首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epirubicin, an anthracycline antitumor drug, often causes vascular injury such as vascular pain, phlebitis, and necrotizing vasculitis. However, an effective prevention for the epirubicin-induced vascular injury has not been established. The purpose of this study is to identify the mechanisms of cell injury induced by epirubicin in porcine aorta endothelial cells (PAECs). PAECs were exposed to epirubicin for 10 min followed by further incubation without epirubicin. The exposure to epirubicin (3-30 μM) decreased the cell viability concentration and time dependently. Epirubicin increased the activity of caspase-3/7, apoptotic cells, and intracellular lipid peroxide levels, and also induced depolarization of mitochondrial membranes. These intracellular events were reversed by glutathione (GSH) and N-acetylcysteine (NAC), while epirubicin rather increased intracellular GSH slightly and L-buthionine-(S,R)-sulfoximine, a specific inhibitor of GSH synthesis, had no effect on the epirubicin-induced cell injury. The epirubicin-induced cell injury and increase of caspase-3/7 activity were also attenuated by p38 mitogen-activated protein kinase (MAPK) inhibitors, SB203580 and PD169316. Moreover, epirubicin significantly enhanced the phosphorylation of p38 MAPK, and these effects were attenuated by GSH and NAC. In contrast, a c-Jun N-terminal kinase inhibitor SP600125, an extracellular signal-regulated kinase inhibitor PD98059, and a p53 inhibitor pifithrin α did not affect the epirubicin-induced cell injury and increase of caspase-3/7 activity. These results indicate that an activation of p38 MAPK by oxidative stress is involved in the epirubicin-induced endothelial cell injury.  相似文献   

2.
Although zinc is a well-known inhibitor of apoptosis, it may contribute to oxidative stress-induced necrosis. We noted that N,N,N',N'- tetrakis(2-pyridylmethyl)ethylenediamine (TPEN; >10 microM), a zinc chelator, quenched fluorescence of the zinc-specific fluorophore Zinquin and resulted in an increase in spontaneous apoptosis in cultured sheep pulmonary artery endothelial cells (SPAECs). Addition of exogenous zinc (in the presence of pyrithione, a zinc ionophore) to the medium of SPAECs caused an increase in Zinquin fluorescence and was associated with a concentration-dependent increase in necrotic cell death. Exposure of SPAECs to TPEN (10 microM) resulted in enhanced apoptosis after lipopolysaccharide or complete inhibition of t-butyl hydroperoxide (tBH)-induced necrosis. We further investigated the role of two zinc-dependent enzymes, poly(ADP-ribose) polymerase (PARP) and protein kinase (PK) C, in tBH toxicity. tBH toxicity was only affected by the PARP inhibitors 4-amino-1,8-naphthalimide or 3-aminobenzamide over a narrow range, whereas the PKC inhibitors bisindolylmaleimide and staurosporine significantly reduced tBH toxicity. tBH caused translocation of PKC to the plasma membrane of SPAECs that was partially inhibited by TPEN. Thus pulmonary endothelial cell zinc inhibits spontaneous and lipopolysaccharide-dependent apoptosis but contributes to tBH-induced necrosis, in part, via a PKC-dependent pathway.  相似文献   

3.
Multiparity is associated with increased risk of cardiovascular disease. We tested whether multiparity induces oxidative stress in rat vascular tissue. Coronary arteries and thoracic aorta were isolated from multiparous and age-matched virgin rats. Relaxation to ACh and sodium nitroprusside (SNP) was measured by wire myography. We also tested the effect of the superoxide dismutase mimetic MnTE2PyP (30 microM), the NADPH oxidase inhibitor apocynin (10 microM), and the peroxynitrite scavenger FeTPPs (10 microM) on ACh-mediated relaxation in coronary arteries. Vascular superoxide anion was measured using the luminol derivative L-012 and nitric oxide (NO) generation by the Griess reaction. Multiparity reduced maximal response and sensitivity to ACh in coronary arteries [maximal relaxation (E(max)): multiparous 49+/-3% vs. virgins 95%+/-3%; EC(50): multiparous 135+/-1 nM vs. virgins 60+/-1 nM], and in aortic rings (E(max): multiparous 38+/-3% vs. virgins 79+/-4%; EC(50): multiparous 160+/-2 nM vs. virgins 90+/-3 nM). Coronary arteries from the two groups relaxed similarly to SNP. Superoxide anions formation was significantly higher in both coronary arteries (2.8-fold increase) and aorta (4.1-fold increase) from multiparous rats compared with virgins. In multiparous rats, incubation with MnTE2PyP, apocynin, and FeTPPs improved maximal relaxation to ACh (MnTE2PyP: 74+/-5%; vehicle: 41+/-5%; apocynin: 73+/-3% vs. vehicle: 41+/-3%; FeTPPs: 72+/-3% vs. vehicle: 46+/-3%) and increased sensitivity (EC(50): MnTE2PyP: 61+/-0.5 nM vs. vehicle: 91+/-1 nM; apocynin: 45+/-3 nM vs. vehicle: 91+/-6 nM; FeTPP: 131 +/- 2 nM vs. vehicle: 185+/-1 nM). Multiparity also reduced total nitrate/nitrite levels (multiparous: 2.5+/-2 micromol/mg protein vs. virgins: 7+/-1 micromol/mg protein) and endothelial nitric oxide synthase protein levels (multiparous: 0.53+/-0.1 protein/actin vs. virgins: 1.0+/-0.14 protein/actin). These data suggest that multiparity induces endothelial dysfunction through decreased NO bioavailability and increased reactive oxygen species formation.  相似文献   

4.
Previous studies have demonstrated that Notch signaling pathway plays a regulatory role in cellular oxidative stress injury (OSI). In this study, our aim was to explore the role of the Notch signaling pathway in hydrogen peroxide (H2O2)-induced OSI and the protective effect of curcumin during (H2O2)-induced injury in human umbilical vein endothelial cells (HUVECs). DAPT, a specific inhibitor of the Notch signaling pathway, and Notch1 siRNA were used to study Notch activity. Further, HUVECs were exposed to H2O2 in the absence or presence of curcumin. DAPT and Notch1 siRNA significantly inhibited OSI and the expression of Notch1 and Hes1. Curcumin conferred a protective effect on the HUVECs against H2O2, which was evidenced by improved cell viability, adhesive ability and migratory ability and a decreased apoptotic index, decreased production of reactive oxygen species (ROS) and a reduction in several biochemical parameters. Immunofluorescence and Western blotting analyses demonstrated that H2O2 treatment upregulated the expression of Notch1, Hes1, Caspase3, Bax and cytochrome c downregulated the expression of Bcl2, and treatment with curcumin reversed these effects. We demonstrated for the first time that the inhibition of Notch signaling pathway imparts a protective effect against endothelial OSI. The protective effects of curcumin against OSI are at least in part dependent on Notch1 inhibition.  相似文献   

5.
Han J  Pan XY  Xu Y  Xiao Y  An Y  Tie L  Pan Y  Li XJ 《Autophagy》2012,8(5):812-825
Our study first proposed that curcumin could protect human endothelial cells from the damage caused by oxidative stress via autophagy. Furthermore, our results revealed that curcumin causes some novel cellular mechanisms that promote autophagy as a protective effect. Pretreatment with curcumin remarkably improves the survival of human umbilical vein endothelial cells (HUVECs) from H 2O 2-induced viability loss, which specifically evokes an autophagic response. Exposed to H 2O 2, curcumin-treated HUVECs upregulate the level of microtubule-associated protein 1 light chain 3-II (LC3-II), the number of autophagosomes, and the degradation of p62. We show that this compound promotes BECN1 expression and inhibits the phosphatidylinositol 3-kinase (PtdIns3K)-AKT-mechanistic target of rapamycin (MTOR) signaling pathway. Curcumin can also reverse FOXO1 (a mediator of autophagy) nuclear localization along with causing an elevated level of cytoplasmic acetylation of FOXO1 and the interaction of acetylated FOXO1 and ATG7, under the circumstance of oxidative stress. Additionally, knockdown of FOXO1 by shRNA inhibits not only the protective effects that curcumin induced, but the autophagic process, from the quantity of LC3-II to the expression of RAB7. These results suggest that curcumin induces autophagy, indicating that curcumin has the potential for use as an autophagic-related antioxidant for prevention and treatment of oxidative stress. These data uncover a brand new protective mechanism involving FOXO1 as having a critical role in regulating autophagy in HUVECs, and suggest a novel role for curcumin in inducing a beneficial form of autophagy in HUVECs, which may be a potential multitargeted therapeutic avenue for the treatment of oxidative stress-related cardiovascular diseases.  相似文献   

6.
《Autophagy》2013,9(5):812-825
Our study first proposed that curcumin could protect human endothelial cells from the damage caused by oxidative stress via autophagy. Furthermore, our results revealed that curcumin causes some novel cellular mechanisms that promote autophagy as a protective effect. Pretreatment with curcumin remarkably improves the survival of human umbilical vein endothelial cells (HUVECs) from H2O2-induced viability loss, which specifically evokes an autophagic response. Exposed to H2O2, curcumin-treated HUVECs upregulate the level of microtubule-associated protein 1 light chain 3-II (LC3-II), the number of autophagosomes, and the degradation of p62. We show that this compound promotes BECN1 expression and inhibits the phosphatidylinositol 3-kinase (PtdIns3K)-AKT-mechanistic target of rapamycin (MTOR) signaling pathway. Curcumin can also reverse FOXO1 (a mediator of autophagy) nuclear localization along with causing an elevated level of cytoplasmic acetylation of FOXO1 and the interaction of acetylated FOXO1 and ATG7, under the circumstance of oxidative stress. Additionally, knockdown of FOXO1 by shRNA inhibits not only the protective effects that curcumin induced, but the autophagic process, from the quantity of LC3-II to the expression of RAB7. These results suggest that curcumin induces autophagy, indicating that curcumin has the potential for use as an autophagic-related antioxidant for prevention and treatment of oxidative stress. These data uncover a brand new protective mechanism involving FOXO1 as having a critical role in regulating autophagy in HUVECs, and suggest a novel role for curcumin in inducing a beneficial form of autophagy in HUVECs, which may be a potential multitargeted therapeutic avenue for the treatment of oxidative stress-related cardiovascular diseases.  相似文献   

7.
Silent information regulator 1 (SIRT1), a class III histone deacetylase, retards aging and plays roles in cellular oxidative stress injury (OSI). However, the biological context in which SIRT1 promotes oxidative injury is not fully understood. Here, we show that SIRT1 essentially mediates hydrogen peroxide (H2O2)-induced cytotoxicity in human umbilical vein endothelial cell (HUVEC). In HUVECs, SIRT1 protein expression was significantly increased in a dose-dependent manner after H2O2 treatment, whereas the acetylation levels of the NF-κB p65 subunit and p53 were decreased. EX527 (a specific SIRT1 inhibitor) conferred protection to the HUVECs against H2O2, as indicated by an improved cell viability, adhesion, an enhanced migratory ability, a decreased apoptotic index, decreased reactive oxygen species (ROS) production and reductions in several biochemical parameters. Immunofluorescence and Western blot analyses demonstrated that H2O2 treatment up-regulated SIRT1, phosphorylated-JNK (p-JNK), p-p38MAPK, and p-ERK expression. EX527 pretreatment reversed these effects on SIRT1, p-JNK, and p-p38MAPK but further increased the p-ERK levels. Similar results were confirmed in SIRT1 siRNA experiments. In summary, SIRT1 signaling pathway inhibition imparts protection against acute endothelial OSI, and modulation of MAPKs (JNK, p38MAPK, and ERK) may be involved in the protective effect of SIRT1 inhibition.  相似文献   

8.
内皮祖细胞对于维持血管内皮完整性和血管稳态具有重要作用.增强EPC的数量和功能可使心血管疾病患者获益.炎症、氧化应激对内皮祖细胞动员及其功能发挥具有重要影响,本文着重综述炎症和氧化应激对内皮祖细胞动员的调控,并探讨增进内皮祖细胞数量和功能的相关治疗策略.  相似文献   

9.
10.
Role of oxidative stress in paraquat-induced dopaminergic cell degeneration   总被引:7,自引:1,他引:7  
Systemic treatment of mice with the herbicide paraquat causes the selective loss of nigrostriatal dopaminergic neurons, reproducing the primary neurodegenerative feature of Parkinson's disease. To elucidate the role of oxidative damage in paraquat neurotoxicity, the time-course of neurodegeneration was correlated to changes in 4-hydroxy-2-nonenal (4-HNE), a lipid peroxidation marker. When mice were exposed to three weekly injections of paraquat, no nigral dopaminergic cell loss was observed after the first administration, whereas a significant reduction of neurons followed the second exposure. Changes in the number of nigral 4-HNE-positive neurons suggest a relationship between lipid peroxidation and neuronal death, since a dramatic increase in this number coincided with the onset and development of neurodegeneration after the second toxicant injection. Interestingly, the third paraquat administration did not cause any increase in 4-HNE-immunoreactive cells, nor did it produce any additional dopaminergic cell loss. Further evidence of paraquat-induced oxidative injury derives from the observation of nitrotyrosine immunoreactivity in the substantia nigra of paraquat-treated animals and from experiments with ferritin transgenic mice. These mice, which are characterized by a decreased susceptibility to oxidative stress, were completely resistant to the increase in 4-HNE-positive neurons and the cell death caused by paraquat. Thus, paraquat exposure yields a model that emphasizes the susceptibility of dopaminergic neurons to oxidative damage.  相似文献   

11.
12.
The incidence of hypertension increases during the late stages of aging; however, the vascular mechanisms involved are unclear. We investigated whether the late stages of aging are associated with impaired nitric oxide (NO)-mediated vascular relaxation and enhanced vascular contraction and whether oxidative stress plays a role in the age-related vascular changes. Aging (16 mo) male spontaneously hypertensive rats (SHR) nontreated or treated for 8 mo with the antioxidant tempol (1 mM in drinking water) or vitamin E (E; 5,000 IU/kg chow) and vitamin C (C; 100 mg. kg-1. day-1 in drinking water) and adult (12 wk) male SHR were used. After the arterial pressure was measured, aortic strips were isolated from the rats for measurement of isometric contraction. The arterial pressure and phenylephrine (Phe)-induced vascular contraction were enhanced, and the ACh-induced vascular relaxation and nitrite/nitrate production were reduced in aging compared with adult rats. In aging rats, the arterial pressure was nontreated (188 +/- 4), tempol-treated (161 +/- 6), and E + C-treated (187 +/- 1 mmHg). Phe (10-5 M) caused an increase in active stress in nontreated aging rats (14.3 +/- 1.0) that was significantly (P < 0.05) reduced in tempol-treated (9.0 +/- 0.7) and E + C-treated rats (9.8 +/- 0.6 x 104 N/m2). ACh produced a small relaxation of Phe contraction in nontreated aging rats that was enhanced (P < 0.05) in tempol- and E + C-treated rats. l-NAME (10-4 M), inhibitor of NO synthase, or ODQ (10-5 M), inhibitor of cGMP production in smooth muscle, inhibited ACh relaxation and enhanced Phe contraction in tempol- and E + C-treated but not the nontreated aging rats. ACh-induced vascular nitrite/nitrate production was not different in nontreated, tempol- and E + C-treated aging rats. Relaxation of Phe contraction with sodium nitroprusside, an exogenous NO donor, was smaller in aging than adult rats but was not different between nontreated, tempol- and E + C-treated aging rats. Thus, during the late stages of aging in SHR rats, an age-related inhibition of a vascular relaxation pathway involving not only NO production by endothelial cells but also the bioavailability of NO and the smooth muscle response to NO is partially reversed during chronic treatment with the antioxidants tempol and vitamins E and C. The data suggest a role for oxidative stress in the reduction of vascular relaxation and thereby the promotion of vascular contraction and hypertension during the late stages of aging.  相似文献   

13.
Fluorescence cytochemistry using en face preparations of rat vascular endothelial cells (ECs) revealed the localization of actin, fibronectin (FN) and fibronectin receptor (FNR) along not only central stress fibers (SFs) but also the cell margins. Electron microscopy showed very close proximity between the topographical distribution of intracellular microfilament bundles and that of subendothelial FN in the EC margins. Therefore, these basal and marginal actin cables may be comparable to the well-established central SFs present in ECs. Formation of the central SFs was induced in ECs or mesothelial cells in response to tension, by which their cellular integrity seems to be effectively maintained. However, even when central SF formation was inhibited by cytochalasin D, the ECs with marginal SFs showed high resistance to mechanical tension, whereas mesenteric mesothelial cells having no such fibers easily lost their integrity. Thus, together with central SFs, the marginal SFs characteristic of rat vascular ECs may play an essential role in strengthening cell-matrix adhesion.  相似文献   

14.
15.
16.
Reactive oxygen species (ROS) mediate cell damage and have been implicated in the pathogenesis of diseases that involve endothelial injury. Cells possess antioxidant systems, including intracellular antioxidants and ROS scavenging enzymes, that control the redox state and prevent cell damage. In addition to intracellular antioxidants, certain growth factor receptors can be activated under oxidative stress and trigger downstream cell survival signaling cascades. Vascular endothelial growth factor receptor-3 (VEGFR-3) is a primary modulator of lymphatic endothelial proliferation and survival. Here, we provide evidence that activation of VEGFR-3 signaling in response to hydrogen peroxide (H(2)O(2)) promotes endothelial cell survival. Treatment with H(2)O(2) induced the tyrosine phosphorylation of VEGFR-3 and its association with the signaling adaptor proteins Shc, growth factor receptor binding protein 2, Sos, p85, SHP-2, and phospholipase C-gamma. Of note, a hereditary lymphoedema-linked mutant of VEGFR-3 was not phosphorylated by H(2)O(2) treatment. Isoforms of protein kinase C (PKC), alpha and delta, were also tyrosine-phosphorylated after H(2)O(2) stimulation. However, only the delta isoform of PKC was required for H(2)O(2)-induced phosphorylation of VEGFR-3. The tyrosine phosphorylation of VEGFR-3 or isoforms of PKC was completely inhibited by treatment with 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, a specific inhibitor for Src family kinases, indicating that Src family kinases are upstream of PKC and VEGFR-3. Furthermore, expression of the wild-type but not the lymphoedema-linked mutant form of VEGFR-3 in porcine artery endothelial cells significantly enhanced the activation of Akt after H(2)O(2) stimulation. Consistent with these biochemical changes, we observed that expression and activation of the wild-type but not the mutant form of VEGFR-3 inhibited H(2)O(2)-induced apoptosis. These studies suggest that VEGFR-3 protects against oxidative damage in endothelial cells, and that patients with hereditary lymphoedema may be susceptible to ROS-induced cell damage.  相似文献   

17.
The balance between endothelial nitric oxide (NO) synthase (eNOS) activation and production of reactive oxygen species (ROS) is very important for NO homeostasis in liver sinusoidal endothelial cells (LSECs). Overexpression of cyclooxygenase-2 (COX-2), a major intravascular source of ROS production, has been observed in LSECs of cirrhotic liver. However, the links between low NO bioavailability and COX-2 overexpression in LSECs are unknown. This study has confirmed the link between low NO bioavailability and COX-2 overexpression by COX-2-dependent PGE2-EP2-ERK1/2-NOX1/NOX4 signalling pathway in LSECs in vivo and in vitro. In addition, the regulation of COX-2-independent LKB1-AMPK-NRF2-HO-1 signalling pathway on NO homeostasis in LSECs was also elucidated. The combinative effects of celecoxib on diminishment of ROS via COX-2-dependent and COX-2-independent signalling pathways greatly decreased NO scavenging. As a result, LSECs capillarisation was reduced, and endothelial dysfunction was corrected. Furthermore, portal hypertension of cirrhotic liver was ameliorated with substantial decreasing hepatic vascular resistance and great increase of portal blood flow. With the advance understanding of the mechanisms of LSECs protection, celecoxib may serve as a potential therapeutic candidate for patients with cirrhotic portal hypertension.  相似文献   

18.
Sickle cell disease (SCD) is a class of hemoglobinopathy in humans, which causes a disruption of the normal activities in different systems. Although this disease begins with the polymerization of red blood cells during its deoxygenating phase, it can erupt into a cascade of debilitating conditions such as ischemia-reperfusion injury, inflammation, and painful vaso-occlusion crises. The purpose of this review is to discuss how these phenomena can result in the formation of oxidative stress as well as limit nitric oxide (NO) bioavailability and decrease antioxidant status. The cumulative effects of these traits cause an increase in other forms of reactive oxygen species (ROS), which in turn intensify the symptoms of SCD and generate a vicious circle. Finally, we will discuss antioxidant therapeutic strategies that limit ROS generation and subsequently increase NO bioavailability with respect to endothelial protection in SCD.  相似文献   

19.
目的:观察金属硫蛋白(metallothionein,MT)对同型半胱氨酸(homocysteine Hcy)损伤血管内皮细胞的拮抗作用及机制.方法:培养液中分别加入Hcy及Hcy MT孵育血管内皮细胞,自动生化分析仪测培养液乳酸脱氢酶(LDH)活性,硫代巴比妥酸法测细胞丙二醛(MDA)含量.结果:同型半胱氨酸增加内皮细胞LDH及蛋白漏出,并使细胞MDA含量明显升高.MT呈浓度依赖性地抑制Hcy所致的血管内皮细胞损伤及MDA增高.结论:MT拮抗Hcy对血管内皮细胞的脂质过氧化损伤.  相似文献   

20.
The role of reactive oxygen species (ROS) in the pathogenesis of vascular diseases is well established, but few data exist on the mechanisms by which ROS induce endothelial cell (EC) death. We examined the conditions and the mechanisms by which oxidative stress induces EC death, using cultured confluent bovine aortic ECs exposed for 30 min to different concentrations of hydroxyl radicals (HO*) generated by hydrogen peroxide (H(2)O(2)) in the presence of 100 microM ferrous sulfate (FeSO(4)). Cell viability assays, Hoechst DNA staining, TUNEL (TDT-mediated dUTP-biotin nick end-labeling) analysis, agarose gel electrophoresis and annexin V assay were used to determine the effect of HO* on the viability of ECs, and to distinguish between apoptosis and necrosis. The results showed that at concentrations of up to 0.1 mM H(2)O(2)/FeSO(4), the large majority of cells are viable, except for approximately 12.5% death, which occurs by apoptosis. At a concentration of 0.2 mM H(2)O(2), the cell viability is reduced to 66%, while EC apoptosis remained at comparable values (14%). At high oxidative stress (0.5 mM H(2)O(2)), the cell viability was drastically reduced (approximately 39%), and the prevalent form of death was necrosis; apoptosis accounted for only approximately 17%. Together, these data indicate that: (1) HO* induce EC death either by apoptosis or necrosis and (2) the mechanisms of EC death differ as a function of the concentration of HO. Thus, the same insult can cause apoptosis and/or necrosis, as a function of the intensity rather than the nature of the insult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号