首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pseudomonas aeruginosa produces a galactophilic lectin, PA-IL, that resembles P-fimbrial adhesins of uropathogenic Escherichia coli strains in binding to human P blood group antigens. We examined, in the present study, its interaction with pigeon egg white glycoproteins carrying N-glycans with terminal Galalpha1-4Gal which inhibit the adhesion of P-fimbriae. For comparison, the lectin concanavalin A (Con A) and additional avian egg whites (of hen and quail) were also examined. The results obtained in both hemagglutination inhibition and Western blot analyses showed that PA-IL, unlike Con A, preferentially reacted with the pigeon egg white glycoproteins. These results, which confirmed PA-IL similarity in sugar specificity to E. coli P-fimbriae, demonstrated the advantage of this purified lectin for representing P-type and additional galactophilic microbial adhesins unavailable in purified stable form, in Western blot analyses.  相似文献   

2.
The plant pathogen Ralstonia solanacearum produces two lectins, each with different affinity to fucose. We described previously the properties and sequence of the first lectin, RSL (subunit M(r) 9.9 kDa), which is related to fungal lectins (Sudakevitz, D., Imberty, A., and Gilboa-Garber, N., 2002, J Biochem 132: 353-358). The present communication reports the discovery of the second one, RS-IIL (subunit M(r) 11.6 kDa), a tetrameric lectin, with high sequence similarity to the fucose-binding lectin PA-IIL of Pseudomonas aeruginosa. RS-IIL recognizes fucose but displays much higher affinity to mannose and fructose, which is opposite to the preference spectrum of PA-IIL. Determination of the crystal structure of RS-IIL complexed with a mannose derivative demonstrates a tetrameric structure very similar to the recently solved PA-IIL structure (Mitchell, E., et al., 2002, Nature Struct Biol 9: 918-921). Each monomer contains two close calcium cations that mediate the binding of the monosaccharide and explain the outstandingly high affinity to the monosaccharide ligand. The binding loop of the cations is fully conserved in RS-IIL and PA-IIL, whereas the preference for mannose versus fucose can be attributed to the change of a three-amino-acid sequence in the 'specificity loop'.  相似文献   

3.
The lectin from Pseudomonas aeruginosa (PA-IIL) is involved in host recognition and biofilm formation. Lectin not only displays an unusually high affinity for fucose but also binds to L-fucose, L-galactose and D-arabinose that differ only by the group at position 5 of the sugar ring. Isothermal calorimetry experiments provided precise determination of affinity for the three methyl-glycosides and revealed a large enthalpy contribution. The crystal structures of the complexes of PA-IIL with L-galactose and Met-beta-D-arabinoside have been determined and compared with the PA-IIL/fucose complex described previously. A combination of the structures and thermodynamics provided clues for the role of the hydrophobic group in affinity.  相似文献   

4.
Wu AM  Wu JH  Singh T  Liu JH  Tsai MS  Gilboa-Garber N 《Biochimie》2006,88(10):1479-1492
Pseudomonas aeruginosa Fuc > Man specific lectin, PA-IIL, is an important microbial agglutinin that might be involved in P. aeruginosa infections in humans. In order to delineate the structures of these lectin receptors, its detailed carbohydrate recognition profile was studied both by microtiter plate biotin/avidin-mediated enzyme-lectin-glycan binding assay (ELLSA) and by inhibition of the lectin-glycan interaction. Among 40 glycans tested for binding, PA-IIL reacted well with all human blood group ABH and Le(a)/Le(b) active glycoproteins (gps), but weakly or not at all with their precursor gps and N-linked gps. Among the sugar ligands tested by the inhibition assay, the Le(a) pentasaccharide lacto-N-fucopentaose II (LNFP II, Galbeta1-3[Fucalpha1-4]GlcNAcbeta1-3Galbeta1-4Glc) was the most potent one, being 10 and 38 times more active than the Le(x) pentasaccharide (LNFP III, Galbeta1-4 [Fucalpha1-3]GlcNAcbeta1-3Galbeta1-4Glc) and sialyl Le(x) (Neu5Acalpha2-3Galbeta1-4[Fucalpha1-3] GlcNAc), respectively. It was 120 times more active than Man, while Gal and GalNAc were inactive. The decreasing order of PA-IIL affinity for the oligosaccharides tested was: Le(a) pentaose > or = sialyl Le(a) tetraose > methyl alphaFuc > Fuc and Fucalpha1-2Gal (H disaccharide)>2'-fucosyllactose (H trisaccharide), Le(x) pentaose, Le(b) hexaose (LNDFH I) and gluco-analogue of Le(y) tetraose (LDFT)>H type I determinant (LNFP I)>Le(x) trisaccharide (Galbeta1-4[Fucalpha1-3]GlcNAc) > sialyl Le(x) trisaccharide > Man > Gal, GalNAc, and Glc (inactive). The results presented here, in accordance with the crystal 3D structural data, imply that the combining site of PA-IIL is a small cavity-type best fitting Fucalpha1- with a specific shallow groove subsite for the remainder part of the Le(a) saccharides, and that polyvalent glycotopes enhance the reactivity. The Fuc > Man Ralstonia solanacearum lectin RSL, which resembles PA-IIL in sugar specificity, differs from it in it's better fit to the B and A followed by H oligosaccharides vs. Fuc, whereas, the second R. solanacearum lectin RS-IIL (the structural homologue of PA-IIL) binds Man > Fuc. These results provide a valuable information on PA-IIL interactions with mammalian glycoforms and the possible spectrum of attachment sites for the homing of this aggressive bacterium onto the target molecules. Such information might be useful for the antiadhesive therapy of P. aeruginosa infections.  相似文献   

5.
6.
The synthesis of propargylated pentaerythrityl phosphodiester oligomers (PePOs) was achieved using a DNA synthesizer with a bis-propargylated pentaerythritol-based phosphoramidite. An azido fucose derivative was reacted under "click" chemistry conditions activated by microwaves to construct a series of glycosylated PePOs bearing 4, 6, 8, and 10 L-fucose residues. Binding to the fucose-specific bacterial lectin (PA-IIL) was determined for the fucosylated PePOs through an enzyme-linked lectin amplification competition assay. The IC50 values measured are 10-20 times better than for monovalent l-fucose and denotate for a "macromolecular" effect rather than a "cluster" effect.  相似文献   

7.
PA-IIL is a fucose-binding lectin from Pseudomonas aeruginosa that is closely related to the virulence factors of the bacterium. Previous structural studies have revealed a new carbohydrate-binding mode with direct involvement of two calcium ions (Mitchell E, Houles C, Sudakevitz D, Wimmerova M, Gautier C, Perez S, Wu AM, Gilboa-Garber N, Imberty A. Structural basis for selective recognition of oligosaccharides from cystic fibrosis patients by the lectin PA-IIL of Pseudomonas aeruginosa. Nat Struct Biol 2002;9:918-921). A combination of thermodynamic, structural, and computational methods has been used to study the basis of the high affinity for the monosaccharide ligand. A titration microcalorimetry study indicated that the high affinity is enthalpy driven. The crystal structure of the tetrameric PA-IIL in complex with fucose and calcium was refined to 1.0 A resolution and, in combination with modeling, allowed a proposal to be made for the hydrogen-bond network in the binding site. Calculations of partial charges using ab initio computational chemistry methods indicated that extensive delocalization of charges between the calcium ions, the side chains of the protein-binding site and the carbohydrate ligand is responsible for the high enthalpy of binding and therefore for the unusually high affinity observed for this unique mode of carbohydrate recognition.  相似文献   

8.
Specificity of the fucose-binding lectin of Pseudomonas aeruginosa   总被引:1,自引:0,他引:1  
Abstract PA-II lectin of Pseudomonas aeruginosa , purified by affinity chromatography, was examined for its relative affinity to various carbohydrates using equilibrium dialysis and hemagglutination inhibition tests. This lectin was found to exhibit a high affinity for L -fucose and its derivatives. Among them, p-nitrophentl-α- L -fucose was the strongest inhibitor, followed by L -fucose → L -fucosylamine L -galactose → D -mannose →→→ D -fructose. The association constant ( K a) of L -focuse for PA-II was 1.5 × 106· M−1 and the number of the L -fucose-binding sites per protein subunit was approximately 1. The K a of D -mannose for PA-II was 3.1 × 10−2· M−1 and a value of 0.84 was obtained as the number of its binding sites per mole protein subunit.  相似文献   

9.
The ability of Pseudomonas aeruginosa PA-I lectin to bind the fluorescent hydrophobic probe, 2-(p-toluidinyl) naphthalene sulfonic acid (TNS), and adenine was examined by spectrofluorametry and equilibrium dialysis. Interaction of TNS with PA-I caused significant enhancement of TNS fluorescence. The Hill coefficient (3.8+/-0.3) and the dissociation constant (8.7+/-0.16 microM) showed that TNS probably bound to four high affinity hydrophobic sites per PA-I tetramer. Interactions between PA-I and adenine were examined by equilibrium dialysis using [3H] adenine. The results indicated the presence of at least two classes of binding sites--one high and four lower affinity sites per tetramer with dissociation constants of 3.7+/-1.5 and 42.6+/-1.2 microM, respectively. These were distinct from the TNS sites as titration of TNS-equilibrated PA-I with adenine caused TNS fluorescence enhancement. The titration curve confirmed the existence of two classes of adenine-binding sites. Conversely, when PA-I was first equilibrated with adenine and then titrated with TNS, no TNS-binding was registered. This may indicate that conformational rearrangements of the lectin molecule caused by adenine prevent allosterically TNS binding.  相似文献   

10.
11.
The study analyses the binding affinities of Pseudomonas aeruginosa PA-I lectin (PA-IL) to three N-acyl homoserine lactones (AHSL), quorum sensing signal molecules responsible for cell-cell communication in bacteria. It shows that like some plant lectins, PA-IL has a dual function and, besides its carbohydrate-binding capacity, can accommodate AHLS. Formation of complexes between PA-IL and AHSL with acyl side chains composed of 4, 6 or 12 methyl groups is characterized by changes in the emissions of two incorporated fluorescent markers, TNS and IAEDANS, both derivatives of naphthalene sulfonic acid. PA-IL shows increasing affinities to lactones with longer aliphatic side chains. The values of the apparent dissociation constants (K(d)), which are similar to the previously determined K(d) for the adenine high affinity binding, and the similar effects of lactones and adenine on the TNS emission indicate one identical binding site for these ligands, which is suggested to represent the central cavity of the oligomeric molecule formed after the association of the four identical subunits of PA-IL. Intramolecular distances between the fluorescent markers and protein Trp residues are determined by fluorescence resonance energy transfer (FRET).  相似文献   

12.
13.
Two lysozymes were purified from quail egg white by cation exchange column chromatography and analyzed for amino acid sequence. The enzymes showed the same pH optimum profile for lytic activity with broad pH optima (pH 5.0-8.0) but had difference in mobility on native-PAGE. The native-PAGE immunoblot showed one or two lysozymes present in individual egg whites. The established amino acid sequence of quail egg white lysozyme A (QEWL A) was the same as quail lysozyme reported by Kaneda et al. [Kaneda, M., Kato, I., Tominaga, N., Titani, K., Narita, K., 1969. The amino acid sequence of quail lysozyme. J. Biochem. (Tokyo). 66, 747-749] and had six amino acid substitutions at position 3 (Phe to Tyr), 19 (Asn to Lys), 21 (Arg to Gln), 102 (Gly to Val) 103 (Asn to His) and 121 (Gln to Asn) compared to hen egg white lysozyme. QEWL A and QEWL B showed one substitution, at the position 21, Gln replaced by Lys, plus an insertion of Leu between position 20 and 21, being the first report that QEWL B had 130 amino acids. The amino acid differences between two lysozymes did not seem to affect antigenic determinants detected by polyclonal anti-hen egg white lysozyme, but caused them to separate well from each other by ion exchange chromatography.  相似文献   

14.
The present study was done to reveal how egg white is taken up by embryonic tissues, the pathway through which egg white is transported, and the location where it is digested during the development of the quail Coturnix japonica. Antiserum against quail ovalbumin was raised in rabbit and used as a probe. By immunoelectron microscopy, the uptake of ovalbumin on a small scale by receptor-mediated endocytosis was observed in the ectodermal cells of the yolk sac on days four to seven of incubation. The uptake of egg white on a large scale by fluid-phase endocytosis took place in the cells generally referred to collectively as the 'albumen sac'. The ovalbumin was transported through the albumen sac into the extraembryonic cavity during days eight to 10, and then into the amniotic cavity through the amnion approximately on day 10. Ovalbumin was present in the intestinal lumen on days 11 and 14, but it was not digested in the intestinal epithelial cells. The ovalbumin was detected in the yolk of embryos after day 10. Immunoblot testing, as well as a fluoroimmunoassay, revealed that the location where the amount of ovalbumin was highest changed chronologically from the extraembryonic cavity on day 10 to the amniotic cavity on day 11, the intestinal lumen on day 12 and then to the yolk on day 13. Several low molecular proteins which cross-reacted with the antiserum were observed in the extracts of the yolk. The reaction producing these proteins depended on low pH (approximately 3.0) and was inhibited by pepstatin A. The ovotransferrin was similarly digested. These results indicate that egg white is, for the most part, transported through the albumen sac to the yolk via the extraembryonic cavity, the amniotic cavity, and the intestinal lumen, and is digested in the yolk by aspartic proteinases.  相似文献   

15.
Burn injury disrupts the mechanical and biological barrier that the skin presents against infection by symbionts like the Pseudomonas aeruginosa, a Gram-negative bacteria. A combination of local factors, antimicrobial peptides, and resident effector cells form the initial response to mechanical injury of the skin. This activity is followed by an inflammatory response that includes influx of phagocytes and serum factors, such as complement and mannose-binding lectin (MBL), which is a broad-spectrum pattern recognition molecule that plays a key role in innate immunity. A growing consensus from studies in humans and mice suggests that lack of MBL together with other comorbid factors predisposes the host to infection. In this study we examined whether MBL deficiency increases the risk of P. aeruginosa infection in a burned host. We found that both wild-type and MBL null mice were resistant to a 5% total body surface area burn alone or s.c. infection with P. aeruginosa alone. However, when mice were burned then inoculated s.c. with P. aeruginosa at the burn site, all MBL null mice died by 42 h from septicemia, whereas only one-third of wild-type mice succumbed (p = 0.0005). This result indicates that MBL plays a key role in containing and preventing a systemic spread of P. aeruginosa infection following burn injury and suggests that MBL deficiency in humans maybe a premorbid variable in the predisposition to infection in burn victims.  相似文献   

16.
17.
The galactose‐specific lectin LecA from Pseudomonas aeruginosa is a target for the development of new anti‐infectious compounds. Sugar based molecules with anti‐adhesive properties present great potential in the fight against bacterial infection and biofilm formation. LecA is specific for oligosaccharides with terminal α‐galactoside residues and displays strong affinity for melibiose (αGal1‐6Glc) with a Kd of 38.8 µM. The crystal structure of LecA/melibiose complex shows classical calcium‐bridged binding of αGal in the primary binding site but also revealed a secondary sugar binding site with glucose bound. This sugar binding site is in close proximity to the galactose binding one, is independent of calcium and mainly involves interactions with a symmetry‐related protein. This discovery would help to the design of new potent inhibitors targeting both binding sites. Proteins 2014; 82:1060–1065. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
Meyer S  Tefsen B  Imberty A  Geyer R  van Die I 《Glycobiology》2007,17(10):1104-1119
Recognition of pathogen-derived carbohydrate constituents by antigen presenting cells is an important step in the induction of protective immunity. Here we investigated the interaction of L-SIGN (liver/lymph node specific ICAM-3-grabbing nonintegrin), a C-type lectin that functions as antigen receptor on human liver sinusoidal endothelial cells, with egg-derived glycan antigens of the parasitic trematode Schistosoma mansoni. Our data demonstrate that L-SIGN binds both schistosomal soluble egg antigens (SEA) and egg glycosphingolipids, and can mediate internalization of SEA by L-SIGN expressing cells. Binding and internalization of SEA was strongly reduced after treatment of SEA with endoglycosidase H, whereas defucosylation affected neither binding nor internalization. These data indicate that L-SIGN predominantly interacts with oligomannosidic N-glycans of SEA. In contrast, binding to egg glycosphingolipids was completely abolished after defucosylation. Our data show that L-SIGN binds to a glycosphingolipid fraction containing fucosylated species with compositions of Hex(1)HexNAc(5-7)dHex(3-6)Cer, as evidenced by mass spectrometry. The L-SIGN "gain of function" mutant Ser363Val, which binds fucosylated Lewis antigens, did not bind to this fucosylated egg glycosphingolipid fraction, suggesting that L-SIGN displays different modes in binding fucoses of egg glycosphingolipids and Lewis antigens, respectively. Molecular modeling studies indicate that the preferred binding mode of L-SIGN to the respective fucosylated egg glycosphingolipid oligosaccharides involves a Fucalpha1-3GalNAcbeta1-4(Fucalpha1-3)GlcNAc tetrasaccharide at the nonreducing end. In conclusion, our data indicate that L-SIGN recognizes both oligomannosidic N-glycans and multiply fucosylated carbohydrate motifs within Schistosoma egg antigens, which demonstrates that L-SIGN has a broad but specific glycan recognition profile.  相似文献   

19.
The crystal structure of Pseudomonas aeruginosa fucose-specific lectin LecB was determined in its metal-bound and metal-free state as well as in complex with fucose, mannose and fructopyranose. All three monosaccharides bind isosterically via direct interactions with two calcium ions as well as direct hydrogen bonds with several side-chains. The higher affinity for fucose is explained by the details of the binding site around C6 and O1 of fucose. In the mannose and fructose complexes, a carboxylate oxygen atom and one or two hydroxyl groups are partly shielded from solvent upon sugar binding, preventing them from completely fulfilling their hydrogen bonding potential. In the fucose complex, no such defects are observed. Instead, C6 makes favourable interactions with a small hydrophobic patch. Upon demetallization, the C terminus as well as the otherwise rigid metal-binding loop become more mobile and adopt multiple conformations.  相似文献   

20.
The two Pseudomonas aeruginosa lectins PA-IL and PA-IIL, which are very similar in subunit size, composition and properties, but differ in carbohydrate specificity, were shown to exhibit opposite temperature profiles in hemagglutination tests. The galactophilic PA-IL, which interacts with the erythrocyte I antigen (together with B or P system antigens), resembles Ii system-specific 'cold hemagglutinins' (including antibodies and lectins of animals and plants) in low (4 degrees C) temperature optimum, while the hemagglutination by the fucose- and mannose-binding PA-IIL (like that of antibodies and lectins which do not bind to these antigens) increases on raising the temperature from 4 to 37 degrees C and even to 42 degrees C. The preferential production of both P. aeruginosa lectins at 28 degrees C and their much stronger interaction with enzyme (protease or sialidase)-damaged cells, as well as the lower temperature optimum (4 degrees C) of PA-IL-binding to the host cells, may be associated with the saprophytic rather than parasitic designation of this bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号