首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Placental isoprostane is significantly increased in preeclampsia.   总被引:11,自引:0,他引:11  
We determined placental tissue levels, production rates, and secretion rates of isoprostanes for placentas obtained from women with normal pregnancies and women with preeclampsia, a hypertensive disorder of pregnancy. Isoprostanes are markers of oxidative stress that exert biological actions such as vasoconstriction. Placental tissue was rinsed and immediately frozen in liquid nitrogen to determine tissue levels of total and free isoprostane. Placental tissue pieces were also incubated in serum-free DMEM for 48 h at 37 degrees C in 95% air/5% CO(2) to determine production rates. Isolated placental cotyledons were perfused for the determination of secretion rates. All samples were analyzed by EIA for isoprostane using an antibody specific for 8-Iso-PGF(2) (15-F(2t)-IsoP). In addition, medium samples were analyzed for malondialdehyde (MDA), a breakdown product of lipid peroxidation. We found that tissue levels of free isoprostane and total isoprostane (free plus esterified forms) were significantly higher for preeclamptic placentas than for normal placentas. Concentrations of isoprostane and MDA in the medium increased progressively during 48 h of incubation of placental explants. At 48 h of incubation, the mean concentrations of both isoprostane and MDA were significantly higher for the placentas from preeclamptic women than for the placentas from normal pregnant women. Concentrations of MDA were highly correlated with those of isoprostane. Induction of oxidative stress with xanthine plus xanthine oxidase increased placental production of isoprostane by normal tissue to a level similar to that of preeclamptic tissue. Placental secretion of isoprostane was eightfold greater toward the maternal side of the placenta than toward the fetal side, and was increased sixfold on the maternal side and twofold on the fetal side by inducing oxidative stress with t-butyl hydroperoxide. This study presents new information that isoprostanes are formed and secreted by the human placenta and provides convincing evidence that oxidative stress and lipid peroxidation are abnormally increased in placentas of preeclamptic women.  相似文献   

2.
The isoprostanes are a group of biologically active arachidonic acid metabolites initially thought to be formed under conditions of oxidative stress and independently of cyclooxygenase. However, recent studies have demonstrated isoprostane production under conditions in which cyclooxygenase is intentionally activated/induced. Here we describe for the first time formation of isoprostanes by human vascular cells via independent pathways of oxidative stress and cyclooxygenase induction. We compared the release of the isoprostane with that of the traditional prostaglandin, prostaglandin E2. Cyclooxygenase-2 induction was confirmed by Western blot. When cells were stimulated with cytokines, the release of isoprostanes was inhibited by the cyclooxygenase-1 and -2 inhibitor indomethacin as well by as the cyclooxygenase-2 selective inhibitor L-745,337. However, treatment of cells with the superoxide-producing enzyme xanthine oxidase also resulted in isoprostane release, which was not affected by cyclooxygenase inhibition, unlike PGE2 release under the same condition. Thus, two independent pathways relating to oxidative stress and cyclooxygenase-2 induction form isoprostanes. These findings may have particular importance in diseases such as sepsis and ARDS in which oxidant stress occurs and cyclooxygenase is induced.  相似文献   

3.
Isoprostanes are prostaglandin (PG)-like compounds generated in vivo following oxidative stress by non-enzymatic peroxidation of polyunsaturated fatty acids, including arachidonic acid. They are named based on their prostane ring structure and by the localization of hydroxyl groups on the carbon side chain; these structural differences result in a broad array of isoprostane molecules with varying biological properties. Generation of specific isoprostanes is also regulated by host cell redox conditions; reducing conditions favor F?-isoprostane production while under conditions with deficient antioxidant capacity, D?- and E?-isoprostanes are formed. F?-isoprostanes (F?-isoP) are considered reliable markers of oxidative stress in pulmonary diseases including asthma. Importantly, F?-isoP and other isoprostanes function as ligands for PG receptors, and potentially other receptors that have not yet been identified. They have been reported to have important biological properties in many organs. In the lung, isoprostanes regulate cellular processes affecting airway smooth muscle tone, neural secretion, epithelial ion flux, endothelial cell adhesion and permeability, and macrophage adhesion and function. In this review, we will summarize the evidence that F?-isoP functions as a marker of oxidative stress in asthma, and that F?-isoP and other isoprostanes exert biological effects that contribute to the pathogenesis of asthma. This article is part of a Special Issue entitled Biochemistry of Asthma.  相似文献   

4.
Isoprostanes are prostaglandin (PG)-like compounds generated in vivo following oxidative stress by non-enzymatic peroxidation of polyunsaturated fatty acids, including arachidonic acid. They are named based on their prostane ring structure and by the localization of hydroxyl groups on the carbon side chain; these structural differences result in a broad array of isoprostane molecules with varying biological properties. Generation of specific isoprostanes is also regulated by host cell redox conditions; reducing conditions favor F2-isoprostane production while under conditions with deficient antioxidant capacity, D2- and E2-isoprostanes are formed. F2-isoprostanes (F2-isoP) are considered reliable markers of oxidative stress in pulmonary diseases including asthma. Importantly, F2-isoP and other isoprostanes function as ligands for PG receptors, and potentially other receptors that have not yet been identified. They have been reported to have important biological properties in many organs. In the lung, isoprostanes regulate cellular processes affecting airway smooth muscle tone, neural secretion, epithelial ion flux, endothelial cell adhesion and permeability, and macrophage adhesion and function. In this review, we will summarize the evidence that F2-isoP functions as a marker of oxidative stress in asthma, and that F2-isoP and other isoprostanes exert biological effects that contribute to the pathogenesis of asthma. This article is part of a Special Issue entitled Biochemistry of Asthma.  相似文献   

5.
The isoprostanes are a class of autoxidation products generated from arachidonic acid (or its esters) by a free radical initiated process. The potent biological activity of these compounds has been attracting intense research interest since they were detected in humans as well as animal models in the early 1990s. The measurement of these compounds has been regarded as one of the most useful non-invasive biomarkers for oxidative stress status. Two mechanisms for the formation of these compounds have been proposed. In the first mechanism, a peroxyl radical undergoes successive 5-exo cyclizations analogous to the enzymatic mechanism proposed for prostaglandin biosynthesis. The second mechanism starts with a 4-exo cyclization of a peroxyl radical leading to an intermediate dioxetane, a mechanism that has also been proposed for prostaglandin biosynthesis as well as for the formation of 4-hydroxy nonenal (HNE). Autoxidation of cholesteryl-15-HpETE under free radical conditions provides Type IV isoprostanes. The "dioxetane" mechanism for isoprostane generation from 15-HpETE requires that optically pure products are formed from an optically pure reactant, whereas an alternate mechanism for the process involving beta-fragmentation of the 15-peroxyl would give racemic isoprostane products. We have carried out a test of the mechanism based upon these stereochemical requirements. The results of analysis of the product mixture derived from autoxidation of optically pure Ch-15-HpETE by atmospheric pressure chemical ionization-mass spectrometry coupled with chiral high performance liquid chromatography indicate that the major isoprostane diastereomers are formed as a racemic mixture. These experimental results are consistent with a mechanism for isoprostane formation involving beta-fragmentation of the 15-peroxyl radical followed by re-addition of oxygen to form the 11-HPETE peroxyl, and they exclude a mechanism proceeding through the formation of a dioxetane intermediate.  相似文献   

6.
Imbusch R  Mueller MJ 《Plant physiology》2000,124(3):1293-1304
Isoprostanes F(2) are arachidonate autoxidation products in mammals that have been shown to be induced during several human disorders associated with enhanced free-radical generation. Isoprostanes F(2) represent not only extremely reliable markers of oxidative stress in vivo, but they also exert potent biological effects. Therefore, it has been postulated that isoprostanoids are mediators of oxidant injury in vivo. Higher plants, however, do not synthesize arachidonic acid or isoprostanes. Here we show that a series of isoprostane F(2) analogs termed phytoprostanes F(1) (previously dinor isoprostanes F(1)) are formed by an analogous pathway from alpha-linolenate in plants. High-performance liquid chromatography and gas chromatography-mass spectrometry methods using [(18)O](3)phytoprostanes F(1) as internal standard have been developed to quantify phytoprostanes F(1). In fresh peppermint (Mentha piperita) leaves, phytoprostanes F(1) were found in free form (76 ng/g of dry weight) and at about 150-fold higher levels esterified in lipids. It is notable that these levels of phytoprostanes F(1) are more than two orders of magnitude higher than the basal levels of isoprostanes F(2) in mammalian tissues. Furthermore, wounding, as well as butyl hydroperoxide or cupric acetate stress triggered a dramatic increase of free and esterified phytoprostanes F(1). Thus phytoprostanes F(1) may represent a sensitive measure of oxidative damage in plants similar to isoprostanes in mammals. However, one of the most exciting issues to be clarified is the possibility that linolenate-derived phytoprostanes F(1) exert biological activities in plants and/or animals.  相似文献   

7.
This study aims to determine if isoprostanes accurately reflect in vivo lipid peroxidation or whether they are influenced by the lipid content of the diet. Isoprostanes were measured in urine of healthy subjects under different conditions of lipid intake and under conditions of oxidative stress (fasting). We found that isoprostanes were not influenced by the lipid content of the diet: the urinary level remained constant over 24 h as well as over 4 consecutive days when switching from high to low lipid intake. Urinary isoprostane excretion was increased by 40% following a 24 h fast. We concluded that urinary isoprostane excretion reflects endogenous lipid peroxidation in vivo.  相似文献   

8.
We examined the responses to various isoprostane derivatives in bovine/human airway and pulmonary arteries. All biological activity of 15-F(2t)-IsoP was lost in its two major metabolites (15-keto-15-F(2t)-IsoP and 13,14-dihydro-15-keto-15-F(2t)-IsoP). We also examined the effects of several metabolites of 15-F(2t)-IsoP synthesized within our own laboratory-both epimers of 2,3-dinor-15-F(2t)-IsoP and of 2,3-dinor-5,6-dihydro-15-F(2t)-IsoP, as well as 20-carboxy-2,3,4,5-tetranor-15 oxo-5,6,13,14-tetrahydro-15-F(2t)-isoP)-finding none of these to have any substantial excitatory effect. Finally, several plant-derived isoprostanes ("phytoprostanes") synthesized within our laboratory elicited little or no excitatory response in these three pulmonary smooth muscle preparations. We conclude that, although isoprostane exhibit powerful constrictor effects on airway and pulmonary vascular smooth muscles, metabolic processing of those isoprostanes essentially abolishes those biological actions; also, the phytoprostanes lack any appreciable pharmacological activity on those smooth muscle preparations.  相似文献   

9.
Using muscle bath techniques, we examined the inhibitory activities of several E- and F-ring isoprostanes in canine and porcine airway smooth muscle. 8-Isoprostaglandin E1 and 8-isoprostaglandin E2 (8-iso PGE2) reversed cholinergic tone in a concentration-dependent manner, whereas the F-ring isoprostanes were ineffective. Desensitization with 8-iso-PGE2 and PGE2 implicated isoprostane activity at the PGE2 receptor (EP). We found that the inhibitory E-ring isoprostane responses were significantly augmented by rolipram (a type IV phosphodiesterase inhibitor), while 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one (a guanylate cyclase inhibitor) had no effect, suggesting a role for cAMP in isoprostane-mediated relaxations. 8-Iso-PGE2 did not reverse KCl tone, suggesting that voltage-dependent Ca2+ influx and myosin light chain kinase are not suppressed by isoprostanes. Patch-clamp studies showed marked suppression of K+ currents by 8-iso-PGE2. We conclude that E-ring isoprostanes exert PGE2 receptor-directed, cAMP-dependent relaxations in canine and porcine airway smooth muscle. This activity is not dependent on K+ channel activation or the direct inhibition of voltage-operated Ca2+ influx or myosin light chain kinase.  相似文献   

10.
While there have been many reports investigating the biological activity and signaling mechanisms of isoprostanes, their role in biology, particularly in platelets, appears to still be underestimated. Moreover, whether these lipids have their own receptors is still debated, despite multiple reports that discrete receptors for isporpstanes do exist on platelets, vascular tissues, amongst others. This paper provides a review of the important literature of isoprostanes and provides reasoning that isoprostanes should be classified as orphan ligands until their receptor(s) is/are identified.  相似文献   

11.
Do we have to bother about the isoprostane nomenclature? The widely accepted IUPAC isoprostane nomenclature provides an unambiguous and systematic terminology to name all theoretical possible isoprostanes. However, the currently accepted nomenclature system provides an unnatural framework which is not well suited to address certain biologically relevant questions. Artificial categorization of isoprostanoids into prostanoid families disrupts prostaglandin-ring core structures needed to describe biogenetic precursor–product relationships. In addition, the IUPAC system defines isoprostanoid families which comprise chemically heterogeneous isoprostanoids which largely differ in their physicochemical properties from those of the corresponding prostaglandins. As a result of this, alternative nomenclature systems such as the phytoprostane nomenclature system overcoming some inherent problems of the IUPAC nomenclature are still in use. However, different naming of isoprostanoids especially the classification of prostanoid family names has created considerable confusion. Therefore, a cautionary note on the current use of different nomenclature systems is necessary.  相似文献   

12.
In mammals, early fetal germ cells are unique in their ability to initiate the spermatogenesis or oogenesis programs dependent of their somatic environment. In mice, female germ cells enter into meiosis at 13.5 dpc whereas in the male, germ cells undergo mitotic arrest. Recent findings indicate that Cyp26b1, a RA-degrading enzyme, is a key factor preventing initiation of meiosis in the fetal testis. Here, we report evidence for additional testicular pathways involved in the prevention of fetal meiosis. Using a co-culture model in which an undifferentiated XX gonad is cultured with a fetal or neonatal testis, we demonstrated that the testis prevented the initiation of meiosis and induced male germ cell differentiation in the XX gonad. This testicular effect disappeared when male meiosis starts in the neonatal testis and was not directly due to Cyp26b1 expression. Moreover, neither RA nor ketoconazole, an inhibitor of Cyp26b1, completely prevented testicular inhibition of meiosis in co-cultured ovary. We found that secreted factor(s), with molecular weight greater than 10 kDa contained in conditioned media from cultured fetal testes, inhibited meiosis in the XX gonad. Lastly, although both Sertoli and interstitial cells inhibited meiosis in XX germ cells, only interstitial cells induced mitotic arrest in germ cell. In conclusion, our results demonstrate that male germ cell determination is supported by additional non-retinoid secreted factors inhibiting both meiosis and mitosis and produced by the testicular somatic cells during fetal and neonatal life.  相似文献   

13.
Propionic (PA) and methylmalonic (MMA) acidurias are inherited disorders caused by deficiency of propionyl-CoA carboxylase and methylmalonyl-CoA mutase, respectively. Affected patients present acute metabolic crises in the neonatal period and long-term neurological deficits. Treatments of these diseases include a protein restricted diet and l-carnitine supplementation. l-Carnitine is widely used in the therapy of these diseases to prevent secondary l-carnitine deficiency and promote detoxification, and several recent in vitro and in vivo studies have reported antioxidant and antiperoxidative effects of this compound. In this study, we evaluated the oxidative stress parameters, isoprostane and di-tyrosine levels, and the antioxidant capacity, in urine from patients with PA and MMA at the diagnosis, and during treatment with l-carnitine and protein-restricted diet. We verified a significant increase of isoprostanes and di-tyrosine, as well as a significant reduction of the antioxidant capacity in urine from these patients at diagnosis, as compared to controls. Furthermore, treated patients presented a marked reduction of isoprostanes and di-tyrosine levels in relation to untreated patients. In addition, patients with higher levels of protein and lipid oxidative damage, determined by di-tyrosine and isoprostanes levels, also presented lower urinary concentrations of total and free l-carnitine. In conclusion, the present results indicate that treatment with low protein diet and l-carnitine significantly reduces urinary biomarkers of protein and lipid oxidative damage in patients with disorders of propionate metabolism and that l-carnitine supplementation may be specially involved in this protection.  相似文献   

14.
Plasma and urinary levels of malondialdehyde-like products (MDA) and isoprostanes were identified as markers of in vivo lipid peroxidation in an animal model of CCl4 poisoning. We sought to determine the extent to which the formation of these oxidation products is influenced by inhibition of the cyclooxygenase enzymes which catalytically generate proinflammatory lipid peroxidation products known as prostaglandins and thromboxane. In the present studies, after induction of oxidant stress in rats with CCl4, lipid peroxidation products measured in plasma and urine demonstrate that isoprostanes and MDA can be partially inhibited by cyclooxygenase inhibitors, albeit to different extents. The lowering of isoprostane and MDA formation, however, may not to due primarily to the diminution of catalytic generation of isoprostanes or MDA by the cyclooxygenases but, rather, may be the result of the suppression of nonenzymatic lipid peroxidation. This is suggested since 8,12-iso-iPF2alpha-VI is also reduced by indomethacin, yet, unlike other isoprostanes and MDA, it is not generated catalytically by the cyclooxygenase. Thus, although the two cyclooxygenase inhibitors we tested have statistically significant effects on the measurements of both isoprostanes and MDA in this study, the results provide evidence that these lipid-degradation products primarily constitute markers of oxidative stress.  相似文献   

15.
Isoprostanes are widely recognized as useful markers of membrane lipid peroxidation. It seems to be less well appreciated, however, that they also elicit important biological responses, even though this was first shown at the same time that they were introduced as markers of oxidative stress. The past several years have seen the list of cells/tissues which are sensitive to isoprostanes grow considerably: in fact, as we summarize here, there is now evidence that essentially every cell type in the lung responds in some pathologically relevant way to isoprostanes. In this sense, they might well be considered as not just markers of oxidative stress and inflammation, but also as a novel group of inflammatory mediators. Moreover, in addition to their pathological effects, we summarize here the evidence which has led us to hypothesize that isoprostanes could play an important role in vascular smooth muscle physiology as "endothelium-derived hyperpolarizing factors."  相似文献   

16.
Cocaine and its major metabolites are incorporated into hair during the growth of the shaft and stay there for the whole life of the hair. Cocaine crosses the placenta and its metabolites for example Benzoylecgonine (BZ), have been found in neonatal urine, meconium and hair. In order to utilize hair measurements of cocaine as a biological marker of systemic exposure, we conducted both animal and human investigations on the dose response characteristics of this phenomenon. Our data suggest that both maternal and fetal accumulation of cocaine and its metabolite follow a linear pattern within the clinically used doses. Similarly, a good correlation was observed in animals between maternal dose and fetal hair accumulation.  相似文献   

17.
Behavioral perinatology is as an interdisciplinary area of research that involves conceptualization of theoretical models and conduct of empirical studies of the dynamic time-, place-, and context-dependent interplay between biological and behavioral processes in fetal, neonatal, and infant life using an epigenetic framework of development. The biobehavioral processes of particular interest to our research group relate to the effects of maternal pre- and perinatal stress and maternal-placental-fetal stress physiology. We propose that behavioral perinatology research may have important implications for a better understanding of the processes that underlie or contribute to the risk of three sets of outcomes: prematurity, adverse neurodevelopment, and chronic degenerative diseases in adulthood. Based on our understanding of the ontogeny of human fetal development and the physiology of pregnancy and fetal development, we have articulated a neurobiological model of pre- and perinatal stress. Our model proposes that chronic maternal stress may exert a significant influence on fetal developmental outcomes. Maternal stress may act via one or more of three major physiological pathways: neuroendocrine, immune/inflammatory, and vascular. We further suggest that placental corticotropin-releasing hormone (CRH) may play a central role in coordinating the effects of endocrine, immune/inflammatory, and vascular processes on fetal developmental outcomes. Finally, we hypothesize that the effects of maternal stress are modulated by the nature, duration, and timing of occurrence of stress during gestation. In this paper, we elaborate on the conceptual and empirical basis for this model, highlight some relevant issues and questions, and make recommendations for future research in this area.  相似文献   

18.
Isoprostanes: an overview and putative roles in pulmonary pathophysiology   总被引:1,自引:0,他引:1  
Isoprostanes are produced during peroxidation of membrane lipids by free radicals and reactive oxygen species. Initially, they were recognized as being valuable markers of oxidative stress, and in the past 10 years, dozens of disease states and experimental conditions with diverse etiologies have been shown to be associated with marked increases in urinary, plasma, and tissue levels of isoprostanes. However, they are not just mere markers; they evoke important biological responses on virtually every cell type found within the lung, and these responses exhibit compound-, tissue-, and species-related variations. In fact, the isoprostanes may mediate many of the features of the disease states for which they are used as indicators. In this review, I describe the chemistry, metabolism, and pharmacology of isoprostanes, with a particular emphasis on pulmonary cell types, and the possible roles of isoprostanes in pulmonary pathophysiology.  相似文献   

19.
The paradox of aerobic life, or the 'Oxygen Paradox', is that animals and plants cannot exist without oxygen, yet oxygen is inherently dangerous to their existence. The reductive environment of cells provides ample opportunities for oxygen to undergo unscheduled reduction events, yielding free radicals that catalyze lipid peroxidation. Oxidized lipids are constitutively present in higher organisms and, notably, their levels increase in response to a variety of stresses. Recent results suggest that products of non-enzymatic lipid peroxidation pathways, such as the isoprostanes/phytoprostanes in animals and plants, might have an evolutionarily ancient function in host defense.  相似文献   

20.
PURPOSE OF REVIEW: Recent findings extend the biologic activities of oxysterols as ligands for nuclear receptors to a role in morphogenesis during fetal development and to a role in the metabolism of photooxidation products of cholesterol in the retina. RECENT FINDINGS: A 1000-fold increase of the 27-hydroxy metabolite of 7-dehydrocholesterol in the plasma of children with Smith-Lemli-Opitz syndrome imply that intermediates in cholesterol synthesis follow alternate pathways of metabolism that generate novel oxysterols. A mouse model also finds an increase in sterol intermediates as the proximate cause of dysmorphisms. A role for oxysterols in the effects of Sonic hedgehog protein focuses on their role in normal fetal development. Both CYP27A1 and CYP46A1 are expressed in primate retina indicating that local metabolism of 7-ketocholesterol to nontoxic derivatives is important for preventing retinal degeneration. SUMMARY: Recent data expand the functional roles of oxysterols to fetal development and to the detoxification of oxidation products of cholesterol. This review shifts the focus of attention from studies of their ligand-binding activity to studies of animal models that indicate a number of important biologic effects during fetal development and during the aging process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号