首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ferritin-like DNA-binding protein from starved cells (Dps) family proteins are present in a number of pathogenic bacteria. Dps in the enterohepatic pathogen, Helicobacter hepaticus is characterized and a H. hepaticus dps mutant was generated by insertional mutagenesis. While the wild type H. hepaticus cells were able to survive in an atmosphere containing up to 6.0% O2, the dps mutant failed to grow in 3.0% O2, and it was also more sensitive to oxidative reagents like H2O2, cumene hydroperoxide and t-butyl hydroperoxide. Upon air exposure, the dps cells had more damaged DNA than the wild type; they became coccoid or lysed and they contained ∼6-fold higher amount of 8-oxoguanine (8-oxoG) DNA lesions than wild type cells. Purified H. hepaticus Dps was shown to be able to bind both iron and DNA. The iron-loaded form of Dps protein had much greater DNA binding ability than the native Dps or the iron-free Dps.  相似文献   

2.
Phenyl N-tert-butylnitrone (PBN) is widely used as a spin trapping agent, but is not useful detecting hydroxyl radicals because the resulting spin adduct is unstable. However, hydroxyl radicals could attack the phenyl ring to form stable phenolic products with no electron paramagnetic resonance signal, and this possibility was investigated in the present studies. When PBN was added to a Fenton reaction system composed of 25 mM H(2)O(2) and 0.1 mM FeSO(4), 4-hydroxyPBN was the primary product detected, and benzoic acid was a minor product. When the Fe(2+) concentration was increased to 1.0 mM, 4-hydroxyPBN concentrations increased dramatically, and smaller amounts of benzoic acid and 2-hydroxyPBN were also formed. Although PBN is extensively metabolized after administration to animals, its metabolites have not been identified. When PBN was incubated with rat liver microsomes and a reduced nicotinamide adenine dinculeotide phosphate (NADPH)-generating system, 4-hydroxyPBN was the only metabolite detected. When PBN was given to rats, both free and conjugated 4-hydroxyPBN were readily detected in liver extracts, bile, urine, and plasma. Because 4-hydroxyPBN is the major metabolite of PBN and circulates in body fluids, it may contribute to the pharmacological properties of PBN. But 4-hydroxyPBN formation cannot be used to demonstrate hydroxyl radical formation in vivo because of its enzymatic formation.  相似文献   

3.
Piperidine nitroxides like 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) are persistent free radicals in non-acidic aqueous solutions and organic solvents that may have value as therapeutic agents in medicine. In biological environments, they undergo mostly reduction to stable hydroxylamines but can also undergo oxidation to reactive oxoammonium compounds. Reactions of the oxoammonium derivatives could have adverse consequences including chemical modification of vital macromolecules and deleterious effects on cell signaling. An examination of their reactivity in aqueous solution has shown that oxoammonium compounds can oxidize almost any organic as well as many inorganic molecules found in biological systems. Many of these reactions appear to be one-electron transfers that reduce the oxoammonium to the corresponding nitroxide species, in contrast to a prevalence of two-electron reductions of oxoammonium in organic solvents. Amino acids, alcohols, aldehydes, phospholipids, hydrogen peroxide, other nitroxides, hydroxylamines, phenols and certain transition metal ions and their complexes are among reductants of oxoammonium, causing conversion of this species to the paramagnetic nitroxide. On the other hand, thiols and oxoammonium yield products that cannot be detected by ESR even under conditions that would oxidize hydroxylamines to nitroxides. These products may include hindered secondary amines, sulfoxamides and sulfonamides. Thiol oxidation products other than disulfides cannot be restored to thiols by common enzymatic reduction pathways. Such products may also play a role in cell signaling events related to oxidative stress. Adverse consequences of the reactions of oxoammonium compounds may partially offset the putative beneficial effects of nitroxides in some therapeutic settings.  相似文献   

4.
Reactive oxygen species can damage most cellular components, but DNA appears to be the most sensitive target of these agents. Here we present the first evidence of DNA protection against the toxic and mutagenic effects of oxidative damage in metabolically active cells: direct protection of DNA by Dps, an inducible nonspecific DNA-binding protein from Escherichia coli. We demonstrate that in a recA-deficient strain, expression of Dps from an inducible promoter prior to hydrogen peroxide challenge increases survival and reduces the number of chromosomal single-strand breaks. dps mutants exhibit increased levels of the G x C-->T x A mutations characteristic of oxidative damage after treatment with hydrogen peroxide. In addition, expression of Dps from the inducible plasmid reduces the frequency of spontaneous G x C-->T x A and A x T-->T x A mutations and can partially suppress the mutator phenotype of mutM (fpg) and mutY alleles. In a purified in vitro system, Dps reduces the number of DNA single-strand breaks and Fpg-sensitive sites introduced by hydrogen peroxide treatment, indicating that the protection observed in vivo is a direct effect of DNA binding by Dps. The widespread conservation of Dps homologs among prokaryotes suggests that this may be a general strategy for coping with oxidative stress.  相似文献   

5.
A mixture of xanthine or hypoxanthine and xanthine oxidase generates the superoxide radical, O2?, and H2O2. In the presence of iron salts, O2? and H2O2 can interact to produce the hydroxyl radical, OH·. Superoxide-dependent formation of OH· can be measured by its ability to hydroxylate salicylate as followed by an improved colorimetric assay described in this paper. A more accurate analysis of OH· can be obtained using its ability to hydroxylate phenol, the hydroxylated products being separated and measured after derivatization using gas-liquid chromatography and electron-capture detection. The derivatization and separation techniques are described.  相似文献   

6.
Hydroxyl radicals have been found to cause oxidative N-dealkylation of amines including folic acid via a hydrogen atom transfer mechanism.  相似文献   

7.
The aim of this study was to quantify the hydroxyl radicals (*OH) produced when aqueous solutions are decomposed by high-linear energy transfer (LET) 290 MeV/nucleon carbon-ion beams using an electron spin resonance (ESR) spectrometer. Aerated cell culture medium containing 200 mM 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was irradiated with doses of 0 to 20 Gy with an LET of 20 to 90 keV/ micro m. We were able to obtain ESR spectra 10 min after irradiation, and the formation of *OH and hydrogen atoms was confirmed by radiolysis of deuterium oxide and ethanol containing DMPO. Our results showed that the yield of *OH by carbon-ion radiolysis increased in proportion to the absorbed dose over the range of 0 to 20 Gy. Furthermore, we discovered that the yield of *OH decreased linearity as LET increased logarithmically from 20 to 90 keV/ micro m. The generation of *OH by carbon-ion radiolysis at LETs of 20, 40, 60, 80 and 90 keV/ micro m was 64, 58, 52, 49 and 50%, respectively, of that for low-LET X radiolysis. These unique findings provide a further understanding of the indirect effect of high-LET radiation.  相似文献   

8.
The metal-independent production of hydroxyl radicals (*OH) from H(2)O(2) and tetrachloro-1,4-benzoquinone (TCBQ), a carcinogenic metabolite of the widely used wood-preservative pentachlorophenol, was studied by electron spin resonance methods. When incubated with the spin trapping agent 5,5-dimethyl-1-pyrroline N-oxide (DMPO), TCBQ and H(2)O(2) produced the DMPO/*OH adduct. The formation of DMPO/*OH was markedly inhibited by the *OH scavenging agents dimethyl sulfoxide (DMSO), ethanol, formate, and azide, with the concomitant formation of the characteristic DMPO spin trapping adducts with *CH(3), *CH(CH(3))OH, *COO(-), and *N(3), respectively. The formation of DMPO/*OH and DMPO/*CH(3) from TCBQ and H(2)O(2) in the absence and presence, respectively, of DMSO was inhibited by the trihydroxamate compound desferrioxamine, accompanied by the formation of the desferrioxamine-nitroxide radical. In contrast, DMPO/*OH and DMPO/*CH(3) formation from TCBQ and H(2)O(2) was not affected by the nonhydroxamate iron chelators bathophenanthroline disulfonate, ferrozine, and ferene, as well as the copper-specific chelator bathocuproine disulfonate. A comparative study with ferrous iron and H(2)O(2), the classic Fenton system, strongly supports our conclusion that *OH is produced by TCBQ and H(2)O(2) through a metal-independent mechanism. Metal-independent production of *OH from H(2)O(2) was also observed with several other halogenated quinones.  相似文献   

9.
Bleomycin degrades DNA under aerobic conditions when a ferrous salt is added. This reaction is enhanced by catalase and certain hydroxyl radical scavengers but inhibited by the addition of hydrogen peroxide. A ferricbleomycin complex is, however, stimulated by addition of hydrogen peroxide. These findings suggest that catalase removes hydrogen peroxide and in so doing prevents loss of ferrous ions and formation of hydroxyl radicals (OH.) by a Fenton-type reaction. It further suggests that OH. radicals, when formed, are more involved in the inactivation of bleomycin than in the release of thiobarbituric acid reactive material from DNA.  相似文献   

10.
Glutathione peroxidase is a key enzyme in the antioxidant system of the cells. This enzyme has been shown to be irreversibly inactivated by H2O2, tert-butyl hydroperoxide (tert-BHP) and hydroxyl radicals when incubated without GSH. We observed that in our experimental conditions glutathione peroxidase was not degraded by trypsin or chymotrypsin while degraded by pronase, papa?n, pepsin, and lysosomal proteases. Hydroxyl radicals and superoxide anions but not H2O2 or tert-BHP could also fragment the enzyme on their own. A former incubation with H2O2, tert-BHP, or hydroxyl radicals also increased the proteolytic susceptibility of glutathione peroxidase. Like superoxide dismutase (SOD) and other oxidatively denatured proteins, glutathione peroxidase inactivated by peroxides or free radicals seems to be degraded preferentially by proteases. As hydroxyl radicals can fragment the enzyme by themselves, the increased proteolytic susceptibility afterwards is easily understood while the increased susceptibility induced by H2O2 and tert-BHP seems to be more specific.  相似文献   

11.
Over the past decade immuno-spin trapping (IST) has been used to detect and identify protein radical sites in numerous heme and metalloproteins. To date, however, the technique has had little application toward nonmetalloproteins. In this study, we demonstrate the successful application of IST in a system free of transition metals and present the first conclusive evidence of (?)NO-mediated protein radical formation in the HRas GTPase. HRas is a nonmetalloprotein that plays a critical role in regulating cell-growth control. Protein radical formation in Ras GTPases has long been suspected of initiating premature release of bound guanine nucleotide. This action results in altered Ras activity both in vitro and in vivo. As described herein, successful application of IST may provide a means for detecting and identifying radical-mediated Ras activation in many different cancers and disease states in which Ras GTPases play an important role.  相似文献   

12.
Metal catalyzed oxidation (MCO), which typically involves oxygen free radical generation, is an important pathway that leads to the deterioration of many biological molecules in solution. The occurrence of MCO in immobilized metal affinity chromatography (IMAC) systems and its potential for inactivating biological products has not been well recognized. In this study, we report the inactivation of herpes simplex virus type 1 (HSV-1) gene therapy vector on immobilized cobalt affinity chromatography. We observed that purification of KgBHAT, an HSV-1 mutant bearing cobalt affinity tags (HAT) on the surface, on an IDA-Co2+ column using crude supernatant as starting material resulted in signification loss in virus infectivity (<5% recovery). Electron spin resonance (ESR) revealed that the virus inactivation was caused by hydroxyl free radicals generated from the interactions between cellular impurities and the metal ions on the column. Inclusion of 20 mM ascorbate, a free radical scavenger, in the chromatography mobile phase effectively scavenged the hydroxyl radicals and dramatically augmented the infectivity recovery to 70%. This finding is the first demonstration of oxygen free radical-mediated biological inactivation in an actual IMAC purification and the way on how to effectively prevent it.  相似文献   

13.
Bacterial and mammalian AlkB proteins are iron(II)- and 2-oxoglutarate-dependent dioxygenases that reverse methylation damage, such as 1-methyladenine and 3-methylcytosine, in RNA and DNA. An AlkB-domain is encoded by the genome of numerous single-stranded, plant-infecting RNA viruses, the majority of which belong to the Flexiviridae family. Our phylogenetic analysis of AlkB sequences suggests that a single plant virus might have acquired AlkB relatively recently, followed by horizontal dissemination among other viruses via recombination. Here, we describe the first functional characterization of AlkB proteins from three plant viruses. The viral AlkB proteins efficiently reactivated methylated bacteriophage genomes when expressed in Escherichia coli, and also displayed robust, iron(II)- and 2-oxoglutarate-dependent demethylase activity in vitro. Viral AlkB proteins preferred RNA over DNA substrates, and thus represent the first AlkBs with such substrate specificity. Our results suggest a role for viral AlkBs in maintaining the integrity of the viral RNA genome through repair of deleterious methylation damage, and support the notion that AlkB-mediated RNA repair is biologically relevant.  相似文献   

14.
The influence of limited oxidation of glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12), alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) and myoglobin by singlet oxygen and by hydroxyl radicals was investigated. The intrinsic fluorescence of glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase decreased rapidly during oxidation, indicating a conformational change of the protein molecules. The free energy of isothermal unfolding in urea solutions was increased by singlet oxygen, but decreased by hydroxyl radical attack. The velocity of refolding of the denatured protein after dilution of the denaturant was increased by exposure to either singlet oxygen or hydroxyl radicals, with one exception: the velocity of refolding of myoglobin, oxidized by singlet oxygen, was strongly decreased. Hydroxyl radicals produced covalently crosslinked protein aggregates and some fragmentation, whereas singlet oxygen produced only crosslinked aggregates with glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase. All oxidized proteins were more susceptible to proteolysis by elastase and proteinase K, as compared to the undamaged proteins. Singlet oxygen-induced crosslinked aggregates were degraded very rapidly by elastase. Hydroxyl radical-induced aggregates of glyceraldehyde-3-phosphate dehydrogenase were also degraded very rapidly by this enzyme, but hydroxyl radical-induced aggregates of alcohol dehydrogenase were resistent to enzymatic degradation. The results indicate that limited protein oxidation may have a pronounced influence on several properties of the protein. The effects vary, however, with varying proteins and with the oxidizing species.  相似文献   

15.
16.
Reactive oxygen species (ROS)-induced genomic damage may have important consequences in the initiation and progression of cancer. Deregulated expression of the proto-oncogene c-MYC is associated with intracellular oxidative stress and increased DNA damage. However, the protective role of antioxidants such as Vitamin C against MYC-induced genomic damage has not been fully investigated. In a variety of cell lines, we show that ectopic MYC over-expression results in the elevation of intracellular ROS levels and a concomitant increase in oxidative DNA damage, as assessed by levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) in the genomic DNA. Loading cells with ascorbic acid (AA) relieved MYC-elicited intracellular oxidative stress and conferred genomic protection. A mitochondrially targeted Vitamin E analog, TPPB, also protected cells from MYC-elicited oxidative DNA damage, suggesting the involvement of mitochondria in increased ROS production. We found that deregulated MYC expression resulted in the attenuation of intracellular glutathione levels, which was reversed by loading cells with Vitamin C. Additionally, cells over-expressing MYC had elevated levels of intracellular superoxide, which was significantly quenched by Vitamin C or the selective superoxide quencher, Tiron. Consequently, Vitamin C and other antioxidants protected cells from MYC-induced cellular transformation. Our studies implicate a role for ROS, and superoxide in particular, in MYC-elicited oxidative DNA damage and cellular transformation, and point to a pharmacological role of antioxidants in cancer chemoprevention.  相似文献   

17.
There is some anecdotal evidence that oxygen-ozone therapy may be beneficial in some human diseases. However so far only a few biochemical and pharmacodynamic mechanisms have been elucidated. On the basis of preliminary data we postulated that controlled ozone administration would promote an oxidative preconditioning preventing the hepatocellular damage mediated by free radicals. Six groups of rats were classified as follows: (1) negative control, using intraperitoneal sunflower oil; (2) positive control using carbon tetrachloride (CCl4) as an oxidative challenge; (3) oxygen-ozone, pretreatment via rectal insufflation (15 sessions) and after it, CCl4; (4) oxygen, as group 3 but using oxygen only; (5) control oxygen-ozone, as group 3, but without CCl4; group (6) control oxygen, as group 5, but using oxygen only. We have evaluated critical biochemical parameters such as levels of transaminase, cholinesterase, superoxide dismutase, catalase, phospholipase A, calcium dependent ATPase, reduced glutathione, glucose 6 phosphate dehydrogenase and lipid peroxidation. Interestingly, in spite of CCl4 administration, group 3 did not differ from group 1, while groups 2 and 4 showed significant differences from groups 1 and 3 and displayed hepatic damage. To our knowledge these are the first experimental results showing that repeated administration of ozone in atoxic doses is able to induce an adaptation to oxidative stress thus enabling the animals to maintain hepatocellular integrity after CCl4 poisoning.  相似文献   

18.
19.
Murray IV  Sindoni ME  Axelsen PH 《Biochemistry》2005,44(37):12606-12613
Senile plaques in the cerebral parenchyma are a pathognomonic feature of Alzheimer's disease (AD) and are mainly composed of aggregated fibrillar amyloid beta (Abeta) proteins. The plaques are associated with neuronal degeneration, lipid membrane abnormalities, and chemical evidence of oxidative stress. The view that Abeta proteins cause these pathological changes has been challenged by suggestions that they have a protective function or that they are merely byproducts of the pathological process. This investigation was conducted to determine whether Abeta proteins promote or inhibit oxidative damage to lipid membranes. Using a mass spectrometric assay of oxidative lipid damage, the 42-residue form of Abeta (Abeta42) was found to accelerate the oxidative lipid damage caused by physiological concentrations of ascorbate and submicromolar concentrations of copper(II) ion. Under these conditions, Abeta42 was aggregated, but nonfibrillar. Ascorbate and copper produced H(2)O(2), but Abeta42 reduced H(2)O(2) concentrations, and its ability to accelerate oxidative damage was not affected by catalase. Lipids could be oxidized by H(2)O(2) and copper(II) in the absence of ascorbate, but only at significantly higher concentrations, and Abeta42 inhibited this reaction. These results indicate that the ability of Abeta42 to promote oxidative damage is more potent and more likely to be manifest in vivo than its ability to inhibit oxidative damage. In conjunction with prior results demonstrating that oxidatively damaged membranes cause Abeta42 to misfold and form fibrils, these results suggest a specific chemical mechanism linking Abeta42-promoted oxidative lipid damage to amyloid fibril formation.  相似文献   

20.
Generation of hydroxyl radicals by soybean nodule leghaemoglobin   总被引:4,自引:0,他引:4  
Alain Puppo  Barry Halliwell 《Planta》1988,173(3):405-410
Leghaemoglobin, a protein present in root nodules of soybean (Glycine max (L.) Merr.), generates the highly reactive hydroxyl radical (·OH) upon incubation with hydrogen peroxide (H2O2). The H2O2 appears to cause breakdown of the haem, releasing iron ions that convert H2O2 into ·OH outside the protein. Oxyleghaemoglobin (oxygenated ferrous protein) is more sensitive to attack by H2O2 than is metleghaemoglobin (ferric protein). The possibility of oxyleghaemoglobin breakdown by H2O2 and formation of damaging ·OH may explain why the root nodule is equipped with iron-storage proteins and enzymes that can remove H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号