首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron accumulation has been associated with several pathological conditions such as Friedreich ataxia. This human disorder is caused by decreased expression of frataxin. Iron-overload triggers oxidative stress, but the main targets of such stress are not known. In yeast cells lacking the frataxin ortholog YFH1, we have identified a set of 14 carbonylated proteins, which include mitochondrial ATP synthase, phosphoglycerate kinase, pyruvate kinase, and molecular chaperones. Interestingly, most of the target proteins are magnesium- and/or nucleotide-binding proteins. This key feature leads us to postulate that when iron accumulates, chelatable iron replaces magnesium at the corresponding metal-binding site, promoting selective damage to these proteins. Consistent with this hypothesis, in vitro experiments performed with pure pyruvate kinase and phosphoglycerate kinase showed that oxidation of these proteins can be prevented by magnesium and increased by the presence of ATP. Also, chelatable iron, which forms complexes with nucleotides, showed a sevenfold increase in Deltayfh1 cells. Moreover, lowering chelatable iron in Deltayfh1 cells by desferrioxamine prevented enzyme inactivation. As a general conclusion, we propose that magnesium bound to proteins is replaced by chelatable iron when this metal accumulates. This mechanism explains selective protein oxidation and provides clues for better understanding of iron-overloading pathologies.  相似文献   

2.
Many metalloproteins have the capacity to bind diverse metals, but in living cells connect only with their cognate metal cofactor. In eukaryotes, this metal specificity can be achieved through metal-specific metallochaperone proteins. Herein, we describe a mechanism whereby Saccharomyces cerevisiae manganese superoxide dismutase (SOD2) preferentially binds manganese over iron based on the differential bioavailability of these ions within mitochondria. The bulk of mitochondrial iron is normally unavailable to SOD2, but when mitochondrial iron homeostasis is disrupted, for example, by mutations in S. cerevisiae mtm1, ssq1 and grx5, iron accumulates in a reactive form that potently competes with manganese for binding to SOD2, inactivating the enzyme. Studies in mtm1 mutants indicate that iron inactivation of SOD2 involves the Mrs3p/Mrs4p mitochondrial carriers and iron-binding frataxin (Yfh1p). A small pool of SOD2-reactive iron also exists under normal iron homeostasis conditions and binds SOD2 when mitochondrial manganese is low. The ability to control this reactive pool of iron is critical to maintaining SOD2 activity and has important potential implications for oxidative stress in disorders of iron overload.  相似文献   

3.
Friedreich's ataxia (FRDA) is caused by low expression of frataxin, a small mitochondrial protein. Studies with both yeast and mammals have suggested that decreased frataxin levels lead to elevated intramitochondrial concentrations of labile (chelatable) iron, and consequently to oxidative mitochondrial damage. Here, we used the mitochondrion-selective fluorescent iron indicator/chelator rhodamine B-[(1,10-phenanthrolin-5-yl)aminocarbonyl]benzylester (RPA) to determine the mitochondrial chelatable iron of FRDA patient lymphoblast and fibroblast cell lines, in comparison with age- and sex-matched control cells. No alteration in the concentration of mitochondrial chelatable iron could be observed in patient cells, despite strongly decreased frataxin levels. Uptake studies with (55)Fe-transferrin and iron loading with ferric ammonium citrate revealed no significant differences in transferrin receptor density and iron responsive protein/iron regulatory element binding activity between patients and controls. However, sensitivity to H(2)O(2) was significantly increased in patient cells, and H(2)O(2) toxicity could be completely inhibited by the ubiquitously distributing iron chelator 2,2'-dipyridyl, but not by the mitochondrion-selective chelator RPA. Our data strongly suggest that frataxin deficiency does not affect the mitochondrial labile iron pool or other parameters of cellular iron metabolism and suggest a decreased antioxidative defense against extramitochondrial iron-derived radicals in patient cells. These results challenge current concepts favoring the use of mitochondrion-specific iron chelators and antioxidants to treat FRDA.  相似文献   

4.
Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by low levels of the mitochondrial protein frataxin. The main phenotypic features of frataxin-deficient human and yeast cells include iron accumulation in mitochondria, iron-sulfur cluster defects and high sensitivity to oxidative stress. Frataxin deficiency is also associated with severe impairment of glutathione homeostasis and changes in glutathione-dependent antioxidant defenses. The potential biological consequences of oxidative stress and changes in glutathione levels associated with frataxin deficiency include the oxidation of susceptible protein thiols and reversible binding of glutathione to the SH of proteins by S-glutathionylation. In this study, we isolated mitochondria from frataxin-deficient ?yfh1 yeast cells and lymphoblasts of FRDA patients, and show evidence for a severe mitochondrial glutathione-dependent oxidative stress, with a low GSH/GSSG ratio, and thiol modifications of key mitochondrial enzymes. Both yeast and human frataxin-deficient cells had abnormally high levels of mitochondrial proteins binding an anti-glutathione antibody. Moreover, proteomics and immunodetection experiments provided evidence of thiol oxidation in α-ketoglutarate dehydrogenase (KGDH) or subunits of respiratory chain complexes III and IV. We also found dramatic changes in GSH/GSSG ratio and thiol modifications on aconitase and KGDH in the lymphoblasts of FRDA patients. Our data for yeast cells also confirm the existence of a signaling and/or regulatory process involving both iron and glutathione.  相似文献   

5.
Frataxin is a mitochondrial protein that is conserved throughout evolution. In yeast and mammals, frataxin is essential for cellular iron (Fe) homeostasis and survival during oxidative stress. In plants, frataxin deficiency causes increased reactive oxygen species (ROS) production and high sensitivity to oxidative stress. In this work we show that a knock-down T-DNA frataxin-deficient mutant of Arabidopsis thaliana (atfh-1) contains increased total and organellar Fe levels. Frataxin deficiency leads also to nitric oxide (NO) accumulation in both, atfh-1 roots and frataxin null mutant yeast. Abnormally high NO production might be part of the defence mechanism against Fe-mediated oxidative stress.  相似文献   

6.
The primary function of frataxin, a mitochondrial protein involved in iron homeostasis, remains controversial. Using a yeast model of conditional expression of the frataxin homologue YFH1, we analyzed the primary effects of YFH1 depletion. The main conclusion unambiguously points to the up-regulation of iron transport systems as a primary effect of YFH1 down-regulation. We observed that inactivation of aconitase, an iron-sulfur enzyme, occurs long after the iron uptake system has been activated. Decreased aconitase activity should be considered part of a group of secondary events promoted by iron overloading, which includes decreased superoxide dismutase activity and increased protein carbonyl formation. Impaired manganese uptake, which contributes to superoxide dismutase deficiency, has also been observed in YFH1-deficient cells. This low manganese content can be attributed to the down-regulation of the metal ion transporter Smf2. Low Smf2 levels were not observed in AFT1/YFH1 double mutants, indicating that high iron levels could be responsible for the Smf2 decline. In summary, the results presented here indicate that decreased iron-sulfur enzyme activities in YFH1-deficient cells are the consequence of the oxidative stress conditions suffered by these cells.  相似文献   

7.
Friedreich's ataxia is a hereditary neurodegenerative disease caused by reduced expression of mitochondrial frataxin. Frataxin deficiency causes impairment in respiratory capacity, disruption of iron homoeostasis and hypersensitivity to oxidants. Although the redox properties of NAD (NAD+ and NADH) are essential for energy metabolism, only few results are available concerning homoeostasis of these nucleotides in frataxin-deficient cells. In the present study, we show that the malate-aspartate NADH shuttle is impaired in Saccharomyces cerevisiae frataxin-deficient cells (Δyfh1) due to decreased activity of cytosolic and mitochondrial isoforms of malate dehydrogenase and to complete inactivation of the mitochondrial aspartate aminotransferase (Aat1). A considerable decrease in the amount of mitochondrial acetylated proteins was observed in the Δyfh1 mutant compared with wild-type. Aat1 is acetylated in wild-type mitochondria and deacetylated in Δyfh1 mitochondria suggesting that inactivation could be due to this post-translational modification. Mutants deficient in iron-sulfur cluster assembly or lacking mitochondrial DNA also showed decreased activity of Aat1, suggesting that Aat1 inactivation was a secondary phenotype in Δyfh1 cells. Interestingly, deletion of the AAT1 gene in a wild-type strain caused respiratory deficiency and disruption of iron homoeostasis without any sensitivity to oxidative stress. Our results show that secondary inactivation of Aat1 contributes to the amplification of the respiratory defect observed in Δyfh1 cells. Further implication of mitochondrial protein deacetylation in the physiology of frataxin-deficient cells is anticipated.  相似文献   

8.
Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by low levels of the mitochondrial protein frataxin. The main phenotypic features of frataxin-deficient human and yeast cells include iron accumulation in mitochondria, iron-sulfur cluster defects and high sensitivity to oxidative stress. Frataxin deficiency is also associated with severe impairment of glutathione homeostasis and changes in glutathione-dependent antioxidant defenses. The potential biological consequences of oxidative stress and changes in glutathione levels associated with frataxin deficiency include the oxidation of susceptible protein thiols and reversible binding of glutathione to the SH of proteins by S-glutathionylation. In this study, we isolated mitochondria from frataxin-deficient ?yfh1 yeast cells and lymphoblasts of FRDA patients, and show evidence for a severe mitochondrial glutathione-dependent oxidative stress, with a low GSH/GSSG ratio, and thiol modifications of key mitochondrial enzymes. Both yeast and human frataxin-deficient cells had abnormally high levels of mitochondrial proteins binding an anti-glutathione antibody. Moreover, proteomics and immunodetection experiments provided evidence of thiol oxidation in α-ketoglutarate dehydrogenase (KGDH) or subunits of respiratory chain complexes III and IV. We also found dramatic changes in GSH/GSSG ratio and thiol modifications on aconitase and KGDH in the lymphoblasts of FRDA patients. Our data for yeast cells also confirm the existence of a signaling and/or regulatory process involving both iron and glutathione.  相似文献   

9.
Defects in frataxin result in Friedreich ataxia, a genetic disease characterized by early onset of neurodegeneration, cardiomyopathy, and diabetes. Frataxin is a conserved mitochondrial protein that controls iron needed for iron-sulfur cluster assembly and heme synthesis and also detoxifies excess iron. Studies in vitro have shown that either monomeric or oligomeric frataxin delivers iron to other proteins, whereas ferritin-like frataxin particles convert redox-active iron to an inert mineral. We have investigated how these different forms of frataxin are regulated in vivo. In Saccharomyces cerevisiae, only monomeric yeast frataxin (Yfh1) was detected in unstressed cells when mitochondrial iron uptake was maintained at a steady, low nanomolar level. Increments in mitochondrial iron uptake induced stepwise assembly of Yfh1 species ranging from trimer to > or = 24-mer, independent of interactions between Yfh1 and its major iron-binding partners, Isu1/Nfs1 or aconitase. The rate-limiting step in Yfh1 assembly was a structural transition that preceded conversion of monomer to trimer. This step was induced, independently or synergistically, by mitochondrial iron increments, overexpression of wild type Yfh1 monomer, mutations that stabilize Yfh1 trimer, or heat stress. Faster assembly kinetics correlated with reduced oxidative damage and higher levels of aconitase activity, respiratory capacity, and cell survival. However, deregulation of Yfh1 assembly resulted in Yfh1 aggregation, aconitase sequestration, and mitochondrial DNA depletion. The data suggest that Yfh1 assembly responds to dynamic changes in mitochondrial iron uptake or stress exposure in a highly controlled fashion and that this may enable frataxin to simultaneously promote respiratory function and stress tolerance.  相似文献   

10.
Friedreich ataxia is a human neurodegenerative and myocardial disease caused by decreased expression of the mitochondrial protein frataxin. Proteomic analysis of the mutant yeast model of Friedreich ataxia presented in this paper reveals that these cells display increased amounts of proteins involved in antioxidant defenses, including manganese-superoxide dismutase. This enzyme shows, however, lower activity than that found in wild type cells. Our results indicate that this lack of activity is a consequence of cellular manganese deficiency, because in manganese-supplemented cultures, cell manganese content, and manganese-superoxide dismutase activity were restored. One of the hallmarks of Friedreich ataxia is the decreased activity of iron/sulfur-containing enzymes. The activities of four enzymes of this group (aconitase, glutamate synthase, succinate dehydrogenase, and isopropylmalate dehydratase) have been analyzed for the effects of manganese supplementation. Enzyme activities were recovered by manganese treatment, except for aconitase, for which, a specific interaction with frataxin has been demonstrated previously. Similar results were obtained when cells were grown in iron-limited media suggesting that manganese-superoxide dismutase deficiency is a consequence of iron overload. In conclusion, these data indicate that generalized deficiency of iron-sulfur protein activity could be a consequence of manganese-superoxide dismutase deficiency, and consequently, it opens new strategies for Friedreich ataxia treatment.  相似文献   

11.
Activation of superoxide dismutases: putting the metal to the pedal   总被引:1,自引:0,他引:1  
Superoxide dismutases (SOD) are important anti-oxidant enzymes that guard against superoxide toxicity. Various SOD enzymes have been characterized that employ either a copper, manganese, iron or nickel co-factor to carry out the disproportionation of superoxide. This review focuses on the copper and manganese forms, with particular emphasis on how the metal is inserted in vivo into the active site of SOD. Copper and manganese SODs diverge greatly in sequence and also in the metal insertion process. The intracellular copper SODs of eukaryotes (SOD1) can obtain copper post-translationally, by way of interactions with the CCS copper chaperone. CCS also oxidizes an intrasubunit disulfide in SOD1. Adventitious oxidation of the disulfide can lead to gross misfolding of immature forms of SOD1, particularly with SOD1 mutants linked to amyotrophic lateral sclerosis. In the case of mitochondrial MnSOD of eukaryotes (SOD2), metal insertion cannot occur post-translationally, but requires new synthesis and mitochondrial import of the SOD2 polypeptide. SOD2 can also bind iron in vivo, but is inactive with iron. Such metal ion mis-incorporation with SOD2 can become prevalent upon disruption of mitochondrial metal homeostasis. Accurate and regulated metallation of copper and manganese SOD molecules is vital to cell survival in an oxygenated environment.  相似文献   

12.
Frataxin deficiency is the primary cause of Friedreich ataxia (FRDA), an autosomal recessive cardiodegenerative and neurodegenerative disease. Frataxin is a nuclear-encoded mitochondrial protein that is widely conserved among eukaryotes. Genetic inactivation of the yeast frataxin homologue (Yfh1p) results in mitochondrial iron accumulation and hypersensitivity to oxidative stress. Increased iron deposition and evidence of oxidative damage have also been observed in cardiac tissue and cultured fibroblasts from patients with FRDA. These findings indicate that frataxin is essential for mitochondrial iron homeostasis and protection from iron-induced formation of free radicals. The functional mechanism of frataxin, however, is still unknown. We have expressed the mature form of Yfh1p (mYfh1p) in Escherichia coli and have analyzed its function in vitro. Isolated mYfh1p is a soluble monomer (13,783 Da) that contains no iron and shows no significant tendency to self-associate. Aerobic addition of ferrous iron to mYfh1p results in assembly of regular spherical multimers with a molecular mass of approximately 1. 1 MDa (megadaltons) and a diameter of 13+/-2 nm. Each multimer consists of approximately 60 subunits and can sequester >3,000 atoms of iron. Titration of mYfh1p with increasing iron concentrations supports a stepwise mechanism of multimer assembly. Sequential addition of an iron chelator and a reducing agent results in quantitative iron release with concomitant disassembly of the multimer, indicating that mYfh1p sequesters iron in an available form. In yeast mitochondria, native mYfh1p exists as monomer and a higher-order species with a molecular weight >600,000. After addition of (55)Fe to the medium, immunoprecipitates of this species contain >16 atoms of (55)Fe per molecule of mYfh1p. We propose that iron-dependent self-assembly of recombinant mYfh1p reflects a physiological role for frataxin in mitochondrial iron sequestration and bioavailability.  相似文献   

13.
Yeast cells deficient in the yeast frataxin homolog (Yfh1p) accumulate iron in their mitochondria. Whether this iron is toxic, however, remains unclear. We showed that large excesses of iron in the growth medium did not inhibit growth and did not decrease cell viability. Increasing the ratio of mitochondrial iron-to-Yfh1p by decreasing the steady-state level of Yfh1p to less than 100 molecules per cell had very few deleterious effects on cell physiology, even though the mitochondrial iron concentration greatly exceeded the iron-binding capacity of Yfh1p in these conditions. Mössbauer spectroscopy and FPLC analyses of whole mitochondria or of isolated mitochondrial matrices showed that the chemical and biochemical forms of the accumulated iron in mitochondria of mutant yeast strains (Δyfh1, Δggc1 and Δssq1) displayed a nearly identical distribution. This was also the case for Δggc1 cells, in which Yfh1p was overproduced. In these mitochondria, most of the iron was insoluble, and the ratio of soluble-to-insoluble iron did not change when the amount of Yfh1p was increased up to 4500 molecules per cell. Our results do not privilege the hypothesis of Yfh1p being an iron storage protein in vivo.  相似文献   

14.

Background

The neurodegenerative disease Friedreich's ataxia is the result of frataxin deficiency. Frataxin is a mitochondrial protein involved in iron–sulfur cluster (Fe–S) cofactor biogenesis, but its functional role in this pathway is debated. This is due to the interconnectivity of iron metabolic and oxidative stress response pathways that make distinguishing primary effects of frataxin deficiency challenging. Since Fe–S cluster assembly is conserved, frataxin overexpression phenotypes in a simple eukaryotic organism will provide additional insight into frataxin function.

Methods

The Schizosaccharomyces pombe frataxin homologue (fxn1) was overexpressed from a plasmid under a thiamine repressible promoter. The S. pombe transformants were characterized at several expression strengths for cellular growth, mitochondrial organization, iron levels, oxidative stress, and activities of Fe–S cluster containing enzymes.

Results

Observed phenotypes were dependent on the amount of Fxn1 overexpression. High Fxn1 overexpression severely inhibited S. pombe growth, impaired mitochondrial membrane integrity and cellular respiration, and led to Fxn1 aggregation. Cellular iron accumulation was observed at moderate Fxn1 overexpression but was most pronounced at high levels of Fxn1. All levels of Fxn1 overexpression up-regulated oxidative stress defense and mitochondrial Fe–S cluster containing enzyme activities.

Conclusions

Despite the presence of oxidative stress and accumulated iron, activation of Fe–S cluster enzymes was common to all levels of Fxn1 overexpression; therefore, Fxn1 may regulate the efficiency of Fe–S cluster biogenesis in S. pombe.

General Significance

We provide evidence that suggests that dysregulated Fe–S cluster biogenesis is a primary effect of both frataxin overexpression and deficiency as in Friedreich's ataxia.  相似文献   

15.
Mitochondrial function depends on a continuous supply of iron to the iron-sulfur cluster (ISC) and heme biosynthetic pathways as well as on the ability to prevent iron-catalyzed oxidative damage. The mitochondrial protein frataxin plays a key role in these processes by a novel mechanism that remains to be fully elucidated. Recombinant yeast and human frataxin are able to self-associate in large molecular assemblies that bind and store iron as a ferrihydrite mineral. Moreover, either single monomers or polymers of human frataxin have been shown to serve as donors of Fe(II) to ISC scaffold proteins, oxidatively inactivated [3Fe-4S](+) aconitase, and ferrochelatase. These results suggest that frataxin can use different molecular forms to accomplish its functions. Here, stable monomeric and assembled forms of human frataxin purified from Escherichia coli have provided a tool for testing this hypothesis at the biochemical level. We show that human frataxin can enhance the availability of Fe(II) in monomeric or assembled form. However, the monomer is unable to prevent iron-catalyzed radical reactions and the formation of insoluble ferric iron oxides. In contrast, the assembled protein has ferroxidase activity and detoxifies redox-active iron by sequestering it in a protein-protected compartment.  相似文献   

16.
Yang ES  Lee JH  Park JW 《Biochimie》2008,90(9):1316-1324
It has been reported that chronic alcohol administration increases peroxynitrite hepatotoxicity by enhancing concomitant production of nitric oxide and superoxide. Several studies have shown the importance of superoxide dismutase (SOD) in protecting cells against ethanol-induced oxidative stress. Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of NADP(+)-dependent isocitrate dehydrogenase (ICDH) through to supply NADPH for antioxidant systems. In this report, we demonstrate that ethanol induces the peroxynitrite-mediated cytotoxicity in HepG2 cells through inactivation of antioxidant enzymes such as ICDH and SOD. Upon exposure to 100mM ethanol for 3days to HepG2 cells, a significant decrease in the viability and activities of ICDH and SOD was observed. The ethanol-induced inactivation of antioxidant enzymes resulted in the cellular oxidative damage and modulation of redox status as well as mitochondrial dysfunction in HepG2 cells. The cytoxicity of ethanol and inactivation of antioxidant enzymes were effectively protected by manganeses(III) tetrakis(N-methyl-2-pyridyl) porphyrin, a manganese SOD mimetic, and N'-monomethyl-l-arginine, a nitric oxide synthase inhibitor. These results indicate that ethanol toxicity is mediated by peroxynitrite and the peroxynitrite-mediated damage to ICDH and SOD may be resulted in the perturbation of the cellular antioxidant defense systems and subsequently lead to a pro-oxidant condition.  相似文献   

17.
Cu,Zn-superoxide dismutase (SOD1) is an abundant, largely cytosolic enzyme that scavenges superoxide anions. The biological role of SOD1 is somewhat controversial because superoxide is thought to arise largely from the mitochondria where a second SOD (manganese SOD) already resides. Using bakers' yeast as a model, we demonstrate that Cu,Zn-SOD1 helps protect mitochondria from oxidative damage, as sod1Delta mutants show elevated protein carbonyls in this organelle. In accordance with this connection to mitochondria, a fraction of active SOD1 localizes within the intermembrane space (IMS) of mitochondria together with its copper chaperone, CCS. Neither CCS nor SOD1 contains typical N-terminal presequences for mitochondrial uptake; however, the mitochondrial accumulation of SOD1 is strongly influenced by CCS. When CCS synthesis is repressed, mitochondrial SOD1 is of low abundance, and conversely IMS SOD1 is very high when CCS is largely mitochondrial. The mitochondrial form of SOD1 is indeed protective against oxidative damage because yeast cells enriched for IMS SOD1 exhibit prolonged survival in the stationary phase, an established marker of mitochondrial oxidative stress. Cu,Zn-SOD1 in the mitochondria appears important for reactive oxygen physiology and may have critical implications for SOD1 mutations linked to the fatal neurodegenerative disorder, amyotrophic lateral sclerosis.  相似文献   

18.
Superoxide dismutase 2 (SOD2) is one of the rare mitochondrial enzymes evolved to use manganese as a cofactor over the more abundant element iron. Although mitochondrial iron does not normally bind SOD2, iron will misincorporate into Saccharomyces cerevisiae Sod2p when cells are starved for manganese or when mitochondrial iron homeostasis is disrupted by mutations in yeast grx5, ssq1, and mtm1. We report here that such changes in mitochondrial manganese and iron similarly affect cofactor selection in a heterologously expressed Escherichia coli Mn-SOD, but not a highly homologous Fe-SOD. By x-ray absorption near edge structure and extended x-ray absorption fine structure analyses of isolated mitochondria, we find that misincorporation of iron into yeast Sod2p does not correlate with significant changes in the average oxidation state or coordination chemistry of bulk mitochondrial iron. Instead, small changes in mitochondrial iron are likely to promote iron-SOD2 interactions. Iron binds Sod2p in yeast mutants blocking late stages of iron-sulfur cluster biogenesis (grx5, ssq1, and atm1), but not in mutants defective in the upstream Isu proteins that serve as scaffolds for iron-sulfur biosynthesis. In fact, we observed a requirement for the Isu proteins in iron inactivation of yeast Sod2p. Sod2p activity was restored in mtm1 and grx5 mutants by depleting cells of Isu proteins or using a dominant negative Isu1p predicted to stabilize iron binding to Isu1p. In all cases where disruptions in iron homeostasis inactivated Sod2p, we observed an increase in mitochondrial Isu proteins. These studies indicate that the Isu proteins and the iron-sulfur pathway can donate iron to Sod2p.Metal-containing enzymes are generally quite specific for their cognate cofactor. Misincorporation of the wrong metal ion can be deleterious and tends to be a rare occurrence in biology. A prime example of metal ion selectivity is illustrated by the family of manganese- and iron-containing superoxide dismutases (SODs)3. This large family of enzymes utilizes either manganese or iron as cofactors to scavenge superoxide anion. The iron- and manganese-containing forms are highly homologous to one another at primary, secondary, and tertiary levels and have virtually identical metal binding and catalytic sites (13). Despite this extensive homology, Mn- and Fe-SODs are only active with their cognate metal. Misincorporation of iron into Mn-SOD or vice versa alters the redox potential of the enzyme''s active site and prohibits superoxide disproportionation (4, 5). Nevertheless, misincorporation of iron into Mn-SOD does occur in vivo (6, 7). The isolated Mn-SOD from Escherichia coli is found as a mixture of manganese- and iron-bound forms (7); binding of manganese is favored under oxidative stress, whereas iron binding is increased under anaerobic conditions (3, 8). It has been proposed that changes in bioavailability of manganese versus iron determine the metal selectivity of Mn-SOD in bacterial cells (3, 8). But is this also true for Fe-SOD? Currently, there is no documentation of manganese misincorporation into Fe-SOD in vivo.Unlike bacteria that co-express Mn- and Fe-SOD molecules in the same cell, eukaryotic mitochondria generally harbor only one member of the Fe/Mn-SOD family, a tetrameric Mn-SOD typically known as SOD2 (9). In some organisms, SOD2 is essential for survival (1012), and mitochondria have therefore evolved to prevent iron-SOD2 interactions despite high levels of mitochondrial iron relative to manganese. Using a yeast model system, we have shown previously that metal ion mis-incorporation can occur with Saccharomyces cerevisiae Sod2p (7). Specifically, iron binds and inactivates yeast Sod2p when cells are either starved for manganese or have certain disruptions in mitochondrial iron homeostasis. These disruptions include mutations in MTM1, a mitochondrial carrier protein that functions in iron metabolism (7, 13), and mutations in GRX5 or SSQ1, involved in iron-sulfur biogenesis (14). We proposed that these disruptions lead to expansion of a mitochondrial pool of so-called SOD2-reactive iron (7). Currently, it is unknown whether SOD2-reactive iron represents a major shift in the chemistry of bulk mitochondrial iron or whether it is just a small pool of the metal emerging from one or more specific sites.The grx5 and ssq1 mutants that promote iron-SOD2 interactions encode just two of many components of a complex pathway for iron-sulfur biogenesis (15, 16). One of the key components is a well conserved iron-sulfur scaffold protein originally described for bacteria as IscU, also known as mammalian ISCU and S. cerevisiae Isu1p and Isu2p, referred collectively herein as “Isu proteins” (1722). The iron-sulfur clusters on Isu proteins are labile and can be transferred to target iron-sulfur proteins through the aid of mitochondrial factors including Grx5p and Ssq1p (15, 16). It is not clear whether disruption of the iron-sulfur pathway per se is sufficient to promote iron interactions with yeast Sod2p or whether this effect is specific to grx5, ssq1, and mtm1 mutants.In the current study, we explore the nature of mitochondrial iron that can interact with Sod2p. We find that the changes in mitochondrial metal homeostasis that shift metal binding in yeast Sod2p likewise alter metal cofactor selection in a heterologously expressed Mn-SOD, but not in a Fe-SOD molecule. Through x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) analyses of mitochondrial iron, we detected no major change in bulk mitochondrial iron under conditions that promote iron-SOD2 interactions. SOD2-reactive iron appears to represent a small pool of the metal, and we provide evidence that the iron-sulfur scaffold Isu1p can act as an important source of this reactive iron.  相似文献   

19.
20.
Superoxide dismutase (SOD) is considered to be the first line of defense against oxygen toxicity. It exists as a family of three metalloproteins with copper,zinc (Cu,ZnSOD), manganese (MnSOD), and iron (FeSOD) forms. In this work, we have targeted Escherichia coli FeSOD to the mitochondrial intermembrane space (IMS) of yeast cells deficient in mitochondrial MnSOD. Our results show that FeSOD in the IMS increases the growth rate of the cells growing in minimal medium in air but does not protect the MnSOD-deficient yeast cells when exposed to induced oxidative stress. Cloned FeSOD must be targeted to the mitochondrial matrix to protect the cells from both physiological and induced oxidative stress. This confirms that the superoxide radical is mainly generated on the matrix side of the inner mitochondrial membrane of yeast cells, without excluding its potential appearance in the mitochondrial IMS where its elimination by SOD is beneficial to the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号