首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Eucalypts (Eucalyptus spp. and Corymbia spp.) dominate many communities across Australia, including frequently burnt tropical savannas and temperate forests, which receive less frequent but more intense fires. Understanding the demographic characteristics that allow related trees to persist in tropical savannas and temperate forest ecosystems can provide insight into how savannas and forests function, including grass–tree coexistence. This study reviews differences in critical stages in the life cycle of savanna and temperate forest eucalypts, especially in relation to fire. It adds to the limited data on tropical eucalypts, by evaluating the effect of fire regimes on the population biology of Corymbia clarksoniana, a tree that dominates some tropical savannas of north‐eastern Australia. Corymbia clarksoniana displays similar demographic characteristics to other tropical savanna species, except that seedling emergence is enhanced when seed falls onto recently burnt ground during a high rainfall period. In contrast to many temperate forest eucalypts, tropical savanna eucalypts lack canopy‐stored seed banks; time annual seed fall to coincide with the onset of predictable wet season rain; have very rare seedling emergence events, including a lack of mass germination after each fire; possess an abundant sapling bank; and every tropical eucalypt species has the ability to maintain canopy structure by epicormically resprouting after all but the most intense fires. The combination of poor seedling recruitment strategies, coupled with characteristics allowing long‐term persistence of established plants, indicate tropical savanna eucalypts function through the persistence niche rather than the regeneration niche. The high rainfall‐promoted seedling emergence of C. clarksoniana and the reduction of seedling survival and sapling growth by fire, support the predictions that grass–tree coexistence in savannas is governed by rainfall limiting tree seedling recruitment and regular fires limiting the growth of juvenile trees to the canopy.  相似文献   

2.
This study reports on the spatial and temporal patterns of seedling establishment in the Turkwel riverine forest, Kenya. Seedlings of the dominant tree species Acacia tortilis and Hyphaene compressa were mapped and monitored to assess the underlying causes of seedling recruitment and mortality. The broad‐scale distribution of A. tortilis was not correlated with any environmental variables, while H. compressa seedlings were confined to flood‐exposed sites in the arid downstream section of the floodplain. One year of monitoring showed that seedling recruitment of A. tortilis was evoked by prolonged rainfall, while seedling mortality was caused by desiccation, browsing and trampling. In contrast, seedling recruitment and mortality of H. compressa was largely unaffected by rainfall and livestock, probably due to the high moisture requirements of seeds and the tolerance of seedlings to disturbance. There were no effects of soils, light, or seedling density on the establishment of A. tortilis and H. compressa seedlings. This study demonstrates the importance of parallel mapping and monitoring of riverine seedlings in order to understand patterns and processes of forest regeneration in arid and semi‐arid floodplains.  相似文献   

3.
Abstract. Savanna trees have a multitude of positive and negative effects on understorey grass production, but little is known about how these effects interact. We report on a fertilization and shading experiment carried out in a Tanzanian tropical dry savanna around Acacia tortilis trees. In two years of study there was no difference in grass production under tree canopies or in open grassland. Fertilization, however, indicate that trees do affect the nutrient limitation of the grass layer with an N‐limited system in open grassland to a P‐limited system under the trees. The N:P ratios of grass gave a reliable indication of the nature of nutrient limitation, but only when assessed at the end of the wet season. Mid‐wet season nutrient concentrations of grasses were higher under than outside the tree canopy, suggesting that factors other than nutrients limit grass production. A shading experiment indicated that light may be such a limiting factor during the wet season when water and nutrients are sufficiently available. However, in the dry season when water is scarce, the effect of shade on plant production became positive. We conclude that whether trees increase or decrease production of the herbaceous layer depends on how positive effects (increased soil fertility) and negative effects (shade and soil water availability) interact and that these interactions may significantly change between wet and dry seasons.  相似文献   

4.
Abstract. Shoot and root biomass yield of a sown grass, Pennisetum pedicellatum, were measured at below-canopy, canopy edge and open locations in young monoculture stands of eight tree species planted on a coalmine spoil. Incident light as percentage of full sunlight decreased from open to canopy edge to below-canopy locations. The shoot and root weights of Pennisetum in different tree stands for each of the three locations were significantly different and were significantly related to each other, and to percentage sunlight across all tree species plots and locations. The gradient of incident light was the principal factor governing the gradient of grass biomass under developing canopies of tree plantations on the mine spoil.  相似文献   

5.
Question: (1) Which factors regulate post‐fire recruitment and spread of the shrub Senecio bracteolatus in Patagonian grasslands? (2) What is the role of the grass Stipa speciosa on S. bracteolatus establishment in the post‐fire succession? Location: Northwest Patagonia, Argentina. Methods: We studied the effect of fire on S. bracteolatus recruitment and density by comparing these variables between burned and unburned grasslands. In burned areas, we compared abiotic characteristics and seedling establishment under the canopy of grasses (S. speciosa) and in gaps (inter‐tussock areas). Post‐fire interactions between S. bracteolatus seedlings and S. speciosa were studied using field and greenhouse experiments. Results: Density of S. bracteolatus was higher in burned than in unburned areas. In burned sites, seedlings were more abundant under tussock grasses, whereas juveniles were more abundant in gaps. Tussocks generated more attenuated micro‐environmental conditions than gaps during stressful summers. Gaps were more abundant in burned sites, while “under tussock” microsites were more frequent in unburned sites. In burned areas, tussocks allowed higher establishment of seedlings (facilitation), but gaps allowed more seedling growth and higher persistence of juveniles. Conclusions: Fire promoted S. bracteolatus recruitment in Patagonian grasslands by increasing the availability of favourable gap microsites. Grass protection for shrub seedlings became negative with time, probably due to competition with grasses. Gaps led to better performance and persistence of shrub plants. Six years after fire, higher shrub recruitment and adult density (observed as a trend) in burned grassland provides an opportunity for potential S. bracteolatus invasion.  相似文献   

6.
Perkins  Steven R.  Keith Owens  M. 《Plant Ecology》2003,168(1):107-120
Anthropogenic emissions contribute to an annual 0.5% increase in atmospheric CO2. As global CO2 levels increase, regional precipitation patterns will likely be altered. Our primary objective was to determine whether a reduction in summer precipitation or an increase in winter/spring precipitation, predicted by global climate change models, will favor the establishment of C4 grasses or C3 shrubs in southern savannas. Our secondary objective was to determine how defoliation and microsite light availability interact with altered precipitation regimes to influence grass and shrub seedling growth and biomass allocation patterns. Seedlings of 3 shrub species (Prosopis glandulosa var. glandulosa, Acacia berlandieri, and A. greggii var. wrightii) and 3 grass species (Aristida purpurea var. wrightii, Setaria texana, and Stipa leucotricha) were watered based on probable changes in precipitation in a CO2 enriched atmosphere (0.6, 0.8, and 1.0 current ambient summer precipitation and 1.0, 1.15, and 1.30 current winter/spring precipitation). Seedlings were defoliated at 3 levels (non-defoliated, single defoliation, and repeated defoliation) within 2 levels of microsite light availability (100 and 50% ambient). Defoliation significantly reduced total shrub and grass seedling biomass. Reducing light availability decreased shrub seedling root:shoot ratio, but total biomass was not significantly affected. Grass seedling biomass and root:shoot ratio decreased when light availability was reduced. Changing the seasonality of precipitation by reducing summer rainfall or increasing winter/spring rainfall did not significantly influence growth or biomass allocation of grass and shrub seedlings in a semiarid savanna. Microsite variations in defoliation intensity and light availability influence seedling growth and biomass allocation more than changing seasonality of precipitation. Shrub and grass seedling establishment and growth on semiarid rangelands are already limited by summer precipitation, so a further reduction as proposed by climate change models will have a limited impact on seedling dynamics.  相似文献   

7.
Aim To explore: (1) the relative influences of site conditions, especially moisture relations, on pathways and rates of monsoon rain forest seedling and sapling regeneration, especially of canopy dominants, in northern Australia; and (2) contrasts between regeneration syndromes of dominant woody taxa in savannas and monsoon rain forest. Location Four monsoon rain forest sites, representative of regional major habitat and vegetation types, in Kakadu National Park, northern Australia. Methods A decadal study involved: (1) initial assessment over 2.5 years to explore within‐year variability in seed rain, dormant seed banks and seedling (< 50 cm height) dynamics; and (2) thereafter, monitoring of seedling and sapling (50 cm height to 5 cm d.b.h.) dynamics undertaken annually in the late dry season. On the basis of observations from this and other studies, regeneration syndromes of dominant monsoon rain forest taxa are contrasted with comparable information for dominant woody savanna taxa, Eucalyptus and Corymbia especially. Results Key observations from the monsoon rain forest regeneration dynamics study component are that: (1) peak seed rain inputs of rain forest taxa were observed in the wet season at perennially moist sites, whereas inputs at seasonally dry sites extended into, or peaked in, the dry season; (2) dormant soil seed banks of woody rain forest taxa were dominated by pioneer taxa, especially figs; (3) longevity of dormant seed banks of woody monsoon rain forest taxa, including figs, was expended within 3 years; (4) seedling recruitment of monsoon rain forest woody taxa was derived mostly from wet season seed rain with limited inputs from soil seed banks; (5) at all sites rain forest seedling mortality occurred mostly in the dry season; (6) rain forest seedling and sapling densities were consistently greater at moist sites; (7) recruitment from clonal reproduction was negligible, even following unplanned low intensity fires. Main conclusions By comparison with dominant savanna eucalypts, dominant monsoon rain forest taxa recruit substantially greater stocks of seedlings, but exhibit slower aerial growth and development of resprouting capacity in early years, lack lignotubers in mesic species, and lack capacity for clonal reproduction. The reliance on sexual as opposed to vegetative reproduction places monsoon rain forest taxa at significant disadvantage, especially slower growing species on seasonally dry sites, given annual–biennial fires in many north Australian savannas.  相似文献   

8.
Questions: What factors influence the density, size and growth form of trees in secondary Acacia zanzibarica woodlands on a former humid savanna rangeland? How does tree density relate to variation in tree foliage and spines, and woody and grass biomass? Location: Tropical coastal Tanzania (former Mkwaja Ranch, now in Saadani National Park). Methods: We surveyed 97 circular plots (4‐m radius) representing a gradient from open savanna to dense woodland. Within each plot, we measured all trees and estimated the biomass of spines. Foliage biomass of tree and grass layers was estimated on three occasions, twice during the wet season and once in the dry season. Soil samples were taken from each plot and analysed for texture and nutrient content. Interrelationships among various variables were investigated using linear multiple regression and mixed effects models. Results: Tree densities were highest on more nutrient‐rich, heavy soils. Spinescence was highest on trees in open savanna. Biomass of tree foliage in the wet season was best explained by numbers of ant nests and tree live‐wood ratio. Foliage biomass in the dry season was less than half that in the wet season and best predicted by grass biomass. Variables related to biomass of the grass layer were strongly influenced by fire; living grass biomass also decreased with increasing tree density. Conclusions: A. zanzibarica is a tree with a high water demand, and the association with heavy soils is probably due to greater availability of water on these sites. Establishment of A. zanzibarica woodlands significantly reduced grazing resources at Mkwaja Ranch. Under post‐ranching conditions, however, fires and soil conditions predominate. The woodlands may, therefore, represent a transient state of woody density in a still resilient humid savanna.  相似文献   

9.
Abstract Exotic grasses are becoming increasingly abundant in Neotropical savannas, with Melinis minutiflora Beauv. being particularly invasive. To better understand the consequences for the native flora, we performed a field study to test the effect of this species on the establishment, survival and growth of seedlings of seven tree species native to the savannas and forests of the Cerrado region of Brazil. Seeds of the tree species were sown in 40 study plots, of which 20 were sites dominated by M. minutiflora, and 20 were dominated by native grasses. The exotic grass had no discernable effect on initial seedling emergence, as defined by the number of seedlings present at the end of the first growing season. Subsequent seedling survival in plots dominated by M. minutiflora was less than half that of plots dominated by native species. Consequently, at the end of the third growing season, invaded plots had only 44% as many seedlings as plots with native grasses. Above‐ground grass biomass of invaded plots was more than twice that of uninvaded plots, while seedling survival was negatively correlated with grass biomass, suggesting that competition for light may explain the low seedling survival where M. minutiflora is dominant. Soils of invaded plots had higher mean Ca, Mg and Zn, but these variables did not account for the higher grass biomass or the lower seedling survival in invaded plots. The results indicate that this exotic grass is having substantial effects on the dynamics of the tree community, with likely consequences for ecosystem structure and function.  相似文献   

10.
Question: How do tree seedlings differ in their responses to drought and fire under contrasting light conditions in a tropical seasonal forest? Location: Mae Klong Watershed Research Station, 100–900 m a.s.l, Kanchanaburi Province, western Thailand. Method: Seedlings of six trees, Dipterocarpus alatus, D. turbinatus, Shorea siamensis, Pterocarpus macrocarpus, Xylia xylocarpa var. kerrii and Sterculia macrophylla, were planted in a gap and under the closed canopy. For each light condition, we applied (1) continuous watering during the dry season (W); (2) ground fire during the dry season (F); (3) no watering/no fire (intact, I). Seedling survival and growth were followed. Results: Survival and growth rate were greater in the gap than under the closed canopy for all species, most dramatically for S. siamensis and P. macrocarpus. Dipterocarpus alatus and D. turbinatus had relatively high survival under the closed canopy, and watering during the dry season resulted in significantly higher survival rates for these two species. Watering during the dry season resulted in higher growth rates for five species. All seedlings of D. alatus and D. turbinatus failed to re‐sprout and died after fire. The survival rates during the dry season and after the fire treatment were higher for the seedlings grown in the canopy gap than in the shade for S. siamensis, P. macrocarpus, X. xylocarpa var. kerrii and S. macrophylla. The seedlings of these species in the canopy gap had higher allocation to below‐ground parts than those under the closed canopy, which may support the ability to sprout after fire. Conclusions: The light conditions during the rainy season greatly affect seedling survival and resistance to fire during the subsequent dry season. Our results suggest differentiation among species in terms of seedling adaptations to shade, drought and fire.  相似文献   

11.
Woody encroachment in savannas is a worldwide concern, and there is growing consensus that anthropogenic activities play a central role in changing tree – grass interactions. We evaluated the influence of livestock grazing and neighborhood interactions on seedling emergence and survival of the native tree Acacia caven in wet savannas of northeastern Argentina. We hypothesized that grazing and grass competition act as biotic barriers limiting tree recruitment, but the relative magnitude of such barriers differs according to grass patch type. In two consecutive years (cohort 1 and 2) we sowed seeds and transplanted seedlings of Acacia in two grass patch types (prostrate/palatable and tussock/unpalatable grasses) in both, grazed and ungrazed plots. Each grass patch type was further manipulated to create three levels of grass competition (unclipped control, above-ground biomass removal and total biomass removal).Cattle grazing diminished seedling emergence of both cohorts and seedling survival of cohort 1. The effect of grass competition changed according to grass patch type. Prostrate grass cover enhanced emergence but lowered early survival, while tussock grass cover and also its total biomass removal facilitated early survival. During the second year, a severe drought drastically reduced Acacia recruitment, and it was strong enough to eliminate any grazing effects although the effect of grass competition on seedling establishment remained significant.Our results suggest that grazing and grass competition additively diminished the risk of woody establishment in this wet savanna. However, the stocking rate should be carefully balanced, thus contributing to the maintenance of a competitive grass cover to limit tree recruitment.  相似文献   

12.
A popular hypothesis for tree and grass coexistence in savannas is that tree seedlings are limited by competition from grasses. However, competition may be important in favourable climatic conditions when abiotic stress is low, whereas facilitation may be more important under stressful conditions. Seasonal and inter-annual fluctuations in abiotic conditions may alter the outcome of tree–grass interactions in savanna systems and contribute to coexistence. We investigated interactions between coolibah (Eucalyptus coolabah) tree seedlings and perennial C4 grasses in semi-arid savannas in eastern Australia in contrasting seasonal conditions. In glasshouse and field experiments, we measured survival and growth of tree seedlings with different densities of C4 grasses across seasons. In warm glasshouse conditions, where water was not limiting, competition from grasses reduced tree seedling growth but did not affect tree survival. In the field, all tree seedlings died in hot dry summer conditions irrespective of grass or shade cover, whereas in winter, facilitation from grasses significantly increased tree seedling survival by ameliorating heat stress and protecting seedlings from herbivory. We demonstrated that interactions between tree seedlings and perennial grasses vary seasonally, and timing of tree germination may determine the importance of facilitation or competition in structuring savanna vegetation because of fluctuations in abiotic stress. Our finding that trees can grow and survive in a dense C4 grass sward contrasts with the common perception that grass competition limits woody plant recruitment in savannas.  相似文献   

13.
Availability of seeds and provision of “safe sites” for seedling recruitment are essential for successful restoration of seminatural grassland communities. Inability to provide species‐specific conditions for seedling recruitment appears to be a major factor limiting establishment of fen‐meadow species on restoration sites. This contention was tested in the field for both germination and establishment conditions for a selection of fen‐meadow species. A Cirsio‐Molinietum fen meadow and an agriculturally semi‐improved species‐poor grass dominated rush pasture were used. Seeds of Carex ovalis, Cirsium dissectum, Molinia caerulea, Succisa pratensis, and Holcus lanatus were sown onto treatments comprising either irrigation or no irrigation, presence or absence of existing vegetation canopy, and presence or absence of soil disturbance. Germination of all except H. lanatus was higher in the fen meadow than in the rush pasture. The fen‐meadow site was less susceptible to drought, provided more light to the seed environment, and showed a stronger day–night variation in relative humidity compared with the rush pasture. All the fen‐meadow species responded strongly to the experimental treatments, whereas H. lanatus showed only a small response. Soil disturbance was the major factor that increased germination. Removal of the vegetation canopy improved germination only in S. pratensis. Conditions affecting survival of seedlings were different from those affecting seed germination. Seedling survival was greater on the fen‐meadow site than on the rush pasture. Canopy presence was the major factor that reduced seedling survival. Few seedlings survived in the presence of the rush pasture canopy. Irrigation and soil disturbance were of minor importance for seedling survival on both sites. Safe sites for seed germination and seedling establishment of fen‐meadow species existed on the fen meadow even without soil disturbance and gap creation. Safe sites for seedling recruitment were not present in the rush pasture. The need for species‐specific definition of safe site characteristics at the two stages of seedling recruitment (i.e., for seed germination and for seedling survival) was demonstrated. The implications of these findings for restoration of seminatural grasslands are discussed.  相似文献   

14.
The influences of intraspecific competition on plant size inequality have been well documented, but interspecific effects on this topic remain little understood. Here we examined the effects of canopy shading and fine roots of the trees (Elaeagnus angustifolia) on size inequality of the grasses (Achnatherum splendens) in a temperate savanna community in northwest China. Three study plots of 400 m2 were divided into 4-m2 quadrats, within each of which (1) canopy shading was quantified by modeling cumulative direct solar radiation (CDSR) and (2) the root effect was quantified using an empirical relationship between tree fine root density (TFRD) and relative distance to tree bases. Morphological traits were measured to represent grass size. Redundancy analysis (RDA) was conducted to examine the relative influences of grass density, CDSR and TFRD on the coefficient of variation of grass size. Results showed that no significant correlation occurred between grass density and grass size inequality. Both CDSR and TFRD had significant negative correlations with grass size inequality, suggesting that canopy shading and the presence of fine roots of trees can, respectively, increase and reduce grass size inequality. Canopy shading and TFRD played competitive roles in determining grass size inequality, where the root effect was a stronger factor than canopy shading. The tree effects can substantially alter the intensity of water stress. In response, size inequality of the grasses could be influenced through size-specific growth/mortality and slowed size divergence. These mechanisms could operate together in the savanna community.  相似文献   

15.
Patterns of woody plants dispersal in a semi-arid nature reserve situated in Eastern Transvaal, South Africa, revealed that trees have spread from core areas and converted previously open grasslands to densely vegetated woodlands. These patterns were found in catchment areas of the gently undulating terrain which characterizes the region.Two plant communities dominated by Acacia senegal-Acacia tortilis and Euclea divinorum-Acacia nilotica were distinguished. Analysis of nearest-neighbour distances, dispersal patterns of seedlings and mature woody plants identified successional processes. These were manifested through intra and interspecific competition among the dominant tree species. Within each plant community, a transition of relative abundance was occurring namely, A. senegal became dominant in areas previously dominated by A. tortilis while E. divinorum was replacing previous A. nilotica dominance.Comparative assessment of the two plant communities was facilitated by the summary of competition and seedling dispersal indices in a multivariate analysis. Results indicated that tree species had characteristic dispersal strategies. Identification the patterns of woody plants establishment could advance the evaluation of successional dynamics and management of savannas in areas prone to bush encroachment.  相似文献   

16.
Abstract Seedling emergence in a eucalypt savanna of north‐eastern Australia was documented over a 12‐month period, between May 1999 and May 2000. Seedling emergence for grasses, forbs and subshrubs was found to mainly occur in a brief pulse at the start of the wet season following fire or the removal of grass biomass. Only a minor number of tree and shrub seedlings were detected overall. Burning, or cutting away the grass layer in unburnt savanna, in both the early (i.e. May) and the late (i.e. October) dry seasons significantly increased seedling emergence over undisturbed savanna that had been unburnt for 3 years. Removing the grass layer in unburnt savanna, during either the early or the late dry season, triggered similar seedling densities to savanna burnt in the early dry season. Late dry season fires promoted the greatest seedling density. We attribute this to the higher intensity, late dry season fires releasing a greater proportion of seed from dormancy, coupled with the higher density of soil seed reserves present in the late dry season.  相似文献   

17.
The increasing rate of woody plant encroachment in grasslands or savannas remains a challenge to livestock farmers. The causes and control measures of woody plant encroachment are of common interest, especially where it negatively affects the objectives of an agricultural enterprise. The objectives of this study were to determine the effects of gut passage (goats, cattle), dung (nutrients), fire, grass competition and trampling on establishment of A. nilotica and D. cinerea seedlings. Germination trials were subjected to the following treatments: 1) seed passage through the gut of cattle and goats and unpassed/ untreated seeds (i.e. not ingested), 2) dung and control (no dung), 3) grass and control (mowed grass), 4) fire and control (no fire), 5) trampling and control (no trampling). The interaction of animal species, grass and fire had an effect on seedling recruitment (P < 0.0052). Seeds retrieved from goats and planted with no grass and with fire (6.81% ± 0.33) had a significant effect on seedling recruitment than seeds retrieved from goats and planted with grass and no fire (2.98% ± 0.33). Significantly more D. cinerea and A. nilotica seeds germinated following seed ingestion by goats (3.59% ± 0.16) than cattle (1.93% ± 0.09) and control or untreated seeds (1.69% ± 0.11). Less dense grass cover, which resulted in reduced grass competition with tree seedlings for light, space and water, and improved seed scarification due to gut passage were vital for emergence and recruitment of Acacia seedlings. These results will contribute considerably to the understanding of the recruitment phase of woody plant encroachment.  相似文献   

18.
The objectives of the study, conducted during the 2003/2004 growing season in the National Park of Bou Hedma (South Tunisia), were to quantify the effects of the single-woody species Acacia tortilis subsp. raddiana on grass species composition, on total plant cover, on density of perennial species, on dry matter (DM) yield and on soil nutrients at lightly and heavily grazed sites. In each study site, two subhabitats were distinguished, i.e. under tree canopies and open grasslands. In the lightly grazed site, the nutrient status of soil (organic matter, total N, extractable P, K+, Ca2+, Na+, Mg2+) under Acacia raddiana canopy, was found to be significantly higher (p<0.05) than under the open grassland. In the same way, total plant cover (p<0.05), density of perennial species (p<0.01) and DM yield (p<0.01) were significantly higher under tree canopies in the lightly grazed site. Heavy grazing proved to exert a strong overriding effect over the positive influences of the woody plants. For most studied parameters, a non-significant difference was recorded between canopied and uncanopied subhabitats. Some palatable species were frequently found under trees. In the heavily grazed site, these species are being replaced by less desirable species. This emphasizes the importance of conservation stocking rates and proper pasture management.  相似文献   

19.
Species interactions and their indirect effects on the availability and distribution of resources have been considered strong determinants of community structure in many different ecological systems. In deciduous forests, the presence of overstory trees and shrubs creates a shifting mosaic of resources for understory plants, with implications for their distribution and abundance. Determination of the ultimate resource constraints on understory vegetation may aid management of these systems that have become increasingly susceptible to invasions by non-native plants. Microstegium vimineum (Japanese grass) is an invasive annual grass that has spread rapidly throughout the understory of forests across the eastern United States since it was first observed in Tennessee in 1919. M. vimineum occurs as extensive, dense patches in the understory of eastern deciduous forests, yet these patches often exhibit sharp boundaries and distinct gaps in cover. One example of this distributional pattern was observed relative to the native midstory tree Asimina triloba (pawpaw), whereby dense M. vimineum cover stopped abruptly at the drip line of the A. triloba patch and was absent beneath the A. triloba canopy. We conducted field and greenhouse experiments to test several hypotheses regarding the causes of this observed pattern of M. vimineum distribution, including allelopathy, seed dispersal, light limitations, and soil moisture, texture, and nutrient content. We concluded that light reduction by the A. triloba canopy was the environmental constraint that prevented establishment of M. vimineum beneath this tree. Whereas overstory tree canopy apparently facilitates the establishment of this shade-tolerant grass, the interaction of overstory canopy with midstory canopy interferes with M. vimineum by reducing the availability of sunflecks at the ground layer. It is likely that other midstory species influence the distribution and abundance of other herb-layer species, with implications for management of understory invasive plant species.  相似文献   

20.
Naturalization of Schinus molle (Anacardiaceae) has been observed in semi arid savanna of the Northern Cape Province of South Africa. However, with high dispersal ability, the species is expected to achieve greater densities and invade more widely. The study involved a field manipulation experiment over 14 months using a factorial block design to examine transplanted seedlings in different savanna environments. The experiments examine the effects of soil type (sandy and clay), microsite, and herbivores on seedling performance (establishment, growth and survival). Seedlings were grown in a greenhouse and individually transplanted into four treatment groups: in open grassland, under tree canopies, and with and without cages to exclude large herbivores (cattle and game). The same experiment was repeated in two different soil types: coarse sand and fine-textured clay soil. Results suggest that protection provided by canopies of large indigenous Acacia trees facilitates S. molle invasion into semi-arid savanna. In the field, S. molle seedlings performed considerably better beneath canopies of indigenous Acacia trees than in open areas regardless of soil type. Whether exposed or protected from large herbivores, no seedlings planted in open grassland survived the first winter. Although, seedlings grew better and had higher survival rates beneath tree canopies than in the open sites, exposure to large herbivores significantly decreased heights and canopy areas of seedlings compared with those protected from large herbivores. The effect was greater on clay soil than on sandy soil. The results suggest that low temperature (frost), and possibly inter-specific competition with grasses, may limit S. molle seedling establishment, survival and growth away from tree canopies in semi arid savannas. Low soil nutrient status and browsing may also delay growth and development of this species. The invasive potential of S. molle is thus greatest on fertile soils where sub-canopy microsites are present and browsing mammals are absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号