首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two lines of transgenic mice, hAIItg-delta and hAIItg-lambda, expressing human apolipoprotein (apo)A-II at 2 and 4 times the normal concentration, respectively, displayed on standard chow postprandial chylomicronemia, large quantities of very low density lipoprotein (VLDL) and low density lipoprotein (LDL) but greatly reduced high density lipoprotein (HDL). Hypertriglyceridemia may result from increased VLDL production, decreased VLDL catabolism, or both. Post-Triton VLDL production was comparable in transgenic and control mice. Postheparin lipoprotein lipase (LPL) and hepatic lipase activities decreased at most by 30% in transgenic mice, whereas adipose tissue and muscle LPL activities were unaffected, indicating normal LPL synthesis. However, VLDL-triglyceride hydrolysis by exogenous LPL was considerably slower in transgenic compared with control mice, with the apparent Vmax of the reaction decreasing proportionately to human apoA-II expression. Human apoA-II was present in appreciable amounts in the VLDL of transgenic mice, which also carried apoC-II. The addition of purified apoA-II in postheparin plasma from control mice induced a dose-dependent decrease in LPL and hepatic lipase activities. In conclusion, overexpression of human apoA-II in transgenic mice induced the proatherogenic lipoprotein profile of low plasma HDL and postprandial hypertriglyceridemia because of decreased VLDL catabolism by LPL.  相似文献   

2.
3.
Familial combined hyperlipidemia (FCHL) is a common inherited hyperlipidemia and a major risk factor for atherothrombotic cardiovascular disease. The cause(s) leading to FCHL are largely unknown, but the existence of unidentified "major" genes that would increase VLDL production and of "modifier" genes that would influence the phenotype of the disease has been proposed. Expression of apolipoprotein A-II (apoA-II), a high density lipoprotein (HDL) of unknown function, in transgenic mice produced increased concentration of apoB-containing lipoproteins and decreased HDL. Here we show that expression of human apoA-II in apoE-deficient mice induces a dose-dependent increase in VLDL, resulting in plasma triglyceride elevations of up to 24-fold in a mouse line that has 2-fold the concentration of human apoA-II of normolipidemic humans, as well as other well-known characteristics of FCHL: increased concentrations of cholesterol, triglyceride, and apoB in very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL) and low density lipoprotein (LDL), reduced HDL cholesterol, normal lipoprotein lipase and hepatic lipase activities, increased production of VLDL triglycerides, and increased susceptibility to atherosclerosis. However, FCHL patients do not have plasma concentrations of human apoA-II as high as those of apoE-deficient mice overexpressing human apoA-II, and the apoA-II gene has not been linked to FCHL in genome-wide scans. Therefore, the apoA-II gene could be a "modifier" FCHL gene influencing the phenotype of the disease in some individuals through unkown mechanisms including an action on a "major" FCHL gene. We conclude that apoE-deficient mice overexpressing human apoA-II constitute useful animal models with which to study the mechanisms leading to overproduction of VLDL, and that apoA-II may function to regulate VLDL production.  相似文献   

4.
Our understanding of apolipoprotein A-II (apoA-II) physiology is much more limited than that of apoA-I. However, important and rather surprising advances have been produced, mainly through analysis of genetically modified mice. These results reveal a positive association of apoA-II with FFA and VLDL triglyceride plasma concentrations; however, whether this is due to increased VLDL synthesis or to decreased VLDL catabolism remains a matter of controversy. As apoA-II-deficient mice present a phenotype of insulin hypersensitivity, a function of apoA-II in regulating FFA metabolism seems likely. Studies of human beings have shown the apoA-II locus to be a determinant of FFA plasma levels, and several genome-wide searches of different populations with type 2 diabetes have found linkage to an apoA-II intragenic marker, making apoA-II an attractive candidate gene for this disease. The increased concentration of apoB-containing lipoproteins present in apoA-II transgenic mice explains, in part, why these animals present increased atherosclerosis susceptibility. In addition, apoA-II transgenic mice also present impairment of two major HDL antiatherogenic functions: reverse cholesterol transport and protection of LDL oxidative modification. The apoA-II locus has also been suggested as an important genetic determinant of HDL cholesterol concentration, even though there is a major species-specific difference between the effects of mouse and human apoA-II. As antagonizing apoA-I antiatherogenic actions can hardly be considered the apoA-II function in HDL, this remains a topic for future investigations. We suggest that the existence of apoA-II or apoA-I in HDL could be an important signal for specific interaction with HDL receptors such as cubilin or heat shock protein 60.  相似文献   

5.
High density lipoprotein (HDL) represents a mixture of particles containing either apoA-I and apoA-II (LpA-I/A-II) or apoA-I without apoA-II (LpA-I). Differences in the function and metabolism of LpA-I and LpA-I/A-II have been reported, and studies in transgenic mice have suggested that apoA-II is pro-atherogenic in contrast to anti-atherogenic apoA-I. The molecular basis for these observations is unclear. The scavenger receptor BI (SR-BI) is an HDL receptor that plays a key role in HDL metabolism. In this study we investigated the abilities of apoA-I and apoA-II to mediate SR-BI-specific binding and selective uptake of cholesterol ester using reconstituted HDLs (rHDLs) that were homogeneous in size and apolipoprotein content. Particles were labeled in the protein (with (125)I) and in the lipid (with [(3)H]cholesterol ether) components and SR-BI-specific events were analyzed in SR-BI-transfected Chinese hamster ovary cells. At 1 microg/ml apolipoprotein, SR-BI-mediated cell association of palmitoyloleoylphosphatidylcholine-containing AI-rHDL was significantly greater (3-fold) than that of AI/AII-rHDL, with a lower K(d) and a higher B(max) for AI-rHDL as compared with AI/AII-rHDL. Unexpectedly, selective cholesterol ester uptake from AI/AII-rHDL was not compromised compared with AI-rHDL, despite decreased binding. The efficiency of selective cholesterol ester uptake in terms of SR-BI-associated rHDL was 4-5-fold greater for AI/AII-rHDL than AI-rHDL. These results are consistent with a two-step mechanism in which SR-BI binds ligand and then mediates selective cholesterol ester uptake with an efficiency dependent on the composition of the ligand. ApoA-II decreases binding but increases selective uptake. These findings show that apoA-II can exert a significant influence on selective cholesterol ester uptake by SR-BI and may consequently influence the metabolism and function of HDL, as well as the pathway of reverse cholesterol transport.  相似文献   

6.
Apolipoprotein (apo)A-II is a major high density lipoprotein (HDL) protein; however, its role in lipoprotein metabolism is largely unknown. Transgenic (Tg) mice that overexpress human apoA-II present functional lecithin: cholesterol acyltransferase deficiency, HDL deficiency, hypertriglyceridemia and, when fed an atherogenic diet, increased non-HDL cholesterol and increased susceptibility to atherosclerosis. In contrast to humans, mice do not present cholesteryl ester transfer protein (CETP) activity in plasma. To study the in vivo interaction of these two proteins, we crossbred human apoA-II and CETP-Tg mice. CETP x apoA-II-Tg mice fed an atherogenic diet, compared with CETP-Tg mice presented a 2-fold decrease in HDL cholesterol and a quantitatively similar increase in total plasma cholesterol and percentage of free cholesterol, non-HDL cholesterol, and free fatty acids, together with a remarkable 112-fold increase in plasma triglycerides. Plasma triglycerides in CETP x apoA-II-Tg mice were mainly associated with very low density lipoproteins (VLDL), which were also enriched in protein content, and resulted from a combination of higher production rate compared with both of their progenitors and non-Tg control mice, and decreased catabolism compared only with CETP-Tg mice. These results show CETP x apoA-II-Tg mice to be a good model with which to study mechanisms leading to VLDL overproduction and suggest that CETP and, in particular apoA-II, may play a role in the regulation of VLDL metabolism.  相似文献   

7.
KK/Snk mice (previously KK/San) possessing a recessive mutation (hypl) of the angiopoietin-like 3 (Angptl3) gene homozygously exhibit a marked reduction of VLDL due to the decreased Angptl3 expression. Recently, we proposed that Angptl3 is a new class of lipid metabolism modulator regulating VLDL triglyceride (TG) levels through the inhibition of lipoprotein lipase (LPL) activity. In this study, to elucidate the role of Angptl3 in atherogenesis, we investigated the effects of hypl mutation against hyperlipidemia and atherosclerosis in apolipoprotein E knockout (apoEKO) mice. ApoEKO mice with hypl mutation (apoEKO-hypl) exhibited a significant reduction of VLDL TG, VLDL cholesterol, and plasma apoB levels compared with apoEKO mice. Hepatic VLDL TG secretion was comparable between both apoE-deficient mice. Turnover studies revealed that the clearance of both [3H]TG-labeled and 125I-labeled VLDL was significantly enhanced in apoEKO-hypl mice. Postprandial plasma TG levels also decreased in apoEKO-hypl mice. Both LPL and hepatic lipase activities in the postheparin plasma increased significantly in apoEKO-hypl mice, explaining the enhanced lipid metabolism. Furthermore, apoEKO-hypl mice developed 3-fold smaller atherogenic lesions in the aortic sinus compared with apoEKO mice. Taken together, the reduction of Angptl3 expression is protective against hyperlipidemia and atherosclerosis, even in the absence of apoE, owing to the enhanced catabolism and clearance of TG-rich lipoproteins.  相似文献   

8.
We investigated the mechanisms that lead to combined hyperlipidemia in transgenic mice that overexpress human apolipoprotein (apo) A-II (line 11.1). The 11.1 transgenic mice develop pronounced hypertriglyceridemia, and a moderate increase in free fatty acid (FFA) and plasma cholesterol, especially when fed a high-fat/high-cholesterol diet. Post-heparin plasma lipoprotein lipase and hepatic lipase activities (using artificial or natural autologous substrates), the decay of plasma triglycerides with fasting, and the fractional catabolic rate of the radiolabeled VLDL-triglyceride (both fasting and postprandial) were similar in 11. 1 transgenic mice and in control mice. In contrast, a 2.5-fold increase in hepatic VLDL-triglyceride production was observed in 11. 1 transgenic mice in a period of 2 h in which blood lipolysis was inhibited. This increased synthesis of hepatic VLDL-triglyceride used preformed FFA rather than FFA of de novo hepatic synthesis. The 11.1 transgenic mice also presented reduced epididymal/parametrial white adipose tissue weight (1.5-fold), increased rate of epididymal/parametrial hormone-sensitive lipase-mediated lipolysis (1.2-fold) and an increase in cholesterol and, especially, in triglyceride liver content, suggesting an enhanced mobilization of fat as the source of preformed FFA reaching the liver. Increased plasma FFA was reverted by insulin, demonstrating that 11.1 transgenic mice are not insulin resistant. We conclude that the overexpression of human apoA-II in transgenic mice induces combined hyperlipidemia through an increase in VLDL production. These mice will be useful in the study of molecular mechanisms that regulate the overproduction of VLDL, a situation of major pathophysiological interest since it is the basic mechanism underlying familial combined hyperlipidemia.  相似文献   

9.
Several clinical and angiographic intervention trials have shown that fibrate treatment leads to a reduction of the coronary events associated to atherosclerosis. Fibrates are ligands for peroxisome proliferator-activated receptor alpha (PPARalpha) that modulate risk factors related to atherosclerosis by acting at both systemic and vascular levels. Here, we investigated the effect of treatment with the PPARalpha agonist fenofibrate (FF) on the development of atherosclerotic lesions in apolipoprotein (apo) E-deficient mice and human apoA-I transgenic apoE-deficient (hapoA-I Tg x apoE-deficient) mice fed a Western diet. In apoE-deficient mice, plasma lipid levels were increased by FF treatment with no alteration in the cholesterol distribution profile. FF treatment did not reduce atherosclerotic lesion surface area in the aortic sinus of 5-month-old apoE-deficient mice. By contrast, FF treatment decreased total cholesterol and esterified cholesterol contents in descending aortas of these mice, an effect that was more pronounced in older mice exhibiting more advanced lesions. Furthermore, FF treatment reduced MCP-1 mRNA levels in the descending aortas of apoE-deficient mice, whereas ABCA-1 expression levels were maintained despite a significant reduction of aortic cholesterol content. In apoE-deficient mice expressing a human apoA-I transgene, FF increased human apoA-I plasma and hepatic mRNA levels without affecting plasma lipid levels. This increase in human apoA-I expression was accompanied by a significant reduction in the lesion surface area in the aortic sinus. These data indicate that the PPARalpha agonist fenofibrate reduces atherosclerosis in these animal models of atherosclerosis.  相似文献   

10.
To ascertain the mechanisms underlying the hypoalphalipoproteinemia present in mice overexpressing human apolipoprotein A-II (apoA-II) (line 11.1), radiolabeled HDL or apoA-I were injected into mice. Fractional catabolic rate of [(3)H]cholesteryl oleoyl ether HDL ([(3)H]HDL) was 2-fold increased in 11.1 transgenic mice compared with control mice and this was concomitant with increased radioactivity in liver, gonads, and adrenals. However, scavenger receptor class B, type I (SR-BI) was increased only in adrenals. [(3)H]HDL of 11.1 transgenic mice presented greater binding but decreased uptake compared with control mice when Chinese hamster ovary cells transfected with SR-BI were used, thereby pointing to unknown but SR-BI-independent mechanisms as being responsible for the increased (3)H-radioactivity seen in liver and gonads. Synthesis rate (SR) of plasma [(3)H]HDL was 2-fold decreased in 11.1 transgenic mice. Mouse (125)I-apoA-I was 2-fold more rapidly catabolized (mainly by the kidney) in transgenic mice. Mouse apoA-I displacement from HDL by the addition of isolated human apoA-II was reproduced ex vivo; thus, this mechanism may be involved in the increased renal catabolism of apoA-I. ApoA-I SR was 2-fold decreased in 11.1 transgenic mice and this was concomitant with a 2.3-fold decrease in hepatic apoA-I mRNA abundance. Our findings show that multiple mechanisms are involved in the HDL deficiency presented by mice overexpressing human apoA-II.  相似文献   

11.
12.
The effect of apolipoprotein A-II (apoA-II) on the structure and stability of HDL has been investigated in reconstituted HDL particles. Purified human apoA-II was incorporated into sonicated, spherical LpA-I particles containing apoA-I, phospholipids, and various amounts of triacylglycerol (TG), diacylglycerol (DG), and/or free cholesterol. Although the addition of PC to apoA-I reduces the thermodynamic stability (free energy of denaturation) of its alpha-helices, PC has the opposite effect on apoA-II and significantly increases its helical stability. Similarly, substitution of apoA-I with various amounts of apoA-II significantly increases the thermodynamic stability of the particle alpha-helical structure. ApoA-II also increases the size and net negative charge of the lipoprotein particles. ApoA-II directly affects apoA-I conformation and increases the immunoreactivity of epitopes in the N and C termini of apoA-I but decreases the exposure of central domains in the molecule (residues 98-186). ApoA-II appears to increase HL association with HDL and inhibits lipid hydrolysis. ApoA-II mildly inhibits PC hydrolysis in TG-enriched particles but significantly inhibits DG hydrolysis in DG-rich LpA-I. In addition, apoA-II enhances the ability of reconstituted LpA-I particles to inhibit VLDL-TG hydrolysis by HL. Therefore, apoA-II affects both the structure and the dynamic behavior of HDL particles and selectively modifies lipid metabolism.  相似文献   

13.
We investigated in vivo catabolism of apolipoprotein A-II (apo A-II), a major determinant of plasma HDL levels. Like apoA-I, murine apoA-II (mapoA-II) and human apoA-II (hapoA-II) were reabsorbed in the first segment of kidney proximal tubules of control and hapoA-II-transgenic mice, respectively. ApoA-II colocalized in brush border membranes with cubilin and megalin (the apoA-I receptor and coreceptor, respectively), with mapoA-I in intracellular vesicles of tubular epithelial cells, and was targeted to lysosomes, suggestive of degradation. By use of three transgenic lines with plasma hapoA-II concentrations ranging from normal to three times higher, we established an association between plasma concentration and renal catabolism of hapoA-II. HapoA-II was rapidly internalized in yolk sac epithelial cells expressing high levels of cubilin and megalin, colocalized with cubilin and megalin on the cell surface, and effectively competed with apoA-I for uptake, which was inhibitable by anti-cubilin antibodies. Kidney cortical cells that only express megalin internalized LDL but not apoA-II, apoA-I, or HDL, suggesting that megalin is not an apoA-II receptor. We show that apoA-II is efficiently reabsorbed in kidney proximal tubules in relation to its plasma concentration.  相似文献   

14.
High density lipoprotein (HDL) cholesterol levels are inversely related to the risk of developing coronary heart disease. Apolipoprotein (apo) A-II is the second most abundant HDL apolipoprotein and apoA-II knockout mice show a 70% reduction in HDL cholesterol levels. There is also evidence, using human apoA-II transgenic mice, that apoA-II can prevent hepatic lipase-mediated HDL triglyceride hydrolysis and reduction in HDL size. These observations suggest the hypothesis that apoA-II maintains HDL levels, at least in part, by inhibiting hepatic lipase. To evaluate this, apoA-II knockout mice were crossbred with hepatic lipase knockout mice. Compared to apoA-II-deficient mice, in double knockout mice there were increased HDL cholesterol levels (57% in males and 60% in females), increased HDL size, and decreased HDL cholesteryl ester fractional catabolic rate. In vitro incubation studies of plasma from apoA-II knockout mice, which contains largely apoA-I HDL particles, showed active lipolysis of HDL triglyceride, whereas similar studies of plasma from apoA-I knockout mice, which contains largely apoA-II particles, did not. In summary, these results strongly suggest that apoA-II is a physiological inhibitor of hepatic lipase and that this is at least part of the mechanism whereby apoA-II maintains HDL cholesterol levels.  相似文献   

15.
Isolated livers from rhesus monkeys (Macaca mulatta) were perfused in order to asses the nature of newly synthesized hepatic lipoprotein. Perfusate containing [3H]leucine was recirculated for 1.5 hr, followed by an additional 2.5-hr perfusion with fresh perfusate. Equilibrium density gradient ultracentrifugation clearly separated VLDL from LDL. The apoprotein composition of VLDL secreted by the liver was similar to that of serum VLDL. The perfusate LDL contained some poorly radiolabeled, apoB-rich material, which appeared to be contaminating serum LDL. There was also some material of an LDL-like density, which was rich in radiolabeled apoE. Rate zonal density gradient ultracentrifugation fractionated HDL. All perfusate HDL fractions had a decreased cholesteryl ester/unesterified cholesterol ratio, compared to serum HDL. Serum HDL distributed in one symmetric peak near the middle of the gradient, with coincident peaks of apoA-I and apoA-II. The least dense fractions of the perfusate gradient were rich in radiolabeled apoE. The middle of the perfusate gradient contained particles rich in radiolabeled apoA-I and apoA-II. The peak of apoA-I was offset from the apoA-II peak towards the denser end of the gradient. The dense end of the HDL gradient contained lipoprotein-free apoA-I, apoE, and small amounts of apoA-II, probably resulting from the relative instability of nascent lipoprotein compared to serum lipoprotein. Perfusate HDL apoA-I isoforms were more basic than serum apoA-I isoforms. Preliminary experiments, using noncentrifugal methods, suggest that some hepatic apoA-I is secreted in a lipoprotein-free form. In conclusion, the isolated rhesus monkey liver produces VLDL similar to serum VLDL, but produces LDL and HDL which differ in several important aspects from serum LDL and HDL.  相似文献   

16.
Studies with mice have revealed that increased expression of apolipoprotein A-II (apoA-II) results in elevations in high density lipoprotein (HDL), the formation of larger HDL, and the development of early atherosclerosis. We now show that the increased size of HDL results in part from an inhibition of the ability of hepatic lipase (HL) to hydrolyze phospholipids and triglycerides in the HDL and that the ratio of apoA-I to apoA-II determines HDL functional and antiatherogenic properties. HDL from apoA-II transgenic mice was relatively resistant to the action of HL in vitro. To test whether HL and apoA-II influence HDL size independently, combined apoA-II transgenic/HL knockout (HLko) mice were examined. These mice had HDL similar in size to apoA-II transgenic mice and HLko mice, suggesting that they do not increase HDL side by independent mechanisms. Overexpression of apoA-I from a transgene reversed many of the effects of apoA-II overexpression, including the ability of HDL to serve as a substrate for HL. Combined apoA-I/apoA-II transgenic mice exhibited significantly less atherosclerotic lesion formation than did apoA-II transgenic mice. These results were paralleled by the effects of the transgenes on the ability of HDL to protect against the proinflammatory effects of oxidized low density lipoprotein (LDL). Whereas nontransgenic HDL protected against oxidized LDL induction of adhesion molecules in endothelial cells, HDL from apoA-II transgenic mice was proinflammatory. HDL from combined apoA-I/apoA-II transgenic mice was equally as protective as HDL from nontransgenic mice. Our data suggest that as the ratio of apoA-II to apoA-I is increased, the HDL become larger because of inhibition of HL, and lose their antiatherogenic properties.  相似文献   

17.
Both hyperglycemia and hyperlipidemia have been postulated to increase atherosclerosis in patients with diabetes mellitus. To study the effects of diabetes on lipoprotein profiles and atherosclerosis in a rodent model, we crossed mice that express human apolipoprotein B (HuB), mice that have a heterozygous deletion of lipoprotein lipase (LPL1), and transgenic mice expressing human cholesteryl ester transfer protein (CETP). Lipoprotein profiles due to each genetic modification were assessed while mice were consuming a Western type diet. Fast-protein liquid chromatography analysis of plasma samples showed that HuB/LPL1 mice had increased VLDL triglyceride, and HuB/LPL1/CETP mice had decreased HDL and increased VLDL and IDL/LDL. All strains of mice were made diabetic using streptozotocin (STZ); diabetes did not alter lipid profiles or atherosclerosis in HuB or HuB/LPL1/CETP mice. In contrast, STZ-treated HuB/LPL1 mice were more diabetic, severely hyperlipidemic due to increased cholesterol and triglyceride in VLDL and IDL/LDL, and had more atherosclerosis.  相似文献   

18.
Apolipoprotein A-II (apoA-II) is the second major apolipoprotein following apolipoprotein A-I (apoA-I) in HDL. ApoA-II has multiple physiological functions and can form senile amyloid fibrils (AApoAII) in mice. Most circulating apoA-II is present in lipoprotein A-I/A-II. To study the influence of apoA-I on apoA-II and AApoAII amyloidosis, apoA-I-deficient (C57BL/6J.Apoa1−/−) mice were used. Apoa1−/− mice showed the expected significant reduction in total cholesterol (TC), HDL cholesterol (HDL-C), and triglyceride (TG) plasma levels. Unexpectedly, we found that apoA-I deficiency led to redistribution of apoA-II in HDL and an age-related increase in apoA-II levels, accompanied by larger HDL particle size and an age-related increase in TC, HDL-C, and TG. Aggravated AApoAII amyloidosis was induced in Apoa1−/− mice systemically, especially in the heart. These results indicate that apoA-I plays key roles in maintaining apoA-II distribution and HDL particle size. Furthermore, apoA-II redistribution may be the main reason for aggravated AApoAII amyloidosis in Apoa1−/− mice. These results may shed new light on the relationship between apoA-I and apoA-II as well as provide new information concerning amyloidosis mechanism and therapy.  相似文献   

19.
Apolipoprotein A5 (APOA5) is associated with differences in triglyceride levels and familial combined hyperlipidemia. In genetically engineered mice, apoAV plasma levels are inversely correlated with plasma triglycerides. To elucidate the mechanism by which apoAV influences plasma triglycerides, metabolic studies and in vitro assays resembling physiological conditions were performed. In human APOA5 transgenic mice (hAPOA5tr), catabolism of chylomicrons and very low density lipoprotein (VLDL) was accelerated due to a faster plasma hydrolysis of triglycerides by lipoprotein lipase (LPL). Hepatic VLDL and intestinal chylomicron production were not affected. The functional interplay between apoAV and LPL was further investigated by cross-breeding a human LPL transgene with the apoa5 knock-out and the hAPOA5tr to an lpl-deficient background. Increased LPL activity completely normalized hypertriglyceridemia of apoa5-deficient mice; however, overexpression of human apoAV modulated triglyceride levels only slightly when LPL was reduced. To reflect the physiological situation in which LPL is bound to cell surface proteoglycans, we examined hydrolysis in the presence or absence of proteoglycans. Without proteoglycans, apoAV derived either from triglyceride-rich lipoproteins, hAPOA5tr high density lipoprotein, or a recombinant source did not alter the LPL hydrolysis rate. In the presence of proteoglycans, however, apoAV led to a significant and dose-dependent increase in LPL-mediated hydrolysis of VLDL triglycerides. These results were confirmed in cell culture using a proteoglycan-deficient cell line. A direct interaction between LPL and apoAV was found by ligand blotting. It is proposed, that apoAV reduces triglyceride levels by guiding VLDL and chylomicrons to proteoglycan-bound LPL for lipolysis.  相似文献   

20.
Fibrate treatment in mice is known to modulate high density lipoprotein (HDL) metabolism by regulating apolipoprotein (apo)AI and apoAII gene expression. In addition to alterations in plasma HDL levels, fibrates induce the emergence of large, cholesteryl ester-rich HDL in treated transgenic mice expressing human apoAI (HuAITg). The mechanisms of these changes may not be restricted to the modulation of apolipoprotein gene expression, and the aim of the present study was to determine whether the expression of factors known to affect HDL metabolism (i.e. phospholipid transfer protein (PLTP), lecithin:cholesterol acyltransferase, and hepatic lipase) are modified in fenofibrate-treated mice. Significant rises in plasma PLTP activity were observed after 2 weeks of fenofibrate treatment in both wild-type and HuAITg mice. Simultaneously, hepatic PLTP mRNA levels increased in a dose-dependent fashion. In contrast to PLTP, lecithin:cholesterol acyltransferase mRNA levels in HuAITg mice were not significantly modified by fenofibrate despite a significant decrease in plasma cholesterol esterification activity. Fenofibrate did not induce any change in hepatic lipase activity. Fenofibrate significantly increased HDL size, an effect that was more pronounced in HuAITg mice than in wild-type mice. This effect in wild-type mice was completely abolished in PLTP-deficient mice. Finally, fenofibrate treatment did not influence PLTP activity or hepatic mRNA in peroxisome proliferator-activated receptor-alpha-deficient mice. It is concluded that 1) fenofibrate treatment increases plasma phospholipid transfer activity as the result of up-regulation of PLTP gene expression through a peroxisome proliferator-activated receptor-alpha-dependent mechanism, and 2) increased plasma PLTP levels account for the marked enlargement of HDL in fenofibrate-treated mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号