首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Endothelial dysfunction is associated with increase in oxidative stress and low NO bioavailability. The endothelial NO synthase (eNOS) uncoupling is considered an important factor in endothelial cell oxidative stress. Under increased oxidative stress, the eNOS cofactor tetrahydrobiopterin (BH4) is oxidized to dihydrobiopterin, which competes with BH4 for binding to eNOS, resulting in eNOS uncoupling and reduction in NO production. The importance of the ratio of BH4 to oxidized biopterins versus absolute levels of total biopterin in determining the extent of eNOS uncoupling remains to be determined. We have developed a computational model to simulate the kinetics of the biochemical pathways of eNOS for both NO and O2•− production to understand the roles of BH4 availability and total biopterin (TBP) concentration in eNOS uncoupling. The downstream reactions of NO, O2•−, ONOO, O2, CO2, and BH4 were also modeled. The model predicted that a lower [BH4]/[TBP] ratio decreased NO production but increased O2•− production from eNOS. The NO and O2•− production rates were independent above 1.5 μM [TBP]. The results indicate that eNOS uncoupling is a result of a decrease in [BH4]/[TBP] ratio, and a supplementation of BH4 might be effective only when the [BH4]/[TBP] ratio increases. The results from this study will help us understand the mechanism of endothelial dysfunction.  相似文献   

2.
Tetrahydrobiopterin (BH4), which fosters the formation of and stabilizes endothelial NO synthase (eNOS) as an active dimer, tightly regulates eNOS coupling / uncoupling. Moreover, studies conducted in genetically-modified models demonstrate that BH4 pulmonary deficiency is a key determinant in the pathogenesis of pulmonary hypertension. The present study thus investigates biopterin metabolism and eNOS expression, as well as the effect of sepiapterin (a precursor of BH4) and eNOS gene deletion, in a mice model of hypoxic pulmonary hypertension. In lungs, chronic hypoxia increased BH4 levels and eNOS expression, without modifying dihydrobiopterin (BH2, the oxidation product of BH4) levels, GTP cyclohydrolase-1 or dihydrofolate reductase expression (two key enzymes regulating BH4 availability). In intrapulmonary arteries, chronic hypoxia also increased expression of eNOS, but did not induce destabilisation of eNOS dimers into monomers. In hypoxic mice, sepiapterin prevented increase in right ventricular systolic pressure and right ventricular hypertrophy, whereas it modified neither remodelling nor alteration in vasomotor responses (hyper-responsiveness to phenylephrine, decrease in endothelium-dependent relaxation to acetylcholine) in intrapulmonary arteries. Finally, deletion of eNOS gene partially prevented hypoxia-induced increase in right ventricular systolic pressure, right ventricular hypertrophy and remodelling of intrapulmonary arteries. Collectively, these data demonstrate the absence of BH4/BH2 changes and eNOS dimer destabilisation, which may induce eNOS uncoupling during hypoxia-induced pulmonary hypertension. Thus, even though eNOS gene deletion and sepiapterin treatment exert protective effects on hypoxia-induced pulmonary vascular remodelling, increase on right ventricular pressure and / or right ventricular hypertrophy, these effects appear unrelated to biopterin-dependent eNOS uncoupling within pulmonary vasculature of hypoxic wild-type mice.  相似文献   

3.
《Free radical research》2013,47(12):1496-1513
In endothelial cell dysfunction, the uncoupling of eNOS results in higher superoxide (O2??) and lower NO production and a reduction in NO availability. Superoxide reacts with NO to form a potent oxidizing agent peroxynitrite (ONOO?) resulting in nitrosative and nitroxidative stresses and dismutates to form hydrogen peroxide. Studies have shown superoxide dismutase (SOD) plays an important role in reduction of O2?? and ONOO? during eNOS uncoupling. However, the administration or over-expression of SOD was ineffective or displayed deleterious effects in some cases. An understanding of interactions of the two enzyme systems eNOS and SOD is important in determining endothelial cell function. We analyzed complex biochemical interactions involving eNOS and SOD in eNOS uncoupling. A computational model of biochemical pathway of the eNOS-related NO and O2?? production and downstream reactions involving NO, O2??, ONOO?, H2O2 and SOD was developed. The effects of SOD concentration on the concentration profiles of NO, O2??, ONOO? and H2O2 in eNOS coupling/uncoupling were investigated. The results include (i) SOD moderately improves NO production and concentration during eNOS uncoupling, (ii) O2?? production rate is independent of SOD concentration, (iii) Increase in SOD concentration from 0.1 to 100 μM reduces O2?? concentration by 90% at all [BH4]/[TBP] ratios, (iv) SOD reduces ONOO? concentration and increases H2O2 concentration during eNOS uncoupling, (v) Catalase can reduce H2O2 concentration and (vi) Dismutation rate by SOD is the most sensitive parameter during eNOS uncoupling. Thus, SOD plays a dual role in eNOS uncoupling as an attenuator of nitrosative/nitroxidative stress and an augmenter of oxidative stress.  相似文献   

4.
5-Hydroxytryptamine (5-HT) is a vasoactive substance that is taken up by endothelial cells to activate endothelial nitrite oxide synthase (eNOS). The activation of eNOS results in the production of nitric oxide (NO), which is responsible for vasodilation of blood vessels. NO also interacts with superoxide anion (O2*-) to form peroxynitrite (ONOO-), a potent oxidant that has been shown to induce vascular endothelial dysfunction. We examined the ability of 3-morpholinosyndnonimine (SIN-1), an ONOO- generator, to inhibit 5-HT-induced phosphorylation of eNOS in cultured bovine aortic endothelial cells (BAECs). We observed that 5-HT phosphorylates Ser1179 eNOS in a time- and concentration-dependent manner. Maximum phosphorylation occurred at 30 sec using a concentration of 1.0 microM 5-HT. BAECs treated with SIN-1 (1-1000 microM) for 30 min showed no significant increase in eNOS phosphorylation. However, 5-HT-induced eNOS phosphorylation was inhibited in cells treated with various concentrations of SIN-1 for 30 min and stimulated with 5-HT. These data suggest that an increase in ONOO- as a result of an increase in the production of O2*-, may feedback to inhibit 5-HT-induced eNOS phosphorylation at Ser1179 and therefore, contribute to endothelial dysfunction associated with cardiovascular diseases.  相似文献   

5.
Endothelial-myocardial interactions may be critically important for ischemia/reperfusion injury. Tetrahydrobiopterin (BH4) is a required cofactor for nitric oxide (NO) production by endothelial NO synthase (eNOS). Hyperglycemia (HG) leads to significant increases in oxidative stress, oxidizing BH4 to enzymatically incompetent dihydrobiopterin. How alterations in endothelial BH4 content impact myocardial ischemia/reperfusion injury remains elusive. The aim of this study was to examine the effect of endothelial-myocardial interaction on ischemia/reperfusion injury, with an emphasis on the role of endothelial BH4 content. Langendorff-perfused mouse hearts were treated by triton X-100 to produce endothelial dysfunction and subsequently subjected to 30 min of ischemia followed by 2 h of reperfusion. The recovery of left ventricular systolic and diastolic function during reperfusion was impaired in triton X-100 treated hearts compared with vehicle-treated hearts. Cardiomyocytes (CMs) were co-cultured with endothelial cells (ECs) and subsequently subjected to 2 h of hypoxia followed by 2 h of reoxygenation. Addition of ECs to CMs at a ratio of 1∶3 significantly increased NO production and decreased lactate dehydrogenase activity compared with CMs alone. This EC-derived protection was abolished by HG. The addition of 100 µM sepiapterin (a BH4 precursor) or overexpression of GTP cyclohydrolase 1 (the rate-limiting enzyme for BH4 biosynthesis) in ECs by gene trasfer enhanced endothelial BH4 levels, the ratio of eNOS dimer/monomer, eNOS phosphorylation, and NO production and decreased lactate dehydrogenase activity in the presence of HG. These results demonstrate that increased BH4 content in ECs by either pharmacological or genetic approaches reduces myocardial damage during hypoxia/reoxygenation in the presence of HG. Maintaining sufficient endothelial BH4 is crucial for cardioprotection against hypoxia/reoxygenation injury.  相似文献   

6.
Tetrahydrobiopterin (BH4) serves as a critical co-factor for the endothelial nitric-oxide synthase (eNOS). A deficiency of BH4 results in eNOS uncoupling, which is associated with increased superoxide and decreased NO* production. BH4 has been suggested to be a target for oxidation by peroxynitrite (ONOO-), and ascorbate has been shown to preserve BH4 levels and enhance endothelial NO* production; however, the mechanisms underlying these processes remain poorly defined. To gain further insight into these interactions, the reaction of ONOO- with BH4 was studied using electron spin resonance and the spin probe 1-hydroxy-3-carboxy-2,2,5-tetramethyl-pyrrolidine. ONOO- reacted with BH4 6-10 times faster than with ascorbate or thiols. The immediate product of the reaction between ONOO- and BH4 was the trihydrobiopterin radical (BH3.), which was reduced back to BH4 by ascorbate, whereas thiols were not efficient in recycling of BH4. Uncoupling of eNOS caused by peroxynitrite was investigated in cultured bovine aortic endothelial cells (BAECs) by measuring superoxide and NO* using spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine and the NO*-spin trap iron-diethyldithiocarbamate. Bolus ONOO-, the ONOO- donor 3-morpholinosydnonimine, and an inhibitor of BH4 synthesis (2,4-diamino-6-hydroxypyrimidine) uncoupled eNOS, increasing superoxide and decreasing NO* production. Exogenous BH4 supplementation restored endothelial NO* production. Treatment of BAECs with both BH4 and ascorbate prior to ONOO- prevented uncoupling of eNOS by ONOO-. This study demonstrates that endothelial BH4 is a crucial target for oxidation by ONOO- and that the BH4 reaction rate constant exceeds those of thiols or ascorbate. We confirmed that ONOO- uncouples eNOS by oxidation of tetrahydrobiopterin and that ascorbate does not fully protect BH4 from oxidation but recycles BH3. radical back to BH4.  相似文献   

7.
Tetrahydrobiopterin (BH4) is a ubiquitous pteridine metabolite that serves as a NOS cofactor. Recently, we showed that BH4 efficiently inhibits superoxide generation from the heme group at the oxygenase domain of eNOS. This role indicates that BH4 acts as a redox switch in the catalytic mechanism of the enzyme, which may have important consequences in the physiology of the endothelium. Here the mechanism by which BH4 inhibits superoxide release from eNOS and the "uncoupling" effects of oxidized BH4 metabolites are presented. The implications of the disparate actions of fully reduced and oxidized BH 4 metabolites in the control of eNOS biochemistry are discussed in the light of clinical data indicating that BH 4 levels are important in the regulation of superoxide levels and of endothelial reactivity.  相似文献   

8.
Nitrate tolerance developed after persistent nitroglycerin (GTN) exposure limits its clinical utility. Previously, we have shown that the vasodilatory action of GTN is dependent on endothelial nitric oxide synthase (eNOS/NOS3) activity. Caveolin-1 (Cav-1) is known to interact with NOS3 on the cytoplasmic side of cholesterol-enriched plasma membrane microdomains (caveolae) and to inhibit NOS3 activity. Loss of Cav-1 expression results in NOS3 hyperactivation and uncoupling, converting NOS3 into a source of superoxide radicals, peroxynitrite, and oxidative stress. Therefore, we hypothesized that nitrate tolerance induced by persistent GTN treatment results from NOS3 dysfunction and vascular toxicity. Exposure to GTN for 48–72 h resulted in nitrosation and depletion (>50%) of Cav-1, NOS3 uncoupling as measured by an increase in peroxynitrite production (>100%), and endothelial toxicity in cultured cells. In the Cav-1 deficient mice, NOS3 dysfunction was accompanied by GTN tolerance (>50% dilation inhibition at low GTN concentrations). In conclusion, GTN tolerance results from Cav-1 modification and depletion by GTN that causes persistent NOS3 activation and uncoupling, preventing it from participating in GTN-medicated vasodilation.  相似文献   

9.
Tetrahydrobiopterin attenuates homocysteine induced endothelial dysfunction   总被引:4,自引:0,他引:4  
Homocysteine is an independent risk factor for atherosclerotic vascular disease. It impairs endothelial function via increasing superoxide production and quenching nitric oxide (NO) release. Tetrahydrobiopterin (BH4) is a critical cofactor that couples nitric oxide synthase and facilitates the production of nitric oxide (vs. superoxide anions). In the first study, the effects of hyperhomocysteinemia (0.1 mM, 3 h) on endothelium-dependent vasorelaxation to ACh and A23187 were examined in isolated segments of rat aortae in the presence or absence of BH4 (0.1 mM). In the second study, the effects of hyperhomocysteinemia (24 h) on nitric oxide production and superoxide release (using lucigenin chemiluminescence) were studied in human umbilical vein endothelial cells in the absence or presence of BH4 (10 M). Homocysteine incubation impaired receptor-dependent and -independent endothelial function to ACh and A23187. This effect was attenuated by BH4. Furthermore, homocysteine exposure increased superoxide production and impaired agonist-stimulated nitric oxide release. These effects were attenuated by BH4 (p < 0.05). Hyperhomocysteinemia impairs endothelial function, in part due to a diminished bioavailability of BH4 with resultant uncoupling of nitric oxide synthase. BH4 may represent an important target for strategies aimed at improving endothelial dysfunction secondary to hyperhomocysteinemia.  相似文献   

10.
Oxygen toxicity is the most severe side effect of oxygen therapy in neonates and adults. Pulmonary damage of oxygen toxicity is related to the overproduction of reactive oxygen species (ROS). In the present study, we investigated the effect of hyperoxia on the production of peroxynitrite in pulmonary artery endothelial cells (PAEC) and mouse lungs. Incubation of PAEC under hyperoxia (95% O2) for 24 h resulted in an increase in peroxynitrite formation. Uric acid, a peroxynitrite scavenger, prevented hyperoxia-induced increase in peroxynitrite. The increase in peroxynitrite formation is accompanied by increases in nitric oxide (NO) release and endothelial NO synthase (eNOS) activity. We have previously reported that association of eNOS with β-actin increases eNOS activity and NO production in lung endothelial cells. To study whether eNOS-β-actin association contributes to increased peroxynitrite production, eNOS-β-actin interaction were inhibited by reducing β-actin availability or by using a synthetic peptide (P326TAT) containing a sequence corresponding to the actin binding site on eNOS. We found that disruption of eNOS-β-actin interaction prevented hyperoxia-induced increases in eNOS-β-actin association, eNOS activity, NO and peroxynitrite production, and protein tyrosine nitration. Hyperoxia failed to induce the increases in eNOS activity, NO and peroxynitrite formation in COS-7 cells transfected with plasmids containing eNOS mutant cDNA in which amino acids leucine and tryptophan were replaced with alanine in the actin binding site on eNOS. Exposure of mice to hyperoxia resulted in significant increases in eNOS-β-actin association, eNOS activity, and protein tyrosine nitration in the lungs. Our data indicate that increased association of eNOS with β-actin in PAEC contributes to hyperoxia-induced increase in the production of peroxynitrite which may cause nitrosative stress in pulmonary vasculature.  相似文献   

11.
Endothelium-derived nitric oxide (NO) produced from endothelial NO-synthase (eNOS) is one of the most important vasoprotective molecules in cardiovascular physiology. Dysfunctional eNOS such as uncoupling of eNOS leads to decrease in NO bioavailability and increase in superoxide anion (O2.−) production, and in turn promotes cardiovascular diseases. Therefore, appropriate measurement of NO and O2.− levels in the endothelial cells are pivotal for research on cardiovascular diseases and complications. Because of the extremely labile nature of NO and O2.−, it is difficult to measure NO and O2.− directly in a blood vessel. Numerous methods have been developed to measure NO and O2.− production. It is, however, either insensitive, or non-specific, or technically demanding and requires special equipment. Here we describe an adaption of the fluorescence dye method for en face simultaneous detection and visualization of intracellular NO and O2.− using the cell permeable diaminofluorescein-2 diacetate (DAF-2DA) and dihydroethidium (DHE), respectively, in intact aortas of an obesity mouse model induced by high-fat-diet feeding. We could demonstrate decreased intracellular NO and enhanced O2.− levels in the freshly isolated intact aortas of obesity mouse as compared to the control lean mouse. We demonstrate that this method is an easy technique for direct detection and visualization of NO and O2.− in the intact blood vessels and can be widely applied for investigation of endothelial (dys)function under (physio)pathological conditions.  相似文献   

12.
The endothelial nitric oxide synthase (eNOS) requires tetrahydrobiopterin (H(4)B) as a cofactor and, in its absence, produces superoxide (O(2)(·-)) rather than nitric oxide (NO(·)), a condition referred to as eNOS uncoupling. DOCA-salt-induced hypertension is associated with H(4)B oxidation and uncoupling of eNOS. The present study investigated whether administration of sepiapterin or H(4)B recouples eNOS in DOCA-salt hypertension. Bioavailable NO(·) detected by electron spin resonance was markedly reduced in aortas of DOCA-salt hypertensive mice. Preincubation with sepiapterin (10 μmol/l for 30 min) failed to improve NO(·) bioavailability in hypertensive aortas while it augmented NO(·) production from control vessels, implicating a hypertension-associated deficiency in sepiapterin reductase (SPR), the rate-limiting enzyme for sepiapterin conversion to H(4)B. Indeed, a decreased SPR expression was observed in aortic endothelial cells, but not in endothelium-denuded aortic remains, implicating an endothelium-specific SPR deficiency. Administration of hypertensive aortas with H(4)B (10 μmol/l, 30 min) partially restored vascular NO(·) production. Combined administration of H(4)B and the NADPH oxidase inhibitor apocynin (100 μmol/l, 30 min) fully restored NO(·) bioavailability while reducing O(2)(·-) production. In angiotensin II-induced hypertension, however, aortic endothelial SPR expression was not affected. In summary, administration of sepiapterin is not effective in recoupling eNOS in DOCA-salt hypertension, due to an endothelium-specific loss in SPR, whereas coadministration of H(4)B and apocynin is highly efficient in recoupling eNOS. This is consistent with our previous observations that in angiotensin II hypertension, endothelial deficiency in dihydrofolate reductase is alternatively responsible for uncoupling of eNOS. Taken together, these data indicate that strategies specifically targeting at different H(4)B metabolic enzymes might be necessary in restoring eNOS function in different types of hypertension.  相似文献   

13.
In the vasculature, nitric oxide (NO) is generated by endothelial NO synthase (eNOS) in a calcium/calmodulin-dependent reaction. In the absence of the requisite eNOS cofactor tetrahydrobiopterin (BH(4)), NADPH oxidation is uncoupled from NO generation, leading to the production of superoxide. Although this phenomenon is apparent with purified enzyme, cellular studies suggest that formation of the BH(4) oxidation product, dihydrobiopterin, is the molecular trigger for eNOS uncoupling rather than BH(4) depletion alone. In the current study, we investigated the effects of both BH(4) depletion and oxidation on eNOS-derived superoxide production in endothelial cells in an attempt to elucidate the molecular mechanisms regulating eNOS oxidase activity. Results demonstrated that pharmacological depletion of endothelial BH(4) does not result in eNOS oxidase activity, whereas BH(4) oxidation gave rise to significant eNOS-oxidase activity. These findings suggest that the endothelium possesses regulatory mechanisms, which prevent eNOS oxidase activity from pterin-free eNOS. Using a combination of gene silencing and pharmacological approaches, we demonstrate that eNOS-caveolin-1 association is increased under conditions of reduced pterin bioavailability and that this sequestration serves to suppress eNOS uncoupling. Using small interfering RNA approaches, we demonstrate that caveolin-1 gene silencing increases eNOS oxidase activity to 85% of that observed under conditions of BH(4) oxidation. Moreover, when caveolin-1 silencing was combined with a pharmacological inhibitor of AKT, BH(4) depletion increased eNOS-derived superoxide to 165% of that observed with BH(4) oxidation. This study identifies a critical role of caveolin-1 in the regulation of eNOS uncoupling and provides new insight into the mechanisms through which disease-associated changes in caveolin-1 expression may contribute to endothelial dysfunction.  相似文献   

14.

Background

The aging gene p66Shc, is an important mediator of oxidative stress-induced vascular dysfunction and disease. In cultured human aortic endothelial cells (HAEC), p66Shc deletion increases endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) bioavailability via protein kinase B. However, the putative role of the NO pathway on p66Shc activation remains unclear. This study was designed to elucidate the regulatory role of the eNOS/NO pathway on p66Shc activation.

Methods and Results

Incubation of HAEC with oxidized low density lipoprotein (oxLDL) led to phosphorylation of p66Shc at Ser-36, resulting in an enhanced production of superoxide anion (O2 -). In the absence of oxLDL, inhibition of eNOS by small interfering RNA or L-NAME, induced p66Shc phosphorylation, suggesting that basal NO production inhibits O2 - production. oxLDL-induced, p66Shc-mediated O2- was prevented by eNOS inhibition, suggesting that when cells are stimulated with oxLDL eNOS is a source of reactive oxygen species. Endogenous or exogenous NO donors, prevented p66Shc activation and reduced O2- production. Treatment with tetrahydrobiopterin, an eNOS cofactor, restored eNOS uncoupling, prevented p66Shc activation, and reduced O2- generation. However, late treatment with tetrahydropterin did not yield the same result suggesting that eNOS uncoupling is the primary source of reactive oxygen species.

Conclusions

The present study reports that in primary cultured HAEC treated with oxLDL, p66Shc-mediated oxidative stress is derived from eNOS uncoupling. This finding contributes novel information on the mechanisms of p66Shc activation and its dual interaction with eNOS underscoring the importance eNOS uncoupling as a putative antioxidant therapeutical target in endothelial dysfunction as observed in cardiovascular disease.  相似文献   

15.
Plasma adiponectin level is significantly reduced in patients with metabolic syndrome, and vascular dysfunction is an important pathological event in these patients. However, whether adiponectin may protect endothelial cells and attenuate endothelial dysfunction caused by metabolic disorders remains largely unknown. Adult rats were fed with a regular or a high-fat diet for 14 wk. The aorta was isolated, and vascular segments were incubated with vehicle or the globular domain of adiponectin (gAd; 2 mug/ml) for 4 h. The effect of gAd on endothelial function, nitric oxide (NO) and superoxide production, nitrotyrosine formation, gp91(phox) expression, and endothelial nitric oxide synthase (eNOS)/inducible NOS (iNOS) activity/expression was determined. Severe endothelial dysfunction (maximal vasorelaxation in response to ACh: 70.3 +/- 3.3 vs. 95.2 +/- 2.5% in control, P < 0.01) was observed in hyperlipidemic aortic segments, and treatment with gAd significantly improved endothelial function (P < 0.01). Paradoxically, total NO production was significantly increased in hyperlipidemic vessels, and treatment with gAd slightly reduced, rather than increased, total NO production in these vessels. Treatment with gAd reduced (-78%, P < 0.01) superoxide production and peroxynitrite formation in hyperlipidemic vascular segments. Moreover, a moderate attenuation (-30%, P < 0.05) in gp91(phox) and iNOS overexpression in hyperlipidemic vessels was observed after gAd incubation. Treatment with gAd had no effect on eNOS expression but significantly increased eNOS phosphorylation (P < 0.01). Most noticeably, treatment with gAd significantly enhanced eNOS (+83%) but reduced iNOS (-70%, P < 0.01) activity in hyperlipidemic vessels. Collectively, these results demonstrated that adiponectin protects the endothelium against hyperlipidemic injury by multiple mechanisms, including promoting eNOS activity, inhibiting iNOS activity, preserving bioactive NO, and attenuating oxidative/nitrative stress.  相似文献   

16.
Activation of glomerular mesangial cells (MCs) by angiotensin II (Ang II) leads to extracellular matrix accumulation. Here, we demonstrate that, in MCs, Ang II induces endothelial nitric-oxide synthase (eNOS) uncoupling with enhanced generation of reactive oxygen species (ROS) and decreased production of NO. Ang II promotes a rapid increase in 3-nitrotyrosine formation, and uric acid attenuates Ang II-induced decrease in NO bioavailability, demonstrating that peroxynitrite mediates the effects of Ang II on eNOS dysfunction. Ang II rapidly up-regulates Nox4 protein. Inhibition of Nox4 abolishes the increase in ROS and peroxynitrite generation as well as eNOS uncoupling triggered by Ang II, indicating that Nox4 is upstream of eNOS. This pathway contributes to Ang II-mediated fibronectin accumulation in MCs. Ang II also elicits an increase in mitochondrial abundance of Nox4 protein, and the oxidase contributes to ROS production in mitochondria. Overexpression of mitochondrial manganese superoxide dismutase prevents the stimulatory effects of Ang II on mitochondrial ROS production, loss of NO availability, and MC fibronectin accumulation, whereas manganese superoxide dismutase depletion increases mitochondrial ROS, NO deficiency, and fibronectin synthesis basally and in cells exposed to Ang II. This work provides the first evidence that uncoupled eNOS is responsible for Ang II-induced MC fibronectin accumulation and identifies Nox4 and mitochondrial ROS as mediators of eNOS dysfunction. These data shed light on molecular processes underlying the oxidative signaling cascade engaged by Ang II and identify potential targets for intervention to prevent renal fibrosis.  相似文献   

17.
The aim of this work was to assess the capacities of some ·NO-donors to release ·NO, and consequently NOx in aerobic medium, or to give peroxynitrite. The method was based on the differential reactivity of serotonin (5-HT) with either NOx or peroxynitrite, leading in phosphate-buffered solutions to 4-nitroso- and 4-nitro-5-HT formation, respectively. Yields and formation rates of 5-HT derivatives with ·NO-donor were compared to those obtained with authentic ·NO or peroxynitrite in similar conditions. Aside from the capacity of diazenium diolates (SPER/NO and DEA/NO) to release ·NO spontaneously, converting 5-HT exclusively to 4-nitroso-5-HT, all other ·NO donors must undergo redox reactions to produce ·NO. S-nitrosoglutathione (GSNO) and sodium nitroprus-side (SNP) modified 5-HT only in the presence of Cu2+, GSNO yielding 6 times more 4-nitroso-5-HT than SNP. Furthermore, in the presence of Cu+, the yield of ·NO-release from GSNO was 45%. The molsidomine metabolite (SIN-1), which was presumed to release both ·NO and O2/·- at pH 7.4, reacted with 5-HT differently, depending on the presence of reductant or oxidant. Under aerobic conditions, SIN-1 acted predominantly as a 5-HT oxidant and also as a poor ·NO and peroxynitrite donor (15% yield of ·NO-release and 14 % yield of peroxynitrite formation). The strong oxidant Cu2+, even in the presence of air oxygen, accelerated oxidation and increased ·NO release from SIN-1 up to 86%. Only a small part of SIN-1 gave simultaneously ·NO and O2/·- able to link together to give peroxynitrite, but other oxidants could enhance ·NO release from SIN-1.  相似文献   

18.
Endothelial nitric-oxide synthase (eNOS) is a critical regulator of vascular homeostasis by generation of NO that is dependent on the cofactor tetrahydrobiopterin (BH4). When BH4 availability is limiting, eNOS becomes “uncoupled,” resulting in superoxide production in place of NO. Recent evidence suggests that eNOS uncoupling can also be induced by S-glutathionylation, although the functional relationships between BH4 and S-glutathionylation remain unknown. To address a possible role for BH4 in S-glutathionylation-induced eNOS uncoupling, we expressed either WT or mutant eNOS rendered resistant to S-glutathionylation in cells with Tet-regulated expression of human GTP cyclohydrolase I to regulate intracellular BH4 availability. We reveal that S-glutathionylation of eNOS, by exposure to either 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) or glutathione reductase-specific siRNA, results in diminished NO production and elevated eNOS-derived superoxide production, along with a concomitant reduction in BH4 levels and BH4:7,8-dihydrobiopterin ratio. In eNOS uncoupling induced by BH4 deficiency, BCNU exposure further exacerbates superoxide production, BH4 oxidation, and eNOS activity. Following mutation of C908S, BCNU-induced eNOS uncoupling and BH4 oxidation are abolished, whereas uncoupling induced by BH4 deficiency was preserved. Furthermore, BH4 deficiency alone is alone sufficient to reduce intracellular GSH:GSSG ratio and cause eNOS S-glutathionylation. These data provide the first evidence that BH4 deficiency- and S-glutathionylation-induced mechanisms of eNOS uncoupling, although mechanistically distinct, are functionally related. We propose that uncoupling of eNOS by S-glutathionylation- or by BH4-dependent mechanisms exemplifies eNOS as an integrated redox “hub” linking upstream redox-sensitive effects of BH4 and glutathione with redox-dependent targets and pathways that lie downstream of eNOS.  相似文献   

19.
Leukocyte accumulation has been shown to be increased in sepsis. Moreover, in inducible nitric oxide synthase (iNOS) knockout mice, a further increase in leukocyte accumulation has been observed during sepsis, suggesting that nitric oxide (NO) may affect leukocyte/endothelial interaction. Accelerated peroxynitrite formation also occurs during sepsis. In the present study, the effect of peroxynitrite or NO on leukocyte adhesion to nitric oxide synthase (NOS)-inhibited or endotoxin-treated endothelium was examined. Bovine aortic endothelial cells were treated with either L-NAME or lipopolysaccharide (LPS) and interferon-gamma for 4 hr and subsequent leukocyte adhesion was measured. Both L-NAME and LPS treatment resulted in increased leukocyte adhesion compared with control. Neither a peroxynitrite donor, SIN-1, nor a direct NO donor, DETA-NO, had any effect on leukocyte adhesion to untreated endothelium. However, when the L-NAME or LPS-treated endothelial cells were treated simultaneously with either SIN-1 or DETA-NO, there was a significant reduction in leukocyte adhesion. Moreover, at the concentrations used in the present study, neither peroxynitrite nor NO showed harmful effects on normal cultured endothelial cells. These data demonstrating inhibition of leukocyte adhesion to endotoxin-treated endothelium suggest that peroxynitrite or NO may exert a beneficial effect during sepsis.  相似文献   

20.
《Free radical research》2013,47(2):122-132
Abstract

Increased production of reactive nitrogen (RNS) and oxygen (ROS) species and its detrimental effect to mitochondria are associated with endothelial dysfunction. This study was designed to determine the effect of a peroxynitrite flux, promoted by 1,3-morpholinosydnonimine (SIN-1), in mitochondrial function and some redox homeostasis parameters in bovine aortic endothelial cells (BAEC). Moreover, the effect of diphenyl diselenide (PhSe)2, a simple organic selenium compound, in preventing peroxynitrite-mediated cytotoxicity was also investigated. Our results showed that overnight exposure to SIN-1 (250 μM) caused a profound impairment of oxygen consumption, energy generation and reserve capacity in mitochondria of BAEC. Mitochondrial dysfunction resulted in an additional intracellular production of peroxynitrite, amplifying the phenomenon and leading to changes in redox homeostasis. Moreover, we observed an extensive decline in mitochondrial membrane potential (ΔΨm) induced by peroxynitrite and this event was associated with apoptotic-type cell death. Alternatively, the pretreatment of BAEC with (PhSe)2, hindered peroxynitrite-mediated cell damage by preserving mitochondrial and endothelial function and consequently preventing apoptosis. The protective effect of (PhSe)2 was related to its ability to improve the intracellular redox state by increasing the expression of different isoforms of peroxiredoxins (Prx–1–3), efficient enzymes in peroxynitrite detoxification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号