochondrial evolution. Contrary to other α-proteobacteria, methylotrophs show transition forms for the bioenergetic systems analysed. Our approach of focusing on these bioenergetic systems overcomes the phylogenetic impasse that has previously complicated the search for mitochondrial ancestors. Moreover, our results provide a new perspective for experimentally re-evolving mitochondria from extant bacteria and in the future produce synthetic mitochondria.  相似文献   

6.
Mitochondria are an essential organelle, not only to the human cell, but to all eukaryotic life. This essentiality is reflected in the large number of mutations in genes encoding mitochondrial proteins that lead to disease. Aside from their relevance to disease, mitochondria are, given their endosymbiotic origin, very interesting from an evolutionary point of view. Here, in the year that marks the bicentenary of Darwin's birth and the 150th anniversary of the publication of “On the origin of species” we review approaches that implicitly or explicitly use evolutionary analyses to find new genes involved in mitochondrial disease and to predict their function and involvement in pathways. We show how the phenotypic spectrum of mitochondrial disease is linked to the evolutionary origin of mitochondrial proteins, how combinations of evolutionary data and genomics data have been used to predict the mitochondrial proteome and functional links between the mitochondrial proteins and how the evolution of the mitochondrial proteome has been used to predict new mitochondrial disease genes. For the latter we review and reanalyze the eukaryotic evolution of the NADH:ubiquinone oxidoreductase (complex I) and the proteins involved in its assembly.  相似文献   

7.
Modern α-proteobacteria are thought to be closely related to the ancient symbiont of eukaryotes, an ancestor of mitochondria. Respiratory complex I from α-proteobacteria and mitochondria is well conserved at the level of the 14 "core" subunits, consistent with that notion. Mitochondrial complex I contains the core subunits, present in all species, and up to 31 "supernumerary" subunits, generally thought to have originated only within eukaryotic lineages. However, the full protein composition of an α-proteobacterial complex I has not been established previously. Here, we report the first purification and characterization of complex I from the α-proteobacterium Paracoccus denitrificans. Single particle electron microscopy shows that the complex has a well defined L-shape. Unexpectedly, in addition to the 14 core subunits, the enzyme also contains homologues of three supernumerary mitochondrial subunits as follows: B17.2, AQDQ/18, and 13 kDa (bovine nomenclature). This finding suggests that evolution of complex I via addition of supernumerary or "accessory" subunits started before the original endosymbiotic event that led to the creation of the eukaryotic cell. It also provides further confirmation that α-proteobacteria are the closest extant relatives of mitochondria.  相似文献   

8.
Burger G  Lang BF 《IUBMB life》2003,55(4-5):205-212
Mitochondria, the energy-producing organelles of the eukaryotic cell, originate from an endosymbiotic alpha-proteobacterium. These organelles are believed to have arisen only once in evolutionary history, but despite their common ancestry, mitochondrial DNAs vary extensively throughout eukaryotes in genome architecture and gene content. New insights into early mitochondrial genome evolution come from the investigation of primitive mitochondriate eukaryotes, as well as the comparison between mitochondria and intracellular bacterial symbionts.  相似文献   

9.
We test the 'free radical theory of aging' using six species of colubrid snakes (numerous, widely distributed, non-venomous snakes of the family Colubridae) that exhibit long (> 15 years) or short (< 10 years) lifespans. Because the 'rate of living theory' predicts metabolic rates to be correlated with rates of aging and oxidative damage results from normal metabolic processes we sought to answer whether physiological parameters and locomotor performance (which is a good predictor of survival in juvenile snakes) mirrored the evolution of lifespans in these colubrid snakes. We measured whole animal metabolic rate (oxygen consumption Vo2), locomotor performance, cellular metabolic rate (mitochondrial oxygen consumption), and oxidative stress potential (hydrogen peroxide production by mitochondria). Longer-lived colubrid snakes have greater locomotor performance and reduced hydrogen peroxide production than short-lived species, while whole animal metabolic rates and mitochondrial efficiency did not differ with lifespan. We present the first measures testing the 'free radical theory of aging' using reptilian species as model organisms. Using reptiles with different lifespans as model organisms should provide greater insight into mechanisms of aging.  相似文献   

10.
Mitochondria, the energy-producing organelles of the eukaryotic cell, are derived from an ancient endosymbiotic alpha-Proteobacterium. These organelles contain their own genetic system, a remnant of the endosymbiont's genome, which encodes only a fraction of the mitochondrial proteome. The majority of mitochondrial proteins are translated from nuclear genes and are imported into mitochondria. Recent studies of phylogenetically diverse representatives of Fungi reveal that their mitochondrial DNAs are among the most highly derived, encoding only a limited set of genes. Much of the reduction in the coding content of the mitochondrial genome probably occurred early in fungal evolution. Nevertheless, genome reduction is an ongoing process. Fungi in the chytridiomycete order Neocallimastigales and in the pathogenic Microsporidia have taken mitochondrial reduction to the extreme and have permanently lost a mitochondrial genome. These organisms have organelles derived from mitochondria that retain traces of their mitochondrial ancestry.  相似文献   

11.
In DNA barcoding, a short standardized DNA sequence is used to assign unknown individuals to species and aid in the discovery of new species. A fragment of the mitochondrial gene cytochrome c oxidase subunit 1 is emerging as the standard barcode region for animals. However, patterns of mitochondrial variability can be confounded by the spread of maternally transmitted bacteria that cosegregate with mitochondria. Here, we investigated the performance of barcoding in a sample comprising 12 species of the blow fly genus Protocalliphora, known to be infected with the endosymbiotic bacteria Wolbachia. We found that the barcoding approach showed very limited success: assignment of unknown individuals to species is impossible for 60% of the species, while using the technique to identify new species would underestimate the species number in the genus by 75%. This very low success of the barcoding approach is due to the non-monophyly of many of the species at the mitochondrial level. We even observed individuals from four different species with identical barcodes, which is, to our knowledge, the most extensive case of mtDNA haplotype sharing yet described. The pattern of Wolbachia infection strongly suggests that the lack of within-species monophyly results from introgressive hybridization associated with Wolbachia infection. Given that Wolbachia is known to infect between 15 and 75% of insect species, we conclude that identification at the species level based on mitochondrial sequence might not be possible for many insects. However, given that Wolbachia-associated mtDNA introgression is probably limited to very closely related species, identification at the genus level should remain possible.  相似文献   

12.
Plastids and mitochondria arose through endosymbiotic acquisition of formerly free‐living bacteria. During more than a billion years of subsequent concerted evolution, the three genomes of plant cells have undergone dramatic structural changes to optimize the expression of the compartmentalized genetic material and to fine‐tune the communication between the nucleus and the organelles. The chimeric composition of many multiprotein complexes in plastids and mitochondria (one part of the subunits being nuclear encoded and another one being encoded in the organellar genome) provides a paradigm for co‐evolution at the cellular level. In this paper, we discuss the co‐evolution of nuclear and organellar genomes in the context of environmental adaptation in species and populations. We highlight emerging genetic model systems and new experimental approaches that are particularly suitable to elucidate the molecular basis of co‐adaptation processes and describe how nuclear‐cytoplasmic co‐evolution can cause genetic incompatibilities that contribute to the establishment of hybridization barriers, ultimately leading to the formation of new species.  相似文献   

13.
Mitochondria have many different functions, the most important one of which is oxidative phosphorylation. They originated from an endosymbiotic event between a bacterium and an archaeal host cell. It was the evolution of a protein import system that marked the boundary between the endosymbiotic ancestor of the mitochondrion and a true organelle that is under the control of the nucleus. In present day mitochondria more than 95% of all proteins are imported from the cytosol in a proces mediated by hetero‐oligomeric protein complexes in the outer and inner mitochondrial membranes. In this review we compare mitochondrial protein import in the best studied model system yeast and the parasitic protozoan Trypanosoma brucei. The 2 organisms are phylogenetically only remotely related. Despite the fact that mitochondrial protein import has the same function in both species, only very few subunits of their import machineries are conserved. Moreover, while yeast has 2 inner membrane protein translocases, one specialized for presequence‐containing and one for mitochondrial carrier proteins, T. brucei has a single inner membrane translocase only, that mediates import of both types of substrates. The evolutionary implications of these findings are discussed.   相似文献   

14.
One of the major evolutionary events that transformed endosymbiotic bacterium into mitochondrion was an acquisition of ATP/ADP carrier in order to supply the host with respiration-derived ATP. Along with mitochondrial carrier, unrelated carrier is known which is characteristic of intracellular chlamydiae, plastids, parasitic intracellular eukaryote Encephalitozoon cuniculi, and the genus Rickettsia of obligate endosymbiotic alpha-Proteobacteria. This non-mitochondrial ATP/ADP carrier was recently described in rickettsia-like endosymbionts - a group of obligate intracellular bacteria, classified with the order Rickettsiales, which have diverged after free-living alpha-Proteobacteria but before sister groups of the Rickettsiaceae assemblage (true rickettsiae) and mitochondria. Published controversial phylogenetic data on the non-mitochondrial carrier were reanalysed in the present work using both DNA and protein sequences, and various methods including Bayesian analysis. The data presented are consistent with classic endosymbiont theory for the origin of mitochondria and also suggest that even last but one common ancestor of rickettsiae and organelles may have been an endosymbiotic bacterium in which ATP/ADP carrier has first originated.  相似文献   

15.
All eukaryotes require mitochondria for survival and growth. The origin of mitochondria can be traced down to a single endosymbiotic event between two probably prokaryotic organisms. Subsequent evolution has left mitochondria a collection of heterogeneous organelle variants. Most of these variants have retained their own genome and translation system. In hydrogenosomes and mitosomes, however, the entire genome was lost. All types of mitochondria import most of their proteome from the cytosol, irrespective of whether they have a genome or not. Moreover, in most eukaryotes, a variable number of tRNAs that are required for mitochondrial translation are also imported. Thus, import of macromolecules, both proteins and tRNA, is essential for mitochondrial biogenesis. Here, we review what is known about the evolutionary history of the two processes using a recently revised eukaryotic phylogeny as a framework. We discuss how the processes of protein import and tRNA import relate to each other in an evolutionary context.  相似文献   

16.
Mitochondria evolved from an endosymbiotic proteobacterium in a process that required the transfer of genes from the bacterium to the host cell nucleus, and the translocation of proteins thereby made in the host cell cytosol into the internal compartments of the organelle. According to current models for this evolution, two highly improbable events are required to occur simultaneously: creation of a protein translocation machinery to import proteins back into the endosymbiont and creation of targeting sequences on the protein substrates themselves. Using a combination of two independent prediction methods, validated through tests on simulated genomes, we show that at least 5% of proteins encoded by an extant proteobacterium are predisposed for targeting to mitochondria, and propose we that mitochondrial targeting information was preexisting for many proteins of the endosymbiont. We analyzed a family of proteins whose members exist both in bacteria and in mitochondria of eukaryotes and show that the amino-terminal extensions occasionally found in bacterial family members can function as a crude import sequence when the protein is presented to isolated mitochondria. This activity leaves the development of a primitive translocation channel in the outer membrane of the endosymbiont as a single hurdle to initiating the evolution of mitochondria.  相似文献   

17.
Organelle origins and ribosomal RNA   总被引:8,自引:0,他引:8  
As the detailed molecular biology of organelle genomes has unfolded, there has been a general acceptance of the view that plastids and mitochondria are of endosymbiotic, eubacterial origin. Plastid genes are strikingly similar to their eubacterial (particularly cyanobacterial) counterparts in sequence, organization, and mode of expression, and such features strongly support the hypothesis that the plastid and its genome were derived in evolution from a blue-green alga-like endosymbiont. Mitochondria, on the other hand, are problematic: mitochondrial genes are organized and expressed in remarkably diverse ways in the different major groups of eukaryotes, and in no case are these features particularly characteristic of either bacterial or nuclear genomes. There is, however, clear evidence derived from gene sequence supporting the eubacterial ancestry of mitochondria, and some of the most compelling data have come from analyses of mitochondrial ribosomal RNA (rRNA). Plant mitochondrial rRNA genes diverge in sequence at a particularly slow rate, and these genes have proven to be especially supportive of the endosymbiont hypothesis, pointing to an origin of mitochondria from within the alpha subdivision of the purple bacteria. Ribosomal RNA sequences provide a basis for the construction of global phylogenetic trees that probe the evolutionary history of organelles, and that address the question of whether mitochondria and plastids are monophyletic or polyphyletic in origin. Such studies raise the possibility that the rRNA genes of plant mitochondria originated separately from the mitochondrial rRNA genes of other eukaryotes.  相似文献   

18.

Background  

Metabolic networks are responsible for many essential cellular processes, and exhibit a high level of evolutionary conservation from bacteria to eukaryotes. If genes encoding metabolic enzymes are horizontally transferred and are advantageous, they are likely to become fixed. Horizontal gene transfer (HGT) has played a key role in prokaryotic evolution and its importance in eukaryotes is increasingly evident. High levels of endosymbiotic gene transfer (EGT) accompanied the establishment of plastids and mitochondria, and more recent events have allowed further acquisition of bacterial genes. Here, we present the first comprehensive multi-species analysis of E/HGT of genes encoding metabolic enzymes from bacteria to unicellular eukaryotes.  相似文献   

19.
In the evolution of mitochondria and plastids from endosymbiotic bacteria, most of the proteins that make up these organelles have become encoded by nuclear genes and must therefore be transported across the organellar membranes, following synthesis in the cytosol. The core component of the protein translocation machines in both the mitochondrial and plastid outer membranes appears to be a beta-barrel protein, perhaps a relic from their bacterial ancestry, distinguishing these translocases from the alpha-helical-based protein translocation pores found in all other eukaryotic membranes.  相似文献   

20.
The most studied comparison of aging and maximum lifespan potential (MLSP) among endotherms involves the 7-fold longevity difference between rats (MLSP 5y) and pigeons (MLSP 35y). A widely accepted theory explaining MLSP differences between species is the oxidative stress theory, which purports that reactive oxygen species (ROS) produced during mitochondrial respiration damage bio-molecules and eventually lead to the breakdown of regulatory systems and consequent death. Previous rat-pigeon studies compared only aspects of the oxidative stress theory and most concluded that the lower mitochondrial superoxide production of pigeons compared to rats was responsible for their much greater longevity. This conclusion is based mainly on data from one tissue (the heart) using one mitochondrial substrate (succinate). Studies on heart mitochondria using pyruvate as a mitochondrial substrate gave contradictory results. We believe the conclusion that birds produce less mitochondrial superoxide than mammals is unwarranted. We have revisited the rat-pigeon comparison in the most comprehensive manner to date. We have measured superoxide production (by heart, skeletal muscle and liver mitochondria), five different antioxidants in plasma, three tissues and mitochondria, membrane fatty acid composition (in seven tissues and three mitochondria), and biomarkers of oxidative damage. The only substantial and consistent difference that we have observed between rats and pigeons is their membrane fatty acid composition, with rats having membranes that are more susceptible to damage. This suggests that, although there was no difference in superoxide production, there is likely a much greater production of lipid-based ROS in the rat. We conclude that the differences in superoxide production reported previously were due to the arbitrary selection of heart muscle to source mitochondria and the provision of succinate. Had mitochondria been harvested from other tissues or other relevant mitochondrial metabolic substrates been used, then very different conclusions regarding differences in oxidative stress would have been reached.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号