首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The triazole growth retardant BAS 111‥W delayed senescence in cotyledons of pumpkin ( Cucurbita maxima L. cv. Gelbe genetzte Riesenmelone) and stimulated chlorophyll synthesis in greening cotyledons of oilseed rape ( Brassica napus L. cv. Petranova) seedlings. In both cases, changes of phytohormone-like substances in the cotyledons were analyzed on a fresh weight basis by immunoassay.
After soil treatment with increasing retardant concentrations, a close correlation was observed in senescing cotyledons of pumpkin between a reduced loss in total chlorophyll and increasing levels of dihydrozeatin riboside (DZR) and trans -zeatin riboside (ZR)-type cytokinins. In contrast, the levels of isopentenyladenosine (IPA)-type cytokinins, 3-indoleacetic acid (IAA) and gibberellin (GA) did not change significantly. The levels of abscisic acid (ABA) were slightly elevated at low retardant concentrations but dropped considerably below those of controls at higher doses. Consequently, the molar ratio of total cytokinin to ABA content changed from approximately 1:40 in controls (50% of initial chlorophyll) to 1:3 in cotyledons treated with 3 mg BAS 111‥W plant−1 (85% of initial chlorophyll). These changes, together with the known reduction of ethylene production by plants treated with nitrogen-heterocyclic retardants, can explain the delayed senescence in pumpkin cotyledons. Likewise, when etiolated, BAS 111‥W-treated seedlings of oilseed rape were exposed to light, the stimulation of chlorophyll synthesis in the cotyledons was accompanied by an accumulation of DZR- and, particularly, ZR-type cytokinins and IAA. In contrast, GA and ABA contents decreased slightly. We conclude that the influence of BAS 111‥W on cytokinin levels might be involved in the stimulation of greening.  相似文献   

2.
Three-week-old shoots of the spring oilseed rape cv. Petranova ( Brassica napus L. ssp. napus ) were found by combined gas chromatography-mass spectrometry to contain GA1, GA8, GA15, GA17, GA19, GA20, GA24, GA29, 3-epi-GA1 and a previously uncharacterised C19 dicarboxylic acid that is probably structurally related to GA24. Shoots of the winter cultivar Belinda, harvested at the early flowering stage, contained the same GAs with the exception of the C19 dicarboxylic acid and, in addition, GA34 and GA51 were identified. All material contained higher levels of GA20 than of GA1; the ratio of GA1 to GA20 was highest in shoots containing the largest proportion of young immature tissues. Soil treatment of cv. Petranova seedlings with the growth retardant BAS 111¨W [1-phenoxy-5,5-dimethyl-3-(1,2,4-triazol-1-yl)-hexan-4-ol] caused 80% reduction in height 18 days after treatment and the levels of all GAs were 20% or less that of control plants. Foliar treatment at the same dosage reduced height by 50% and caused an 85% or greater reduction in the concentrations of the GA1 precursors GA20, GA19 and GA44. However, the levels of GA1, GA8 and GA29 were affected to a much smaller extent. Foliar application of BAS 111¨W to cv. Belinda 1 month after sowing resulted in only a 20% height reduction at flowering, but no uniform decrease in the concentrations of endogenous GAs at this stage.  相似文献   

3.
Foliar treatment of oilseed rape plants (Brassica napus L.ssp. napus cv. Linetta) with the growth retardant BAS 111..W at the 5th leaf stage delayed pod senescence during early maturation. Changes of immunoreactive cytokinin- and abscisic acid (ABA)- like substances and of the ethylene precursor 1-aminocyclo-propane-1-carboxylic acid (ACC) and its malonyl-conjugate (MACC) were determined in intact whole pods. When compared with control plants, higher levels of total chlorophyll correlated with four-fold and three-fold increases of trans-zeatin riboside- and dihydrozeatin riboside-type cytokinins, respectively, in the pods of plants treated with 0.25 mg BAS 111..W per plant. Isopentenyladenosine-type cytokinins and ACC and MACC contents remained virtually unchanged, whereas ABA levels dropped considerably below those of controls (60% reduction). However, when analysed at late pod maturity, BAS 111..W treatment no longer affected the total chlorophyll content, or the levels of cytokinins, ABA, ACC and MACC. We hypothesize that the retardant-induced changes in the hormonal status of the pods, favouring the senescence-delaying cytokinins as opposed to abscisic acid, could contribute to the developmental delay.  相似文献   

4.
Comparisons of epidemics of light leafspot of differing duration and time of initiation were made in two experiments using a single cultivar of Brassica napus. Fungicide was applied before introduction of disease to prevent infection or some time after inoculation to stop further disease development. In the first experiment, substantial reductions in green leaf area and total plant dry-matter were found at flowering when disease was introduced in the autumn or in January. Plant dry weight at maturity was also greatly reduced in these treatments. The detrimental effect of an epidemic initiated in the autumn was avoided to a large extent if fungicide application began in February. Epidemics initiated in March had only small effects on final dry-matter yield. Seed yield was negatively correlated with the length of the epidemic. In a second experiment, early epidemics initiated in the autumn were halted after different time intervals. Commencing fungicide application even as early as December failed to prevent some loss of dry weight at flowering. At maturity, however, dry weight and seed yield were reduced significantly when fungicide application was delayed until February. Failure to control the disease resulted in a 46% loss of seed yield.  相似文献   

5.
6.
Growth temperature and ABA both affect the level of erucic acid (22:1) in microspore‐derived embryos (MDEs) of oilseed rape. We have previously shown that these stimuli act independently. In the present study we investigated the effects of growth temperature (15 vs 25°C) and ABA (0 vs 5 µ M ) on the characteristics and activity of the elongase complex, the enzymes synthesising 22:1. Due to inhibition by the substrate oleoyl‐CoA at low concentrations (< 10 µ M ) it was not possible to determine values for Km and Vmax. Elongase activities from preparations extracted from MDEs grown under different conditions showed an optimum temperature higher than 30°C, with a Q10 value of about 3. We found considerable effects of temperature and exogenous ABA on total elongase activity in MDEs. Our results suggest that the accumulation of 22:1 is regulated by the amount of elongase enzyme and not by changes in the intrinsic characteristics of the enzyme. Elongase activity correlated closely with the absolute amount of 22:1 (µmol), whereas the correlation between elongase activity and the fraction of 22:1 (% of fatty acids) in oil was poorer. Including the total activity of acyltransferases did not improve the correlation. Acyltransferase activity itself correlated poorly with the total amount of oil formed.  相似文献   

7.
Twenty eight Brassica napus lines were developed which had contrasting leaf glucosinolate profiles to those found in commercial oilseed rape cultivars. The lines varied both in the total amount of aliphatic glucosinolates and in the ratio of different side chain structures. The lines were used in field experiments to assess the manner by which glucosinolates mediate the interactions between Brasssica and specialist pests (Psylliodes chrysocephala and Pieris rapae) and generalist pests (pigeons and slugs). Increases in the level of glucosinolates resulted in greater damage by adult flea beetles (P. chrysocephala) and a greater incidence of Pieris rapae larvae, but reduced the extent of grazing by pigeons and slugs. Decreasing the side chain length of aliphatic glucosinolates and reducing the extent of hydroxylation of butenyl glucosinolates increased the extent of adult flea beetle feeding. The implications of modifying the glucosinolate content of the leaves of oilseed rape and the role of these secondary metabolites in plant/herbivore interactions are discussed.  相似文献   

8.
Rapacz M 《Annals of botany》2002,89(5):543-549
The aim of this work was to establish the role of factors that may trigger elongation growth in the dehardening response, namely temperature during daylight, photoperiod and vernalization. Fully cold-acclimated seedlings of winter (with incomplete vernalization) and spring oilseed rape were subjected to deacclimation under temperatures of 2/12, 12/2, 12/12, 12/20, 20/12 and 20/20 degrees C (day/night) and a 12 h photoperiod. Plants were also deacclimated under photoperiods of 8 and 16 h at constant temperatures of 12 and 20 degrees C. After deacclimation, plants were subjected to reacclimation. Results suggest that the level of growth activity induced during deacclimation affects both the deacclimation rate and the capacity for reacclimation. Deacclimation is fully reversible if it is not accompanied by induction of elongation growth. In such cases the rate of the decrease in freezing tolerance depends on the mean temperature of deacclimation. Deacclimation becomes partially or completely irreversible when it is connected with promotion of elongation growth. The stimuli triggering elongation growth during deacclimation may be the growth-promoting temperature (20 degrees C) during the day and the lack of vernalization blockage of elongation growth. When elongation growth was stimulated by other factors such as long-day treatments, rehardening was also disturbed.  相似文献   

9.
The dependence of elongation on the osmotic potential of the medium was investigated, using coleoptile segments (CS) of Triticim aestivum L. (cv. Hartri) and an optoelectronic device. The study aimed at separating the osmoelastic response from the irreversible growth response when an osmoticum (mannitol) was added, and to compare both processes in order to consider the possibility of growth-induced reduction in turgor pressure. The prompt inhibition of elongation registered just after addition of 50 mM mannitol as well as the subsequent resumption of the original elongation rate could be quantitatively explained by the extent and the kinetics of the osmoelastic relaxation. An initial reduction in the irreversible elongation component by mild osmotic stress could not be demonstrated. Above a critical value, the irrevesible growth was insensitive to a further increase in water potential. The minimum turgor pressure required to drive steady growth was not far from zero in both the presence and absence of auxin. The rate (r) of osmotically caused shortening per unit change of water potential was determined from the kinetics of CS shortening induced by addition of mannitol at nearly isotonic concentration (300 mM). This parameter relates a fractional change in length to the difference in water potential between inside and outside, and was assumed to depend largely on the hydraulic resistance of the tissue and cuticle. It was found to be independent of IAA. The relatively low value of Γ suggests significant reduction of turgor at high growth rates. In accordance with this conclusion, the extent of osmoelastic shortening after a transfer to 300 mM mannitol (dependent on wall strain) was significantly decreased in the presence of IAA. Addition of 100 μM IAA to CS growing at a constant rate induced pronounced oscillations in the rate of elongation, which may be connected with the change in elastic cell wall strain. Whereas the steady state growth rate before the addition of IAA was the same in the presence and in the absence of 50 mM mannitol, the maximum growth rate found after addition of IAA was substantially reduced in the mannitol variant.  相似文献   

10.
Turnip yellows virus (TuYV) is the most important virus infecting oilseed rape in the United Kingdom. The incidence and spatial distribution of TuYV in winter oilseed rape (WOSR) crops in three regions of England were determined over three growing seasons. Leaf samples were collected from three fields in each region, in autumn (November–December) and spring (April) of the three crop seasons and tested for virus presence by enzyme-linked immunosorbent assay. Infection was detected in all fields except one. Higher TuYV incidences were recorded in 2007–2008 (≤89%) and 2009–2010 (≤100%) crop seasons than in 2008–2009 (≤24%). Highest incidences were recorded in Lincolnshire (≤100%), followed by Warwickshire (≤88%), with lowest incidences in Yorkshire (1–74%). There was a significant increase in incidence detected between autumn and spring sampling in eight fields, a significant decrease in one field and no significant change in 18 fields. Rothamsted Insect Survey suction trap data for the aphid Myzus persicae in Lincolnshire, Warwickshire and Yorkshire revealed two peaks of flight activity in most years (2007–2009). The second peak (September–November) coincided with emergence of WOSR. The highest cumulative (August–November) trap catches in the three regions during the three crop seasons occurred in Lincolnshire and the lowest in Yorkshire; catches in autumn 2009 were highest and lowest in autumn 2008. Regression analysis revealed a highly significant association between the cumulative numbers of M. persicae caught in the suction traps closest to the crops between August and November each year and the incidence of TuYV detected in the WOSR crops in the autumn of each year. Results are discussed in the light of factors affecting the spread of TuYV and future possibilities for control.  相似文献   

11.
Schjoerring  Jan K  Mattsson  Marie 《Plant and Soil》2001,236(1):105-115
The exchange of ammonia between the atmosphere and the canopy of barley, wheat, oilseed rape and pea crops was studied over two growing seasons by use of a modified aerodynamic gradient technique in which passive horizontal flux samplers were applied with a wind profile in gradient configuration. The crop foliage was a net source of NH3 to the atmosphere, with NH3 emissions on a seasonal basis between 1 and 5 kg NH3–N ha–1. The amount of NH3 lost constituted between 1 and 4% of the applied nitrogen and between 1 and 4% of the actual amount of nitrogen present in the mature shoots. The volatile NH3 losses depended on seasonal variations in climatic conditions affecting the growth and nitrogen economy of the crops and increased under conditions with excessive N absorption by roots and a high N concentration in the foliage. The accumulated NH3 loss was positively correlated with the above-ground crop N content at anthesis, but not with that at final maturity. There were no indications that NH3 emissions were larger under conditions unfavourable for nitrogen remobilization from vegetative plant parts (low N harvest index). Nevertheless, a distinct peak in NH3 emission occurred during senescence. It is concluded that crops in many areas will represent a significant input of ammonia to the atmosphere and that NH3 losses may become large enough to significantly affect crop N budgets.  相似文献   

12.
1 Host‐plant‐odour‐induced upwind anemotaxis is accepted as the main mechanism by which herbivorous insects find their host plant within an heterogenous environment, but field data supporting this hypothesis are scarce. 2 The flight directions of the pollen beetle Meligethes aeneus to and from a plot of winter oilseed rape and the direction of the wind were recorded concurrently. The beetles were sampled by eight double‐sided window traps encircling the plot. Distal sides of the traps, relative to the plot, sampled the beetles as they flew towards the plot, whereas the proximal sides of the traps sampled them as they flew away from the plot. Paired data on daily catch of beetles in distal or proximal traps and the volume of air impacting each trap were compared. 3 Correlations between daily catch of M. aeneus into distal traps and trap wind volume were negative, indicating that flights by both overwintered‐ and new‐generation insects towards the plot were upwind. 4 Correlations between daily catch of M. aeneus into proximal traps and trap wind volume varied with generation. Catch of overwintered‐generation M. aeneus was negatively correlated with trap wind volume, indicating that flight was upwind. Proximal trap catch of the new‐generation M. aeneus was weakly/modestly positively correlated with trap wind volume, indicating that flights were downwind or crosswind. 5 Understanding the effect of wind direction on flight of M. aeneus holds potential for improving the forecasting of their arrival and spatial distribution on the crop for integrated pest management.  相似文献   

13.
Abstract Changes in the net uptake rate of K+ and in the average tissue concentration of K+ were measured over 14 d in response to changes in root temperature with oilseed rape (Brassica napus L. cv. Bien venu) and barley (Hordeum vulgare L. cv. Atem). Plants were grown in flowing nutrient solutions containing 2.5 mmol m?3 K+ and were acclimatized over 49 d (rape) or 28 d (barley) to low root temperature (5°C) prior to steady–state treatments at root temperatures between 3 °C and 25 °C, with common air temperature. Uptake of K+ was monitored continuously over 14 d and nitrogen was supplied as NH4++ NO?3 or NH+4 or NO?3. Unit absorption rates of K+ increased with time and with root temperature up to Day 4 or 5 following the change in root temperature. Thereafter they usually approached steady-state, with Q10? 2.0 between 7 °C and 17°C, although rates became similar between 7 °C and 13°C. Uptake of K+ by rape plants was invariably greater under NO?3 nutrition compared with NH+4. The percentage K+ in the plant dry matter increased with temperature from 2% at 3 °C to 4% at 25 °C in rape, but there was less effect of temperature on the average concentrations of K+ in the plant fresh weight or plant water content. Concentrations of K+ in the leaf water fraction of rape plants decreased with increasing root temperature, but in barley they increased with increasing root temperature. Concentrations of K+ in the root water fraction were relatively stable with respect to root temperature. The results are discussed in terms of compensatory changes in K+ uptake following a change in root temperature and the relationships between growth, shoot: root ratio and K+ composition of the plant.  相似文献   

14.
Shoot and root growth are differentially sensitive to water stress. Interest in the involvement of hormones in regulating these responses has focused on abscisic acid (ABA) because it accumulates in shoot and root tissues under water-limited conditions, and because it usually inhibits growth when applied to well-watered plants. However, the effects of ABA can differ in stressed and non-stressed plants, and it is therefore advantageous to manipulate endogenous ABA levels under water-stressed conditions. Studies utilizing ABA-deficient mutants and inhibitors of ABA synthesis to decrease endogenous ABA levels, and experimental strategies to circumvent variation in plant water status with ABA deficiency, are changing the view of the role of ABA from the traditional idea that the hormone is generally involved in growth inhibition. In particular, studies of several species indicate that an important role of endogenous ABA is to limit ethylene production, and that as a result of this interaction ABA may often function to maintain rather than inhibit shoot and root growth. Despite early speculation that interaction between these hormones may influence many of the effects of water deficit, this topic has received little attention until recently.  相似文献   

15.
Crop height in the oilseed rape cv. Ariana was reduced more by the triazole retardant triapenthenol at 490 g ai ha–1, applied as a combined spray with the triazole fungicide tebuconazole at 250 g ai ha–1, than when triapenthenol was applied alone. The growth responses following combined treatment appeared to be additive of the component effects.Initial inhibition of stem extension and leaf expansion by tebuconazole was followed by compensatory growth; the pattern of responses was similar to that with triapenthenol applied at approximately one tenth of the rate. However, different mechanisms of effects on growth were indicated by competitive interaction with gibberellic acid.  相似文献   

16.
Changes in the concentration of cytokinins were studied following root cooling. Simultaneously, the growth rate of the second leaf was monitored with a highly sensitive growth sensor attached to its tip. Cytokinins were separated by thin layer chromatography and immunoassayed using antibodies to zeatin riboside. The extension rate of the second leaf decreased within 15 minutes of cooling the nutrient medium from 24 °C to 4 °C. The concentration of cytokinins in shoots decreased with similar rapidity. In contrast cytokinins in roots increased slightly during the initial period of cooling before declining. The sharp decrease in cytokinin concentrations in shoots 15 minutes after cooling of roots may contribute to the abrupt inhibition of shoot growth.  相似文献   

17.
The cabbage seed weevil, Ceutorhynchus assimilis Payk. [syn. Ceutorhynchus obstrictus (Marsham)] (Coleoptera: Curculionidae), a crucifer-feeding insect, is a pest of oilseed rape (Brassica napus L.). It is known to be attracted by isothiocyanates, crucifer-specific volatiles that are metabolites of the glucosinolates. The responses of this insect to other electrophysiologically-active volatiles from rape were tested in a linear track olfactometer. Attraction was demonstrated to nitriles (phenylacetonitrile, 4-pentenenitrile and 5-hexenenitrile), which are also glucosinolate metabolites, and to volatiles emitted by a wider spectrum of plant families ((Z)-3-hexen-1-ol and methyl salicylate). Combination of an isothiocyanate mixture with phenylacetonitrile increased attraction, but there was no such increase when the isothiocyanate mixture was combined with methyl salicylate. A mixture of 23 volatiles, emulating an attractive air-entrainment extract of oilseed rape, was not significantly attractive, although a high proportion of weevils (60%) turned towards it. The potential of these volatiles for inclusion into an isothiocyanate-based monitoring system is discussed.  相似文献   

18.
Plant analysis can diagnose boron (B) deficiency when the standards used have been properly developed by establishing that a close relationship exists between B concentration in a plant part and its physiological function. The purpose of the present study was to demonstrate the importance of choosing the growing immature leaves for B deficiency diagnosis and for establishing critical B concentrations for the diagnosis of B deficiency in oilseed rape (Brassica napus). In Experiment 1, the plants were subject to seven levels of B supply using programmed nutrient addition, for the estimation of critical B concentrations in plant parts for shoot growth. In Experiment 2, the plants were treated with two levels of B supply in solution: 10 (+B) and 0 (-B) M B, for the estimation of functional B requirements for leaf elongation. The results showed that critical B concentrations varied amongst the plant parts sampled and decreased with leaf age. As B taken up by roots is largely phloem-immobile, B concentrations in mature leaves are physiologically irrelevant to plant B status at the time of sampling, giving rise to a significant over- or underestimation of the B requirement for plant growth. By contrast, a growing, immature leaf, in this case the youngest open leaf (YOL), was the most reliable plant part for B deficiency diagnosis. Critical B concentrations developed from both methods were comparable-i.e. 10–14 mg B kg–1 dry matter in the YOL at vegetative growth stages up to stem elongation.  相似文献   

19.
Changes in ethylene production and in the contents of 1-aminocydopropane-1-carboxylic acid (ACC), 1-(malonylamin6)-cyclopropane-1-carboxylic acid (MACC), abscisic acid (ABA) and L-proline were determined after 40 days of cold hardening at 4°C in three wheat cultivars differing in frost resistance. Proline and especially ABA accumulated with hardening in all varieties in parallel with the degree of frost resistance, e.g. proline and ABA increases in the non-resistant cv. Slávia were 2x and 5x, whilst in the resistant cv. Mironovská 808 increases were 4X and 20X. Ethylene production and MACC level showed no significant changes with hardening in any of the cultivars after 40 d, but ACC levels did increase with hardening. The production of ethylene, ACC and MACC was studied during hardening. Ethylene production decreased sharply at low temperature and rose rapidly (within 1 day) on return to normal temperature, while ACC production reacted in the opposite direction. MACC levels rose rapidly during the first 4 days of cold, then more slowly for about 2 weeks, thereafter decreasing again steadily. The only varietal differences occurring at maximum levels were correlated with the degree of frost resistance.  相似文献   

20.
Addition of aluminium chloride (50 μM Al) caused different effects on the transmembrane electrical potential (PD) of root cells in Al-tolerant wheat (Triticum aestivum) cv. Kadett and Al-sensitive cv. WW 20299. As changes in PD of plant cells may depend on transient fluxes of protons, potassium and/or calcium through cell membranes, the effect of Al was investigated on the cytosolic concentrations of these ions in protoplasts isolated from root tips of the same cultivars. The tetra[acetoxymethyl] esters of the fluorescent dyes bis-carboxyethyl-carboxyfluorescein, BCECF, K+-binding benzofuran isophthalate, PBFI, and the stilbene chromophore Fura 2-AM were used to determine pH, K+ and Ca2+, respectively. Changes in fluorescence ratios, directly reflecting changes in [H+], [K+] and [Ca2+] in the cytosol, were determined by photometry fluorescence microscopy. Additions and removals of Al to and from both cultivars caused hyperpolarizations and depolarizations, respectively, but only in the sensitive cv. WW 20299 did the resting PD decrease gradually. Addition of Al to the protoplasts caused rapid changes in cytosolic pH, free [K+] and [Ca2+]. In both cultivars Al caused a transient oscillating increase in cytosolic [Ca2+] for 1 or 2 min and a rapid pH-dependent change in cytosolic [K+]. At pH 5 the presence of K+ in the medium diminished the Al-induced decrease in cytosolic [K+]. Aluminium (50 μM) induced a transient increase in cytosolic [H+] (pH decreased) in both cultivars, but the cytosolic pH returned to its initial value only in the Al-tolerant cv. Kadett. In the Alsensitive cv. WW 20299, repeated additions of Al caused a gradual decline in pH. Moreover, in the presence of 1 mM KCl, pH recovered completely in both cultivars. Since only the effect on pH differed in the two cultivars, the more toxic effect of Al on the cv. WW 20299 should be related to the change in pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号