首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of adaptation to Hg in four aquatic habitats was studied by correlating microbially mediated Hg volatilization with the adaptive state of the exposed communities. Community diversity, heterotrophic activity, and Hg resistance measurements indicated that adaptation of all four communities was stimulated by preexposure to Hg. In saline water communities, adaptation was associated with rapid volatilization after an initial lag period. This mechanism, however, did not promote adaptation in a freshwater sample, in which Hg was volatilized slowly, regardless of the resistance level of the microbial community. Distribution of the mer operon among representative colonies of the communities was not related to adaptation to Hg. Thus, although volatilization enabled some microbial communities to sustain their functions in Hg-stressed environments, it was not mediated by the genes that serve as a model system in molecular studies of bacterial resistance to mercurials.  相似文献   

2.
T Barkay  C Liebert    M Gillman 《Applied microbiology》1989,55(5):1196-1202
The role of mer(Tn21) in the adaptation of aquatic microbial communities to Hg2+ was investigated. Elemental mercury was the sole product of Hg2+ volatilization by freshwater and saline water microbial communities. Bacterial activity was responsible for biotransformation because most microeucaryotes did not survive the exposure conditions, and removal of larger microbes (greater than 1 micromole) from adapted communities did not significantly (P greater than 0.01) reduce Hg2+ volatilization rates. DNA sequences homologous to mer(Tn21) were found in 50% of Hg2+-resistant bacterial strains representing two freshwater communities, but in only 12% of strains representing two saline communities (the difference was highly significant; P less than 0.001). Thus, mer(Tn21) played a significant role in Hg2+ resistance among strains isolated from fresh waters, in which microbial activity had a limited role in Hg2+ volatilization. In saline water environments in which microbially mediated volatilization was the major mechanism of Hg2+ loss, other bacterial genes coded for this biotransformation.  相似文献   

3.
The role of mer(Tn21) in the adaptation of aquatic microbial communities to Hg2+ was investigated. Elemental mercury was the sole product of Hg2+ volatilization by freshwater and saline water microbial communities. Bacterial activity was responsible for biotransformation because most microeucaryotes did not survive the exposure conditions, and removal of larger microbes (greater than 1 micromole) from adapted communities did not significantly (P greater than 0.01) reduce Hg2+ volatilization rates. DNA sequences homologous to mer(Tn21) were found in 50% of Hg2+-resistant bacterial strains representing two freshwater communities, but in only 12% of strains representing two saline communities (the difference was highly significant; P less than 0.001). Thus, mer(Tn21) played a significant role in Hg2+ resistance among strains isolated from fresh waters, in which microbial activity had a limited role in Hg2+ volatilization. In saline water environments in which microbially mediated volatilization was the major mechanism of Hg2+ loss, other bacterial genes coded for this biotransformation.  相似文献   

4.
The role of biological activities in the reduction and volatilization of Hg(II) from a polluted pond was investigated. Elemental mercury was evolved from pond water immediately following spiking with203Hg(NO3)2, whereas an acclimation period of 36 hours was required in control samples collected from a nearby, unpolluted river before onset of volatilization. Genes encoding the bacterial mercuric reductase enzyme (mer genes) were abundant in DNA fractions extracted from biomass of the pond microbial community, but not in samples extracted from control communities. Thus, evolution of Hg0 was probably due to activities mediated by the bacterial mercuric reductase. Of four characterizedmer operons, the system encoded by transposon 501 (mer(Tn501)) dominated and likely contributed to the majority of the observed Hg(II) volatilization. Thus,mer-mediated reduction and volatilization could be used to reduce Hg(II) concentrations in polluted waters, in turn decreasing rates of methylmercury formation by limiting substrate availability.  相似文献   

5.
The rate of volatilization of Hg2+ as metallic Hg is accelerated by illumination of Chlorella cells. In the presence of the uncoupler methylamine the rate of volatilization in the light is greatly but transiently increased. DCMU (3-(3,4-dichlorophenyl)-1,1-dimethyl urea) prevented the light response. In the presence of Hg2+, O2 evolution by the cells was not completely inhibited by DCMU. Hg2+ appears to prevent DCMU reaching its binding site. Light seems to increase the amount of or leakage from the cells of a metabolite capable of reducing Hg2+ to Hg°.  相似文献   

6.
Mercury pollution has emerged as a major problem in industrialized zones and presents a serious threat to environment and health of local communities. Effectiveness and wide distribution of mer operon by horizontal and vertical gene transfer in its various forms among large community of microbe reflect importance and compatibility of this mechanism in nature. This review specifically describes mer operon and its generic molecular mechanism with reference to the central role played by merA gene and its related gene products. The combinatorial action of merA and merB together maintains broad spectrum mercury detoxification system for substantial detoxification of mercurial compounds. Feasibility of mer operon to coexist with antibiotic resistance gene (amp r , kan r , tet r ) clusters enables extensive adaptation of bacterial species to adverse environment. Flexibility of the mer genes to exist as intricate part of chromosome, plasmids, transposons, and integrons enables high distribution of these genes in wider microbial gene pool. Unique ability of this system to manipulate oligodynamic property of mercurial compounds for volatilization of mercuric ions (Hg2+) makes it possible for a wide range of microbes to tolerate mercury-mediated toxicity.  相似文献   

7.
8.
A survey of the comparative cytological effects of growth in the presence of mercury by a group of mercury-resistant bacterial cultures and a characterization of the process of bacterial adaptation to Hg2+ ion was accomplished. Mercury resistance was found to be dependent upon the ability to volatilize mercury from the medium and upon the amount of mercury accumulated by the cells. The results indicate that most cultures which adapt to growth in the presence of HgCl2 exhibit extensive morphological abnormalities. Significant effects are delay in the onset of growth and cell division and numerous structural irregularities associated with cell wall and cytoplasmic membrane synthesis and function. A detailed analysis of the adaptation process and the resulting effects on morphology was performed on an Enterobacter sp. During the period preceding active multiplication, a selection for mercury-resistant mutants occurred. It was also demonstrated that growth commenced only at a specific threshold concentration of Hg2+.  相似文献   

9.
The relationship of mercury resistance to the concentration and chemical speciation of mercurial compounds was evaluated for microbial communities of mercury-polluted and control waters. Methodologies based on the direct viable counting (DVC) method were adapted to enumerate mercury-resistant communities. Elevated tolerance to Hg(II) was observed for the microbial community of one mercury-polluted pond as compared to the community of control waters. These results suggest an in situ acclimation to Hg(II). The results of the methylmercury resistance-DVC assay suggested that minimal acclimation to CH3Hg+ occurred since similar concentrations of CH3HgCl inhibited growth of 50% of organisms in both the control and polluted communities. Analyses of different mercury species in pond waters suggested that total mercury, but not CH3Hg+ concentrations, approached toxic levels in the polluted ponds. Thus, microbial acclimation was specific to the chemical species of mercury present in the water at concentrations high enough to cause toxic effects to nonacclimated bacterial communities.  相似文献   

10.
The protective effect of cyclosporin A on the damage induced by Hg2+ in kidney mitochondria was studied. Cyclosporin, added in vitro at a concentration of 0.5 μM, reversed the deleterious effects of Hg2+ on transmembrane potential and Ca2+ accumulation. However, when injected in rats, together with Hg2+, cyclosporin failed to protect against Hg2+ poisoning. Due to the low activity of cyclophilin found in kidney mitochondria, it is proposed that the protection of cyclosprin in vitro must be extered through an independent mechanism different from its binding to cyclophilin.  相似文献   

11.
Of 100 strains of iron-oxidizing bacteria isolated, Thiobacillus ferrooxidans SUG 2-2 was the most resistant to mercury toxicity and could grow in an Fe2+ medium (pH 2.5) supplemented with 6 μM Hg2+. In contrast, T. ferrooxidans AP19-3, a mercury-sensitive T. ferrooxidans strain, could not grow with 0.7 μM Hg2+. When incubated for 3 h in a salt solution (pH 2.5) with 0.7 μM Hg2+, resting cells of resistant and sensitive strains volatilized approximately 20 and 1.7%, respectively, of the total mercury added. The amount of mercury volatilized by resistant cells, but not by sensitive cells, increased to 62% when Fe2+ was added. The optimum pH and temperature for mercury volatilization activity were 2.3 and 30°C, respectively. Sodium cyanide, sodium molybdate, sodium tungstate, and silver nitrate strongly inhibited the Fe2+-dependent mercury volatilization activity of T. ferrooxidans. When incubated in a salt solution (pH 3.8) with 0.7 μM Hg2+ and 1 mM Fe2+, plasma membranes prepared from resistant cells volatilized 48% of the total mercury added after 5 days of incubation. However, the membrane did not have mercury reductase activity with NADPH as an electron donor. Fe2+-dependent mercury volatilization activity was not observed with plasma membranes pretreated with 2 mM sodium cyanide. Rusticyanin from resistant cells activated iron oxidation activity of the plasma membrane and activated the Fe2+-dependent mercury volatilization activity of the plasma membrane.  相似文献   

12.
The effect of different concentrations of Hg2+, Cd2+, and Pb2+ on ultrastructure, growth, respiration, photosynthesis, chlorophyll content, and metal accumulation in Euglena gracilis was examined. The toxicity of the heavy metals was dependent on the culture medium used and whether cells were grown in the dark or under illumination. Hg2+ was the most toxic metal, which showed effects at a concentration as low as 1.5 μM; Cd2+ showed an intermediate toxicity (effects observed above 50 μM); and Pb2+ was almost ineffective up to 1 mM. Cells grown for several weeks in the dark, in the presence of 1.5 μM Hg2+ showed a reduced sensitivity to subsequent exposure to Cd2+ or Pb2+. The Hg2+-pretreated cells also presented an enhanced capacity to accumulate other metals. In comparison, light-grown cells showed a greater Cd2+ accumulation, but a lower Pb2+ uptake than Hg2+-pretreated dark-grown cells. Pretreatment of light-grown cells with Hg2+ did not enhance the accumulation of Cd2+. These results suggest that the capacity to tolerate heavy metals by Euglena may have mechanistic differences when cells are grown in the dark or under illumination.  相似文献   

13.
The metalloregulatory protein MerR which plays important roles in mer operon system exhibits high affinity and selectivity toward mercury (II) (Hg2+). In order to improve the adsorption ability of Saccharomyces cerevisiae for Hg2+, MerR was displayed on the surface of S. cerevisiae for the first time with an α-agglutinin-based display system in this study. The merR gene was synthesized after being optimized and added restriction endonuclease sites EcoR I and Mlu I. The display of MerR was indirectly confirmed by the enhanced adsorption ability of S. cerevisiae for Hg2+ and colony PCR. The hydride generation atomic absorption spectrometry was applied to measure the Hg2+ content in water. The engineered yeast strain not only showed higher tolerance to Hg, but also their adsorption ability was much higher than that of origin and control strains. The engineered yeast could adsorb Hg2+ under a wide range of pH levels, and it could also adsorb Hg2+ effectively with Cd2+ and Cu2+ coexistence. Furthermore, the engineered yeast strain could adsorb ultra-trace Hg2+ effectively. The results above showed that the surface-engineered yeast strain could adsorb Hg2+ under complex environmental conditions and could be used for the biosorption and bioremediation of environmental Hg contaminants.  相似文献   

14.
Solubilization and partial purification of the rabbit pulmonary and hepatic N,N-dimethylaniline N-oxidases were carried out in order to study the effect of Hg2+ in vitro observed previously in the microsomal enzymes. Rabbit lung microsomal N,N-dimethylaniline (DMA) N-oxidase activity was stimulated 1.5–2 times by 0.1 mM Hg2+ added in vitro. This concentration of mercury inhibited hepatic microsomal N-oxidase by 50%. Upon solubilization and partial purification of the lung N-oxidase enzyme, stimulation of the N-oxidase activity by 0.1 mM Hg2+ was lost. It was found that the concentration of Hg2+ that would stimulate the partially purified pulmonary N-oxidases was 25 μM or less. Stimulation by 0.1 mM Hg2+ of the partially purified N-oxidase from lung was restored by addition of flavins (FMN or FAD) or a heat-stable (NH4)2SO4 precipitated fraction obtained during the purification of the N-oxidase from solubilized pulmonary or hepatic microsomes. However, addition of the flavins or the solubilized, heat-stable fraction from liver or lung microsomes did not reverse inhibition by 0.1 mM Hg2+ of the N-oxidase in hepatic microsomes or in partially purified preparations from these hepatic microsomes. Kinetic data suggest that flavins and the heatstable factor isolated from microsomes lower the concentration of free Hg2+.The determination of kinetics of Hg2+ inhibition (liver) and activation (lung) with the partially purified N-oxidases showed that the pulmonary and hepatic DMA N-oxidase enzymes are markedly different with respect to their in vitro response to Hg2+. This suggests that the N-oxidases from liver and lung may be different enzymes.  相似文献   

15.
A simple naphthalimide-based fluorescent probe was designed and synthesized for the determination of mercury ion (Hg2+). The probe showed a noticeable fluorescence quenching response for Hg2+. When added with Hg2+, the fluorescence intensity of the probe at 560 nm was remarkably decreased with the color changed from yellow to colorless under ultraviolet (UV) light. The probe had a notable selectivity and sensitivity for Hg2+ and displayed an excellent sensing performance when detecting Hg2+ at low concentration (19.5 nM). The binding phenomenon between the probe and Hg2+ was identified by Job's method and high-resolution mass spectrometry (HRMS). Moreover, the probe was not only utilized to identify Hg2+ in real samples with satisfactory results (92.00%–110.00%) but also was successfully used for bioimaging in cells and zebrafish. The recognition mechanism has been verified by transmission electron microscopy (TEM) for the first time. All the results showed that the probe could be used as a potent useful tool for detection of Hg2+.  相似文献   

16.
Methylation of mercury (Hg) is the crucial process that controls Hg biomagnification along the aquatic food chains. Aquatic sediments are of particular interest because they constitute an essential reservoir where inorganic divalent Hg (HgII) is methylated. Methylmercury (MeHg) concentrations in sediments mainly result from the balance between methylation and demethylation reactions, two opposite natural processes primarily mediated by aquatic microorganisms. Thus, Hg availability and the activity of methylating microbial communities control the MeHg abundance in sediments. Consistently, some studies have reported a significant positive correlation between MeHg and HgII or total Hg (HgT), taken as a proxy for HgII, in aquatic sediments using enzyme-catalyzed methylation/demethylation mechanisms. By compiling 1,442 published and unpublished HgT–MeHg couples from lacustrine, riverine, estuarine and marine sediments covering various environmental conditions, from deep pristine abyssal to heavily contaminated riverine sediments, we show that a Michaelis–Menten type relationship is an appropriate model to relate the two parameters: MeHg = aHgT/(K m  + HgT), with a = 0.277 ± 0.011 and K m  = 188 ± 15 (R 2 = 0.70, p < 0.001). From K m variations, which depend on the various encountered environmental conditions, it appears that MeHg formation and accumulation are favoured in marine sediments compared to freshwater ones, and under oxic/suboxic conditions compared to anoxic ones, with redox potential and organic matter lability being the governing factors.  相似文献   

17.
18.
19.
Substrate-electron acceptor combinations and specific metabolic inhibitors were applied to anoxic saltmarsh sediment spiked with mercuric ions (Hg2+) in an effort to identify, by a direct approach, the microorganisms responsible for the synthesis of hazardous monomethylmercury. 2-Bromoethane sulfonate (30 mM), a specific inhibitor of methanogens, increased monomethylmercury synthesis, whereas sodium molybdate (20 mM), a specific inhibitor of sulfate reducers, decreased Hg2+ methylation by more than 95%. Anaerobic enrichment and isolation procedures yielded a Desulfovibrio desulfuricans culture that vigorously methylated Hg2+ in culture solution and also in samples of presterilized sediment. The Hg2+ methylation activity of sulfate reducers is fully expressed only when sulfate is limiting and fermentable organic substrates are available. To date, sulfate reducers have not been suspected of Hg2+ methylation. Identification of these bacteria as the principal methylators of Hg2+ in anoxic sediments raises questions about the environmental relevance of previous pure culture-based methylation work.  相似文献   

20.
An aqueous fluorescent probe, 1, was developed for the rapid detection of Hg2+ with high sensitivity and excellent selectivity. Upon the addition of Hg2+ in pure aqueous media, the Hg2+‐mediated hydrolysis of vinyl ether and subsequent cyclization reactions converted probe 1 into the corresponding iminocoumarin dye, which is strongly fluorescent when excited. The application of this probe for the detection of intracellular Hg2+ was successfully demonstrated in living cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号