首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu  Hao  Wei  Xinzeng  Jiang  Mingxi 《Plant Ecology》2021,222(12):1297-1312

Improving the accuracy of predictions regarding how plants respond to climate change is crucial to protecting biodiversity. However, little is known about the effects of seed source and elevation on the response of mountain plant species to reductions in precipitation. Here, we collected seeds of a tree species (Euptelea pleiospermum) from three seed sources and carried out a two-growing-season reciprocal transplant experiment with precipitation manipulation at three sites along an elevation gradient in the Shennongjia Mountains, central China. Variations in whole-plant traits, leaf traits, and root traits were investigated. We found that most plant traits of E. pleiospermum seedlings were affected by reductions in precipitation, and responses varied among different elevations and seed sources. Whole-plant traits, root biomass, and leaf traits related to photosynthesis capacity decreased under reduced precipitation treatments at mid and high elevation sites. Thus, climate change induced drought will likely have a negative influence on seedling growth at mid and high elevation regions. In addition, a home-site advantage in whole-plant traits and root traits was observed. However, the responses of leaf traits in most cases were not affected by seed source because of higher phenotypic plasticity. Our results suggested that both local adaptation and phenotypic plasticity were important in seedling growth responses to reduced precipitation. We also highlight the importance of taking intraspecific variation into account when studying the response of plants to changes in climate.

  相似文献   

2.
多穗柯是一种珍贵天然野生药用植物,可以开发出保健食品色素和天然医用药品,广西的资源较丰富,该研究采集巴马、那坡、德保及田林等4个产地的多穗柯种子进行播种育苗,并跟踪调查测定一年生幼苗的叶片性状及幼苗生长量,并进行相关性分析。结果表明:(1)不同产地间叶片性状及幼苗生长指标均存在不同程度的差异,其中巴马与那坡、德保、田林在叶长、叶宽、叶面积、叶脉间距、叶鲜重、叶片干物质含量、叶片组织密度等叶片性状上的差异均达到显著水平,在株高、地径、单株干重、主根长、单株根干重及单株叶干重等生长指标上亦存在显著差异,且生长量是后3个产地的1~2倍;通过比较各产地的叶片保水力及植株净生长量,巴马的多穗柯植株耐旱性及生长速度优于其他三地。综合各性状表现,认为巴马的多穗柯苗期表现比较好,生长速度快,长势好,抗旱性较强,可作为多穗柯优良种源的初步选择。(2)8月份是多穗柯株高、地径的生长高峰期,建议此时应加强肥水管理,调节适宜的水肥光热条件,尽量延长幼苗的快速生长时间,以获得苗木的最大累积生长量。(3)叶片性状与幼苗生长量的相关性分析结果显示,叶面积与株高、地径、单株干重、单株根干重以及单株叶干重等呈极显著正相关,叶脉间距、叶绿素相对含量(SPAD)与株高、单株干重呈显著或极显著正相关,比叶面积与株高、地径呈显著负相关。因此,在以后的优株表型选择中,要优先考虑叶子大、叶脉间距宽、中老熟叶片叶色浓绿的植株。该研究结果为多穗柯优良种质资源的早期筛选提供了一定的依据。  相似文献   

3.
  • The performance of seedlings is crucial for the survival and persistence of plant populations. Although drought frequently occurs in floodplains and can cause seedling mortality, studies on the effects of drought on seedlings of floodplain grasslands are scarce. We tested the hypotheses that drought reduces aboveground biomass, total biomass, plant height, number of leaves, leaf area and specific leaf area (SLA), and increases root biomass and root‐mass fraction (RMF) and that seedlings from species of wet floodplain grasslands are more affected by drought than species of dry grasslands.
  • In a greenhouse study, we exposed seedlings of three confamilial pairs of species (Pimpinella saxifraga, Selinum carvifolia, Veronica teucrium, Veronica maritima, Sanguisorba minor, Sanguisorba officinalis) to increasing drought treatments. Within each plant family, one species is characteristic of wet and one of dry floodplain grasslands, confamilial in order to avoid phylogenetic bias of the results.
  • In accordance with our hypotheses, drought conditions reduced aboveground biomass, total biomass, plant height, number of leaves and leaf area. Contrary to our hypotheses, drought conditions increased SLA and decreased root biomass and RMF of seedlings. Beyond the effects of the families, the results were species‐specific (V. maritima being the most sensitive species) and habitat‐specific. Species indicative of wet floodplain grasslands appear to be more sensitive to drought than species indicative of dry grasslands.
  • Because of species‐ and habitat‐specific responses to reduced water availability, future drought periods due to climate change may severely affect some species from dry and wet habitats, while others may be unaffected.
  相似文献   

4.
Abstract. Plant functional types (PFTs) bridge the gap between plant physiology and community and ecosystem processes, thus providing a powerful tool in climate change research. We aimed at identifying PFTs within the flora of central-western Argentina, and to explore their possible consequences for ecosystem function. We analyzed 24 vegetative and regenerative traits of the 100 most abundant species along a steep climatic gradient. Based on plant traits and standard multivariate techniques, we identified eight PFTs. Our results confirmed, over a wide range of climatic conditions, the occurrence of broad recurrent patterns of association among plant traits reported for other floras; namely trade-offs between high investment in photosynthesis and growth on the one hand, and preferential allocation to storage and defence on the other. Regenerative traits were only partially coupled with vegetative traits. Using easily-measured plant traits and individual species cover in 63 sites, we predicted main community-ecosystem processes along the regional gradient. We hypothesized likely impacts of global climatic change on PFTs and ecosystems in situ, and analysed their probabilities of migrating in response to changing climatic conditions. Finally, we discuss the advantages and limitations of this kind of approach in predicting changes in plant distribution and in ecosystem processes over the next century.  相似文献   

5.
Climate change will likely affect population dynamics of numerous plant species by modifying several aspects of the life cycle. Because plant regeneration from seeds may be particularly vulnerable, here we assess the possible effects of climate change on seed characteristics and present an integrated analysis of seven seed traits (nutrient concentrations, samara mass, seed mass, wing length, seed viability, germination percentage, and seedling biomass) of Acer platanoides and A. pseudoplatanus seeds collected along a wide latitudinal gradient from Italy to Norway. Seed traits were analyzed in relation to the environmental conditions experienced by the mother trees along the latitudinal gradient. We found that seed traits of A. platanoides were more influenced by the climatic conditions than those of A. pseudoplatanus. Additionally, seed viability, germination percentage, and seedling biomass of A. platanoides were strongly related to the seed mass and nutrient concentration. While A. platanoides seeds were more influenced by the environmental conditions (generally negatively affected by rising temperatures), compared to A. pseudoplatanus, A. platanoides still showed higher germination percentage and seedling biomass than A. pseudoplatanus. Thus, further research on subsequent life-history stages of both species is needed. The variation in seed quality observed along the climatic gradient highlights the importance of studying the possible impact of climate change on seed production and species demography.  相似文献   

6.
Temperature and moisture impact strongly on the early stages of a plant's life cycle. Global climate change is altering the environmental cues that seeds receive resulting in compromised seedling emergence and changes to seedling performance. Here, we investigate how temperature and moisture affect these early stages of plant development in four Banksia species collected from a longitudinal climate gradient in southwest Western Australia. A common garden was used to examine the between‐species and among‐population variation in seedling emergence, growth and leaf traits under two soil temperature regimes and three levels of precipitation. We predicted that reduced moisture and increased temperature would delay and reduce total seedling emergence and negatively affect seedling performance. Furthermore, we expected that within species there would be geographically structured variation in response to the treatments. Species differed significantly in all measured traits. Soil warming resulted in strong impacts on regenerative traits, significantly slowing seedling emergence in two species and reducing total seedling emergence in three species. In addition, warming altered seedling performance with significant reductions to the above‐ground leaf biomass ratio of three species. In contrast, response to soil moisture manipulation was minimal across all species but possibly due to issues regarding implementation of an effective moisture treatment. The species that showed the greatest decline in emergence under warmed conditions (B. quercifolia) also showed the smallest vegetative shift; the species with the smallest decline in emergence (B. coccinea) showed a relatively large vegetative shift. Among‐population differences were significant for many traits, however, trait differentiation was inconsistent across species and, contrary to our hypothesis, the variation we observed was not clearly associated with the climate gradient. As these among‐population differences in traits are not easy to predict, we caution the use of simple rules for choosing seed populations for conservation and restoration.  相似文献   

7.
Positive and negative plant–plant interactions are major processes shaping plant communities. They are affected by environmental conditions and evolutionary relationships among the interacting plants. However, the generality of these factors as drivers of pairwise plant interactions and their combined effects remain virtually unknown. We conducted an observational study to assess how environmental conditions (altitude, temperature, irradiance and rainfall), the dispersal mechanism of beneficiary species and evolutionary relationships affected the co‐occurrence of pairwise interactions in 11 Stipa tenacissima steppes located along an environmental gradient in Spain. We studied 197 pairwise plant–plant interactions involving the two major nurse plants (the resprouting shrub Quercus coccifera and the tussock grass S. tenacissima) found in these communities. The relative importance of the studied factors varied with the nurse species considered. None of the factors studied were good predictors of the co‐ocurrence between S. tenacissima and its neighbours. However, both the dispersal mechanism of the beneficiary species and the phylogenetic distance between interacting species were crucial factors affecting the co‐occurrence between Q. coccifera and its neighbours, while climatic conditions (irradiance) played a secondary role. Values of phylogenetic distance between 207–272.8 Myr led to competition, while values outside this range or fleshy‐fruitness in the beneficiary species led to positive interactions. The low importance of environmental conditions as a general driver of pairwise interactions was caused by the species‐specific response to changes in either rainfall or radiation. This result suggests that factors other than climatic conditions must be included in theoretical models aimed to generally predict the outcome of plant–plant interactions. Our study helps to improve current theory on plant–plant interactions and to understand how these interactions can respond to expected modifications in species composition and climate associated to ongoing global environmental change.  相似文献   

8.
Diversity patterns of herbivores have been related to climate, host plant traits, host plant distribution and evolutionary relationships individually. However, few studies have assessed the relative contributions of a range of variables to explain these diversity patterns across large geographical and host plant species gradients. Here we assess the relative influence that climate and host plant traits have on endophagous species (leaf miners and plant gallers) diversity across a suite of host species from a genus that is widely distributed and morphologically variable. Forty-six species of Acacia were sampled to encapsulate the diversity of species across four taxonomic sections and a range of habitats along a 950 km climatic gradient: from subtropical forest habitats to semi-arid habitats. Plant traits, climatic variables, leaf miner and plant galler diversity were all quantified on each plant species. In total, 97 leaf mining species and 84 plant galling species were recorded from all host plants. Factors that best explained leaf miner richness across the climatic gradient (using AIC model selection) included specific leaf area (SLA), foliage thickness and mean annual rainfall. The factor that best explained plant galler richness across the climatic gradient was C:N ratio. In terms of the influence of plant and climatic traits on species composition, leaf miner assemblages were best explained by SLA, foliage thickness, mean minimum temperature and mean annual rainfall, whilst plant gall assemblages were explained by C:N ratio, %P, foliage thickness, mean minimum temperature and mean annual rainfall. This work is the first to assess diversity and structure across a broad environmental gradient and a wide range of potential key climatic and plant trait determinants simultaneously. Such methods provide key insights into endophage diversity and provide a solid basis for assessing their responses to a changing climate.  相似文献   

9.
喀斯特生态系统是全球陆地生态系统的重要组成部分,生态环境极为脆弱。由于碳酸盐岩长期强烈的化学溶蚀作用,其基本特征体现为地表土壤和地下岩溶裂隙及洞穴的二元结构。近年来,在全球气候变化下,我国西南地区降雨格局呈现降雨频次减少且单次降雨量增加的趋势。因此,岩溶裂隙和区域降雨时间格局改变将对喀斯特地区的植物生长产生重要影响。通过模拟不同岩溶裂隙生境(S0:24 cm土壤;S1/2:12 cm土壤层+12 cm裂隙层;S3/4:6 cm土壤层+18 cm裂隙层)和不同降雨时间格局(I2d:2 d降雨间隔;I19d:19 d降雨间隔),探究二年生桢楠(Phoebe zhennan S. Lee)幼苗是否通过生物量分配及根系分布的调整来适应变化环境。结果显示:(1)短时间降雨格局下,相比全土生境,少量岩溶裂隙存在并不影响桢楠幼苗生物量的积累,然而随着岩溶裂隙层进一步增厚和降雨时间间隔延长,桢楠降低了总生物量,减少了茎且增大了根和叶的生物量分配。(2)桢楠幼苗的根系垂直分布随着深度增加而下降,...  相似文献   

10.
王传华  曾春函  沈德嵩  钟丽  李俊清 《生态学报》2016,36(17):5343-5352
干热河谷地区水电站建设对当地植被的潜在影响是一个值得关注的生态学问题。车桑子是当地植被灌木层的主要成分,开展水库气候效应对车桑子生长、发育影响的研究具有现实价值。以车桑子的实生幼苗为材料,将土壤含水量控制为13%、7%和1.5%,空气湿度控制为50%、65%和75%,从幼苗生长、构件发育、根系发育、生物量分配等方面研究了降水减少和大气湿度增加的气候效应对车桑子的影响,通过叶绿素含量、Fv/Fm、丙二醛(MDA)含量和叶片可溶性糖含量等指标,从光合系统特性、膜质过氧化和渗透调节3个方面研究了车桑子的受损与适应机制。结果表明,土壤干旱能够抑制车桑子幼苗高生长和根系发育的各项指标,并促进生物量向根系分配;当大气湿度增加时,幼苗高生长和根长虽呈增加趋势,但生物量积累、根系发育指标及RMR却具有单峰效应,显示空气湿度过高时对其生长发育具有抑制作用。综合而言,由于大气湿度增加能够部分补偿土壤的干旱效应,干热河谷区水库建设的气候效应不会对车桑子幼苗的生长和发育产生重要影响。结果还表明,土壤干旱和大气湿度变化对叶绿素含量无影响,土壤水分胁迫和空气湿度下降导致Fv/Fm显著下降,说明光合电子传递链受损是车桑子光合抑制的主要原因;土壤水分胁迫导致MDA含量升高,说明细胞膜质过氧化是车桑子幼苗受损的重要机制;而土壤干旱导致叶片可溶性糖含量升高,说明车桑子幼苗具有较好的渗透调节机制。研究结果对评估干热河谷区水电站建设对植被的影响具有参考价值。  相似文献   

11.
Questions: (1) What is the water threshold for shrub seedling establishment in arid scrubland? (2) How do seedling root growth morphological traits affect the water threshold required for seedling establishment? Location: Arid scrubland, Atacama Desert, north‐central Chile. Methods: We conducted a field experiment with nine native shrub species under a gradient of simulated rainfall to test if species with deep root architecture have higher seedling survival rates and establish more successfully during water pulses. Results: Seedling survival rate was very low; only 2% of the 12 150 planted seedlings survived the first summer drought. Seedling survival required at least 206 mm of water, which is twice the average rainfall and roughly equivalent to the precipitation during an ENSO (El Niño Southern Oscillation) event in this region. Seedling survival at the onset of the summer drought was best explained by leaf habit, root length and initial seedling size. However, only Senna cumingii seedlings survived through the first year. S. cumingii seedlings had distinctively longer roots than the other shrub species, enabling them to reach moister soil layers. Conclusions: Water conditions resembling rainy years enhance shrub seedling establishment in the Atacama Desert, but the effects of higher water availability are strongly dependent on the shrub species. Rapid and deep rooting appears to be a very important functional trait for successful first‐year survival in this arid system where water availability is highly episodic.  相似文献   

12.
For successful afforestation programs seed quality is crucial, but seedlings are susceptible to climatic stress. Therefore, to improve afforestation success it is necessary to compare performance of seedlings from natural and cultivated populations under different climatic conditions. We investigated growth performance in seedlings of three natural and four afforested Syrian Cupressus sempervirens L. populations under different temperature and moisture regimes. A “warm” climate chamber approximately simulated current mean annual temperatures (day/night: 20/10°C) while a “hot” chamber simulated an average increase of 5°C (day/night: 25/15°C). Seedlings were irrigated twice (drier) or thrice (moist) weekly. Seedlings from natural provenances outperformed those from afforested stands in all growth variables in both chambers. In the warm chamber, root length and biomass were not affected by irrigation for both population types, but shoot height decreased for afforested seedlings under drier treatment while it slightly increased in natural seedlings. In the hot chamber, shoot height decreased but root length and biomass increased for population types under the drier treatment. Comparison between the two chambers showed that under the drier treatment shoot height and biomass decreased at higher temperatures, but root length and biomass were not significantly different. The same response to higher temperatures was observed under the moist treatment, but root biomass decreased too. Our results emphasize the necessity to protect the remaining natural forest of C. sempervirens in Syria and recommend systematic collection of seed material from natural stands for afforestation programs. This might also hold for ex situ cultivation of retrieving rare and endangered plant species.  相似文献   

13.
The competitive interactions between woody seedlings and herbaceous vegetation have received increasing interest in recent years. However, little is known about the relative contributions and underlying mechanisms of above- and below-ground competition between species. We used a novel experimental approach to assess the responses of Fraxinus excelsior seedlings to different combinations of root and shoot competition imposed by the grass Dactylis glomerata under greenhouse conditions. Seedling growth was significantly reduced by competition for soil resources, but neither biomass nor height were significantly affected by shoot competition for light. Competitive response indices based on biomass confirmed that below-ground competition was more important than above-ground competition, and indicated that root and shoot competition did not interact to influence plant growth. Fraxinus biomass allocation and seedling traits were almost all significantly affected by root competition; these responses varied depending on the trait examined. In contrast, morphological responses to shoot competition were limited. In the absence of root competition, seedlings showed a significant increase in the biomass allocated to leaves and a greater leaf area ratio in response to shoot competition. Our findings suggest that morphological modifications help to mitigate the negative effects of competition, but the expression of plasticity may be suboptimal due to resource constraints. The present study also highlights the importance of appropriate experimental controls and analysis to avoid confounding effects of experimental design and ontogeny on the interpretation of competitive responses.  相似文献   

14.
华南地区6种阔叶幼苗叶片形态特征的季节变化   总被引:5,自引:0,他引:5  
对山杜英、米老排、樟树、海南红豆、红花油茶和红锥6种幼苗叶长和叶宽的相关性和叶片的比叶重变化进行了研究,结果表明:幼苗各月份的叶长和叶宽呈极显著正相关。根据相关系数把6种幼苗分为:a),叶长和叶宽的相关性随季节变化型,包括山杜英、红花油茶、海南红豆、红锥;b),叶长和叶宽的相关性稳定型,有樟树和米老排。6种幼苗叶片的比叶重随幼苗种类和季节而变化,新叶的比叶重上半年比下半年变化大,老叶全年变化较小,上半年新叶的比叶重比老叶低,下半年两者相近。红花油茶新叶和老叶的平均比叶重明显大于其余5种幼苗。  相似文献   

15.
We investigated biomass allocation and root architecture of eight tropical species with different successional status, as classified from the literature, along a size gradient up to 5 m. We focused on belowground development, which has received less attention than aboveground traits. A discriminant analysis based upon a combination of allocational and architectural traits clearly distinguished functional types and classified species according to successional status at a 100% success rate. For a given plant diameter, the pioneer species presented similar root biomass compared to the non-pioneer ones but higher cumulative root length and a higher number of root apices. A detailed study on the root system of a sub-sample of three species showed that the most late-successional species (Tabebuia rosea) had longer root internodes and a higher proportion of root biomass allocated to the taproot compared to the other two species (Hura crepitans and Luehea seemannii). Most pioneer species showed a higher leaf area ratio due to a higher specific leaf area (SLA). We conclude that the functional differences between pioneer and non-pioneer tree species found in natural forests were maintained in open-grown plantation conditions.  相似文献   

16.
17.
Widespread species often occur across a range of climatic conditions, through a combination of local genetic adaptations and phenotypic plasticity. Species with greater phenotypic plasticity are likely to be better positioned to cope with rapid anthropogenic climate changes, while those displaying strong local adaptations might benefit from translocations to assist the movement of adaptive genes as the climate changes. Eucalyptus tricarpa occurs across a climatic gradient in south‐eastern Australia, a region of increasing aridity, and we hypothesized that this species would display local adaptation to climate. We measured morphological and physiological traits reflecting climate responses in nine provenances from sites of 460 to 1040 mm annual rainfall, in their natural habitat and in common gardens near each end of the gradient. Local adaptation was evident in functional traits and differential growth rates in the common gardens. Some traits displayed complex combinations of plasticity and genetic divergence among provenances, including clinal variation in plasticity itself. Provenances from drier locations were more plastic in leaf thickness, whereas leaf size was more plastic in provenances from higher rainfall locations. Leaf density and stomatal physiology (as indicated by δ13C and δ18O) were highly and uniformly plastic. In addition to variation in mean trait values, genetic variation in trait plasticity may play a role in climate adaptation.  相似文献   

18.
The authors examined altitudinal variations in the thermal responses of seed germination and seedling growth inReynoutria japonica (=Polygonum cuspidatum) under controlled environmental conditions. Seed populations were collected from different altitudes on Mt Fuji in Japan. The mean seed weight of the upland populations (above 1500 m) was significantly (1.5-fold) heavier than that of the lowland populations (below 1400 m). Under the lowest temperature regime of 15/10°C (day/night) the upland populations showed a significantly higher percentage and speed of germination than the lowland populations; this was not significant under higher temperature regimes. These results indicate that the germination traits of the upland populations on Mt Fuji are favorable for colonization in their cold habitats (low temperature and short growing season). Growth and shoot development were compared between the seedlings grown from seeds collected at altitudes of 700 and 2420 m. The upland seedlings showed a significantly larger biomass and leaf area than the lowland seedlings at 15°C, but there was no difference at 25°C. The difference in biomass at 15°C was attributed to the difference in seed weight. The upland seedlings produced a significantly larger number of branches with smaller and more numerous leaves at both 15°C and 25°C. these developmental traits of the upland seedlings were considered to represent the adaptation of the life form to upland environments. It was concluded that theR. japonica populations along an altitudinal gradient on Mt Fuji can be classified into two ecotypes, whose distribution border lies at an altitude of about 1400–1500m. In this study, the seed weight and germination traits of twoR. japonica seed populations collected in Chiba Prefecture were briefly compared with those of the lowland populations on Mt Fuji.  相似文献   

19.
Heavy metal contamination and drought are expected to increase in large areas worldwide. However, their combined effect on plant performance has been scantly analyzed. This study examines the effect of Zn supply at different water availabilities on morpho‐physiological traits of Quercus suber L. in order to analyze the combined effects of both stresses. Seedlings were treated with four levels of zinc from 3 to 150 µM and exposed to low watering (LW) or high watering (HW) frequency in hydroponic culture, using a growth chamber. Under both watering regimes, Zn concentration in leaves and roots increased with Zn increment in nutrient solution. Nevertheless, at the highest Zn doses, Zn tissue concentrations were almost twice in HW than in LW seedlings. Functional traits as leaf photosynthetic rate and root hydraulic conductivity, and morphological traits as root length and root biomass decreased significantly in response to Zn supply. Auxin levels increased with Zn concentrations, suggesting the involvement of this phytohormone in the seedling response to this element. LW seedlings exposed to 150 µM Zn showed higher root length and root biomass than HW seedlings exposed to the same Zn dose. Our results suggest that low water availability could mitigate Zn toxicity by limiting internal accumulation. Morphological traits involved in the response to both stresses probably contributed to this response.  相似文献   

20.
Quantifying patterns of variation and coordination of plant functional traits can help to understand the mechanisms underlying both invasiveness and adaptation of plants. Little is known about the coordinated variations of performance and functional traits of different organs in invasive plants, especially in response to their adaptation to environmental stressors. To identify the responses of the invasive species Solidago canadensis to drought, 180 individuals were randomly collected from 15 populations and 212 ramets were replanted in a greenhouse to investigate both the response and coordination between root and leaf functional traits. Drought significantly decreased plant growth and most of the root and leaf functional traits, that is, root length, surface area, volume and leaf size, number, and mass fraction, except for the root length ratio and root mass fraction. Phenotypic plasticity was higher in root traits than in leaf traits in response to drought, and populations did not differ significantly. The plasticity of most root functional traits, that is, root length (RL), root surface area (RSA), root volume (RV), and root mass fraction (RMF), were significantly positively correlated with biomass between control and drought. However, the opposite was found for leaf functional traits, that is, specific leaf area (SLA), leaf area ratio (LAR), and leaf mass fraction (LMF). Drought enhanced the relationship between root and leaf, that is, 26 pairwise root–leaf traits were significantly correlated under drought, while only 15 pairwise root–leaf traits were significantly correlated under control conditions. Significant correlations were found between biomass and all measured functional traits except for leaf size. RV, root length ratio, RMF, total area of leaves, and LMF responded differently to water availability. These responses enable S. canadensis to cope with drought conditions and may help to explain the reason of the vast ecological amplitude of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号