首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Interaction of the platelet GPIb-V-IX complex with surface immobilized von Willebrand factor (vWf) is required for the capture of circulating platelets and their ensuing activation. In previous work, it was found that GPIb/vWf-mediated platelet adhesion triggers Ca2+ release from intracellular stores, leading to cytoskeletal reorganization and filopodia extension. Despite the potential functional importance of GPIb-induced cytoskeletal changes, the signaling mechanisms regulating this process have remained ill-defined. The studies presented here demonstrate an important role for phospholipase C (PLC)-dependent phosphoinositide turnover for GPIb-dependent cytoskeletal remodeling. This is supported by the findings that the vWf-GPIb interaction induced a small increase in inositol 1,4,5-triphosphate (IP3) and that treating platelets with the IP3 receptor antagonist APB-2 or the PLC inhibitor U73122 blocked cytosolic Ca2+ flux and platelet shape change. Normal shape change was observed in G alpha q-/- mouse platelets, excluding a role for PLC beta isoforms in this process. However, decreased shape change and Ca2+ mobilization were observed in mice lacking PLC gamma 2, demonstrating that this isotype played an important, albeit incomplete, role in GPIb signaling. The signaling pathways utilized by GPIb involved one or more members of the Src kinase family as platelet shape change and Ca2+ flux were inhibited by the Src kinase inhibitors PP1 and PP2. Strikingly, shape change and Ca2+ release occurred independently of immunoreceptor tyrosine-based activation motif (ITAM)-containing receptors, because these platelet responses were normal in human platelets treated with the anti-Fc gamma RIIA blocking monoclonal antibody IV.3 and in mouse platelets deficient in the FcR gamma chain. Taken together, these studies define an important role for PLC gamma 2 in GPIb signaling linked to platelet shape change. Moreover, they demonstrate that GPIb-dependent calcium flux and cytoskeletal reorganization involves a signaling pathway distinct from that utilized by ITAM-containing receptors.  相似文献   

2.
Platelet adhesion to sites of vascular injury is initiated by the binding of the platelet glycoprotein (GP) Ib-V-IX complex to matrix-bound von Willebrand factor (vWf). This receptor-ligand interaction is characterized by a rapid on-off rate that enables efficient platelet tethering and rolling under conditions of rapid blood flow. We demonstrate here that platelets adhering to immobilized vWf under flow conditions undergo rapid morphological conversion from flat discs to spiny spheres during surface translocation. Studies of Glanzmann thrombasthenic platelets (lacking integrin alpha(IIb)beta(3)) and Chinese hamster ovary (CHO) cells transfected with GPIb/IX (CHO-Ib/IX) confirmed that vWf binding to GPIb/IX was sufficient to induce actin polymerization and cytoskeletal reorganization independent of integrin alpha(IIb)beta(3). vWf-induced cytoskeletal reorganization occurred independently of several well characterized signaling processes linked to platelet activation, including calcium influx, prostaglandin metabolism, protein tyrosine phosphorylation, activation of protein kinase C or phosphatidylinositol 3-kinase but was critically dependent on the mobilization of intracellular calcium. Studies of Oregon Green 488 1, 2-bis(o-amino-5-fluorophenoxy)ethane-N,N,N',N-tetraacetic acid tetraacetoxymethyl ester-loaded platelets and CHO-Ib/IX cells demonstrated that these cells mobilize intracellular calcium in a shear-dependent manner during surface translocation on vWf. Taken together, these studies suggest that the vWf-GPIb interaction stimulates actin polymerization and cytoskeletal reorganization in rolling platelets via a shear-sensitive signaling pathway linked to intracellular calcium mobilization.  相似文献   

3.
Elevation of the intracellular cAMP level induces morphological changes of astrocyte-like differentiation in C6 glioma cells. Such changes may be accompanied with expression of cytoskeletal protein genes. We therefore analyzed morphological changes after a treatment with dibutyryl cAMP (dbcAMP) and then assessed the expression of cytoskeletal protein genes by a quantitative real-time polymerase chain reaction. The cell number remained unaltered upon incubation with 1 mM dbcAMP in medium supplemented with 0.1% fetal bovine serum (FBS), whereas the number and lengths of processes increased, when compared with those of cells incubated in medium supplemented with 0.1% or 10% FBS only. The amounts of β-actin, γ-actin, and β-tubulin mRNAs in C6 cells, but not α-tubulin mRNA, increased during the early proliferation in DMEM containing 10% FBS. The expression of cytoskeletal protein genes decreased when incubated with 0.1% FBS or 1 mM dbcAMP in 0.1% FBS, compared with those of cells cultured in 10% FBS. These results indicated that, during the early proliferation in normal culture condition, the expression of cytoskeletal protein genes in C6 cells, except α-tubulin, increased, while in differentiating or differentiated C6 glioma cells, cAMP-induced morphological changes were not accompanied with elevation of gene expression for cytoskeletal proteins, such as actin and tubulin.  相似文献   

4.
Changes in shape, and aggregation that accompanies platelet activation, are dependent on the assembly and reorganization of the cytoskeleton. To assess the changes in cytoskeleton induced by thrombin and PMA, suspensions of aspirin-treated,32P-prelabeled, washed pig platelets in Hepes buffer containing ADP scavengers were activated with thrombin, and with PMA, an activator of protein kinase C. The cytoskeletal fraction was prepared by adding Triton extraction buffer. The Triton-insoluble (cytoskeletal) fraction isolated by centrifugation was analysed by SDS-PAGE and autoradiography. Incorporation of actin into the Triton-insoluble fraction was used to quantify the formation of F-actin. Thrombin-stimulated platelet cytoskeletal composition was different from PMA-stimulated cytoskeletal composition. Thrombin-stimulated platelets contained not only the three major proteins: actin (43 kDa), myosin (200 kDa) and an actin-binding protein (250 kDa), but three additional proteins of Mr56 kDa, 80 kDa and 85 kDa in the cytoskeleton, which were induced in by thrombin dose-response relationship. In contrast, PMA-stimulated platelets only induced actin assembly, and the 56 kDa, 80 kDa and 85 kDa proteins were not found in the cytoskeletal fraction. Exposure of platelets to thrombin or PMA induced phosphorylation of pleckstrin parallel to actin assembly. Staurosporine, an inhibitor of protein kinase C, inhibited actin assembly and platelet aggregation induced by thrombin or PMA, but did not inhibit the incorporation of 56 kDa, 80 kDa and 85 kDa into the cytoskeletal fraction induced by thrombin. These three extra proteins seem to be unrelated to the induction of protein kinase C. We conclude that actin polymerization and platelet aggregation were induced by a mechanism dependent on protein kinase C, and suggest that thrombin-activated platelets aggregation could involve additional cytoskeletal components (56 kDa, 80 kDa, 85 kDa) of the cytoskeleton, which made stronger actin polymerization and platelet aggregation more.  相似文献   

5.
Preincubation of platelet suspension with dbcAMP during 2 minutes inhibited the ADP-induced change in platelet shape. An increase of the cAMP content in the cell induced by papaverine inhibiting phosphodiesterase also blocked the change in the shape caused by ADP and prostaglandin E2 (PGE2). Incubation of platelets in medium with pH 9.0 or addition of PGE2 produced a stable change in the shape of the cells. The action of dbcAMP or papaverine on the changed cells accelerated the recovery of the native shape and the content of membrane-bound calcium.  相似文献   

6.
7.
GIT1 is an adaptor protein, which links signaling proteins to focal adhesion, thereby regulating cytoskeletal reorganization. Platelets undergo dynamic cytoskeletal reorganization during platelet activation, for which a large number of adaptor proteins are required. However, there has been no report of GIT1 in platelets. We found that GIT1 was abundantly expressed in platelets and underwent tyrosine phosphorylation downstream of integrin αIIbβ3, which was inhibited by the Src kinase inhibitor PP2. Furthermore, GIT1 constitutively associated with βPIX, a guanine nucleotide exchange factor (GEF) for Rac. The GIT1/βPIX complex associated with αIIbβ3, concomitantly with GIT1 tyrosine phosphorylation. Moreover, both GIT1 and αIIbβ3 rapidly translocated to the cytoskeletal fraction during platelet aggregation, which was not observed in the absence of aggregation. These results suggest that tyrosine phosphorylation of GIT1 by Src kinases may regulate cytoskeletal reorganization downstream of αIIbβ3 by bringing the Rac GEF βPIX to the vicinity of the integrin.  相似文献   

8.
9.
During morphogenesis tissues significantly remodel by coordinated cell migrations and cell rearrangements. Central to this problem are cell shape changes that are driven by distinct cytoskeletal reorganization responsible for force generation. Calcium is a versatile and universal messenger that is implicated in the regulation of embryonic development. Although calcium transients accrue clearly and more intensely in tissues undergoing rearrangement/migration, it is far from clear what the role of these calcium signals is. Here we summarize the evidence implicating calcium participation in tissue movements, cell shape changes and the reorganization of contractile cytoskeletal elements in developing embryos. We also discuss a novel hypothesis that short-lived calcium spikes are required in cells and tissues undergoing migration and rearrangements as a fine tuning response mechanism to prevent local, abnormally high fluctuations in cytoskeletal activities.  相似文献   

10.
We investigated the whole cell distribution of the platelet membrane receptor for fibrinogen in surface-activated human platelets. Fibrinogen-labeled colloidal gold was used in conjunction with platelet whole mount preparations to visualize directly the fibrinogen receptor. Unstimulated platelets fail to bind fibrinogen, and binding was minimal in the stages of activation immediately following adhesion. The amount of fibrinogen bound per platelet increased rapidly during the shape changes associated with surface activation until 7,600 +/- 500 labels were present at saturation. Maximal binding of fibrinogen was followed by receptor redistribution. During the early stages of spreading, fibrinogen labels were uniformly distributed over the entire platelet surface, including pseudopodia, but the labels become progressively centralized as the spreading process continued. In well spread platelets, labels were found over the central regions, whereas peripheral areas were cleared of receptors. Receptor redistribution during spreading was accompanied by cytoskeletal reorganization such that a direct correlation was seen between the development of specific ultrastructural zones and the distribution of surface receptor sites suggesting a link between the surface receptors and the cytoskeleton. The association of fibrinogen receptors with contractile elements of the cytoskeleton, which permits coordinated receptor centralization, is important to the understanding of the role of fibrinogen in normal platelet aggregation and clot retraction.  相似文献   

11.
Addition of dibutyryl cyclic AMP (dbcAMP), methylisobutylxanthine (MIX), or cytochalasin D to co-cultures of Sertoli cells and testicular peritubular myoid cells blocks a series of morphogenetic changes which otherwise occur during culture. When Sertoli cells are plated directly onto preexisting layers of peritubular cells maintained under basal conditions, structures form which display many of the characteristics of germ cell-depleted seminiferous tubules. The presence of dbcAMP, MIX, or cytochalasin D, added at varying times after plating Sertoli cells, results in the inhibition of each successive stage of in vitro remodeling: the inhibition of migration of Sertoli cells, the inhibition of initial ridge formation, the blockage of subsequent formation of mounds and nodules of compacted Sertoli cell aggregates, the prevention of the formation of basal lamina and associated layers of extracellular matrix between Sertoli cell aggregates and surrounding peritubular cells, and the inhibition of tubule formation. The presence of dbcAMP also inhibits the migration of peritubular cells, contractions by these cells, and compaction of Sertoli cell aggregates. When intimate cell apposition is prevented by plating the two cell types on either side of a membrane filter, the morphogenetic cascade is blocked, and no formation of a germ cell-depleted seminiferous tubule-like structure occurs. Other effects of dbcAMP on cell shape, cell movement, and cell association patterns during co-culture are described. Possible mechanisms by which dbcAMP, MIX, or cytochalasin D blocks restructuring are discussed. Since each elicits perturbations of the cytoskeleton, we offer the interpretation that cytoskeletal changes may be correlated with the prevention of closely apposing cell compact and the inhibition of basement membrane formation. Interactions observed between Sertoli cells and peritubular cells during co-culture are postulated to be analogous to those occurring in other types of mesenchymal cell-epithelial cell interactions during organogenesis and during tubulogenesis in the fetal testis. Speculatively, the blockage by dbcAMP of the morphogenetic cascade in the co-cultured system may be related to the inhibition by dbcAMP of testis cord formation in organ cultures of fetal gonads reported by others.  相似文献   

12.
Tec kinases: shaping T-cell activation through actin   总被引:4,自引:0,他引:4  
Following stimulation, T cells undergo marked actin-dependent changes in shape that are required for productive cellular interactions and movement during immune responses. Reorganization of the actin cytoskeletal is also necessary for the formation of an immunological synapse - the convergence of several signaling molecules at the plasma membrane that occurs after effective T-cell receptor (TCR) signaling. Much emerging evidence indicates that the Tec family of tyrosine kinases has a role in actin cytoskeleton reorganization. Specifically, T cells that lack or express mutant versions of the Tec kinase Itk show impaired TCR-induced actin polymerization, cell polarization and regulation of the signaling events involved in cytoskeletal reorganization. These data, as well as other findings, support roles for Tec kinases in actin cytoskeleton regulation.  相似文献   

13.
The sequential changes in the three-dimensional organization of the filamentous components of human platelets following surface activation were investigated in whole-mount preparations. Examination of intact and Triton-extracted platelets by high voltage electron microscopy provides morphological evidence of increased polymerization of actin into the filamentous form and an increased organization of the cytoskeletal elements after activation. The structure of resting platelets consists of the circumferential band of microtubules and a small number of microfilaments randomly arranged throughout a dense cytoplasmic matrix. Increased spreading is accompanied by cytoskeletal reorganization resulting in the development of distinct ultrastructural zones including the peripheral web, the outer filamentous zone, the "trabecular-like" inner filamentous zone, and the granulomere . These zones are present only in well-spread platelets during the late stages of surface activation and are retained following Triton extraction. Extraction of the less stable cytoplasmic components provides additional information about the underlying structure and filament interactions within each zone.  相似文献   

14.
Previously it has been shown that insulin-mediated tyrosine phosphorylation of myosin heavy chain is concomitant with enhanced association of C-terminal SRC kinase during skeletal muscle differentiation. We sought to identify putative site(s) for this phosphorylation event. A combined bioinformatics approach of motif prediction and evolutionary and structural analyses identified tyrosines163 and 1856 of the skeletal muscle heavy chain as the leading candidate for the sites of insulin-mediated tyrosine phosphorylation. Our work is suggestive that tyrosine phosphorylation of myosin heavy chain, whether in skeletal muscle or in platelets, is a significant event that may initiate cytoskeletal reorganization of muscle cells and platelets. Our studies provide a good starting point for further functional analysis of MHC phosphor-signalling events within different cells.  相似文献   

15.
Blood platelets are particularly rich in cytoskeletal proteins and respond to stimulation and activation by changes in shape. We examined the effect of blood platelet activation on the subcellular distribution of the cytoskeletal proteins, actin, myosin, alpha-actinin and actin-binding protein. These studies were performed with immunofluorescent staining on thin cryosections of paraformaldehyde-fixed platelets and by immunogold labeling of ultrathin cryosections of glutaraldehyde-fixed blood platelets. Platelets were studied immediately at blood collection (resting platelets), in platelet-rich plasma and after gel filtration (partially activated platelets), and after gel filtration and thrombin activation (0.5 U/ml, 10 min, 37 degrees C) (activated platelets). Resting platelets were disk-shaped and showed homogeneous distribution of cytoskeletal proteins. Partially activated platelets were more spherical and showed at least one protrusion. Immunofluorescence and immunogold labeling showed a more intense staining of the peripheral 0.2 to 0.3 micron of cytoplasm of these platelets. In the immunofluorescence photographs this resulted in the appearance of small fluorescent rings with staining at the periphery of cross-sectioned cells. Activated platelets showed an irregular outline composed of broad based pseudopods. Cell centers were composed of poorly delineated electron-dense material, interspersed with profiles of surface-connected tubules. The broad based pseudopods stained uniformely for actin, alpha-actinin and actin-binding protein. The cell center stained poorly for these proteins. Myosin staining was found in the peripheral cortex, but also in the cell center. Partially activated platelets that had returned to the disk shape after incubation at 37 degrees C showed increased submembranous concentration of microfilament proteins. These data reveal the profound cytoskeletal rearrangements that already occur upon minimal platelet activation and emphasize that platelets that have returned to the disk shape are not identical to resting platelets.  相似文献   

16.
Utrophin is a component of the platelet membrane cytoskeleton and participates in cytoskeletal reorganization (Earnest, J. P., Santos, G. F., Zuerbig, S., and Fox, J. E. B. (1995) J. Biol. Chem. 270, 27259-27265). Although platelets do not contain dystrophin, the identification of smaller C-terminal isoforms of dystrophin, including Dp71, which are expressed in a wide range of nonmuscle tissues and cell lines, has not been investigated. In this report, we have identified Dp71 protein variants of 55-60 kDa (designated Dp71Delta(110)) in the membrane cytoskeleton of human platelets. Both Dp71Delta(110) and utrophin sediment from lysed platelets along with the high speed detergent-insoluble pellet, which contains components of the membrane cytoskeleton. Like the membrane cytoskeletal proteins vinculin and spectrin, Dp71Delta(110) and utrophin redistributed from the high speed detergent-insoluble pellet to the integrin-rich low speed pellet of thrombin-stimulated platelets. Immunoelectron microscopy provided further evidence that Dp71Delta(110) was localized to the submembranous cytoskeleton. In addition to Dp71Delta(110), platelets contained several components of the dystrophin-associated protein complex, including beta-dystroglycan and syntrophin. To better understand the potential function of Dp71Delta(110), collagen adhesion assays were performed on platelets isolated from wild-type or Dp71-deficient (mdx(3cv)) mice. Adhesion to collagen in response to thrombin was significantly decreased in platelets isolated from mdx(3cv) mice, compared with wild-type platelets. Collectively, our results provide evidence that Dp71Delta(110) is a component of the platelet membrane cytoskeleton, is involved in cytoskeletal reorganization and/or signaling, and plays a role in thrombin-mediated platelet adhesion.  相似文献   

17.
Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.  相似文献   

18.
Receptor-mediated activation of many cells, including blood platelets, leads to changes at the cytoplasmic side of the membrane. In platelets, phospholipases, such as phospholipase C and phospholipase A2, have been shown to become activated. From phospholipids they generate the second messengers diacylglycerol and inositol phosphate(s) and fatty acids, respectively. At the same time, actin polymerization and reorganization of actin filaments into bundles and networks occurs. Here, the association of lipids, radiolabeled either with saturated (palmitic acid) or unsaturated (arachidonic acid) fatty acids, with the cytoskeletons of resting and activated human blood platelets was studied. The relative binding of lipid components to the cytoskeleton of activated platelets labeled with palmitic acid is six times higher than that of platelets labeled with arachidonic acid. Analysis of lipids associated with isolated cytoskeletons of resting and activated platelets (labeled with palmitic acid) showed a 30-fold increase in the binding of labeled lipids to the cytoskeletal structures during activation. Both diacylglycerol and fatty acids were found to be associated with the cytoskeleton of activated platelets. Gel filtration, chromatofocusing, and immunoprecipitation studies demonstrated tight binding of these lipids to alpha-actinin. alpha-Actinin is one of the proteins that rapidly becomes associated with the cytoskeleton during platelet aggregation; it is also one of the molecules proposed to act as an actin-membrane linker. The results reported indicate a possible participation of alpha-actinin, fatty acids, and the phosphoinositide-derived second messenger diacylglycerol in the regulation of cytoskeleton-membrane interactions. Together with the results of others they suggest a possible involvement of the phosphatidylinositol cycle in the assembly of actin filaments and their anchoring to membranes.  相似文献   

19.
20.
《Biophysical journal》2022,121(5):793-807
IQGAP1 is a multidomain scaffold protein that coordinates the direction and impact of multiple signaling pathways by scaffolding its various binding partners. However, the spatial and temporal resolution of IQGAP1 scaffolding remains unclear. Here, we use fluorescence imaging and correlation methods that allow for real-time live-cell changes in IQGAP1 localization and complex formation during signaling. We find that IQGAP1 and PIPKIγ interact on both the plasma membrane and in cytosol. Epidermal growth factor (EGF) stimulation, which can initiate cytoskeletal changes, drives the movement of the cytosolic pool toward the plasma membrane to promote cytoskeletal changes. We also observe that a significant population of cytosolic IQGAP1-PIPKIγ complexes localize to early endosomes, and in some instances form aggregated clusters which become highly mobile upon EGF stimulation. Our imaging studies show that PIPKIγ and PI3K bind simultaneously to IQGAP1, which may accelerate conversion of PI4P to PI(3,4,5)P3 that is required for cytoskeletal changes. Additionally, we find that IQGAP1 is responsible for PIPKIγ association with two proteins associated with cytoskeletal changes, talin and Cdc42, during EGF stimulation. These results directly show that IQGAP1 provides a physical link between phosphoinositides (through PIPKIγ), focal adhesion formation (through talin), and cytoskeletal reorganization (through Cdc42) upon EGF stimulation. Taken together, our results support the importance of IQGAP1 in regulating cell migration by linking phosphoinositide lipid signaling with cytoskeletal reorganization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号