首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Response to selection and evolvability of invasive populations   总被引:3,自引:0,他引:3  
Lee CE  Remfert JL  Chang YM 《Genetica》2007,129(2):179-192
While natural selection might in some cases facilitate invasions into novel habitats, few direct measurements of selection response exist for invasive populations. This study examined selection response to changes in salinity using the copepod Eurytemora affinis. This copepod has invaded fresh water from saline habitats multiple times independently throughout the Northern Hemisphere. Selection response to a constant intermediate salinity (5 PSU) was measured in the laboratory for saline source and freshwater invading populations from the St. Lawrence drainage (North America). These populations were reared under three conditions: (1) native salinities (0 or 15 PSU) for at least two generations, (2) 5 PSU for two generations, and (3) 5 PSU for six generations. Full-sib clutches taken from populations reared under these three conditions were split across four salinities (0, 5, 15, and 25 PSU) to determine reaction norms for survival and development time. Contrasts in survival and development time across the three rearing conditions were treated as the selection response. Selection at 5 PSU resulted in a significant decline in freshwater (0 PSU) tolerance for both the saline and freshwater populations. Yet, evolutionary differences in freshwater tolerance persisted between the saline and freshwater populations. The saline and freshwater populations converged in their high-salinity (25 PSU) tolerance, with an increase in the freshwater population and decline in the saline population. Development time did not shift greatly in response to selection at 5 PSU. For all three rearing conditions, the freshwater population exhibited retarded larval development and accelerated juvenile development relative to the saline population. Results from this study indicate that both the saline and freshwater populations exhibit significant responses to selection for a fitness-related trait critical for invasions into a novel habitat. For the Symposium on “Evolvability and Adaptation of Invasive Species,” Society for the Study of Evolution 2004.  相似文献   

2.
Invasive species are commonly thought to have broad tolerances that enable them to colonize new habitats, but this assumption has rarely been tested. In particular, the relative importance of acclimation (plasticity) and adaptation for invasion success are poorly understood. This study examined effects of short-term and developmental acclimation on adult salinity tolerance in the copepod Eurytemora affinis. This microcrustacean occurs in estuarine and salt marsh habitats but has invaded freshwater habitats within the past century. Effects of short-term acclimation were determined by comparing adult survival in response to acute versus gradual salinity change to low salinity (fresh water). Effects of developmental acclimation on adult tolerance were determined using a split-brood 4 x 2 factorial experimental design for one brackish-water population from Edgartown Great Pond, Massachusetts. Twenty full-sib clutches were split and reared at four salinities (fresh, 5, 10, and 27 practical salinity units [PSU]). On reaching adulthood, clutches from three of the salinity treatments (no survivors at fresh) were split into low- (fresh) and high- (40 PSU) salinity stress treatments, at which survival was measured for 24 h. Short-term acclimation of adults did not appear to have a long-term affect on low-salinity tolerance, given that gradual transfers to fresh water enhanced survival relative to acute transfers in the short term (after 7 h) but not over a longer period of 8 d. Developmental acclimation had contrasting effects on low- versus high-salinity tolerance. Namely, rearing salinity had a significant effect on tolerance of high-salinity (40 PSU) stress but no significant effect on tolerance of low-salinity (freshwater) stress. In addition, there was a significant effect of clutch on survival under freshwater conditions, indicating a genetic component to low-salinity tolerance but no significant clutch effect in response to high salinity. While developmental acclimation might enhance survival at higher salinities, the minimal effect of acclimation and significant effect of clutch on low-salinity tolerance suggest the importance of natural selection during freshwater invasion events.  相似文献   

3.
This study examined the extent of phenotypic plasticity for salinity tolerance and genetic variation in plasticity in the invasive copepod Eurytemora affinis. Euryemora affinis is a species complex inhabiting brackish to hypersaline environments but has invaded freshwater lakes and reservoirs within the past century. Reaction norm experiments were performed on a relatively euryhaline population collected from a brackish lake with fluctuating salinity. Life history traits (hatching rate, survival, and development time) were measured for 20 full-sib clutches that were split and reared at four salinities (fresh, 5, 10, and 27 practical salinity units [PSU]). On average, higher salinities (10 and 27 PSU) were more favorable for larval growth, yielding greater survival and faster development rate. Clutches differed significantly in their response to salinity, with a significant genotype-by-environment interaction for development time. In addition, genetic (clutch) effects were evident in response to low salinity, given that survival in fresh (lake) water was significantly positively correlated with survival at 5 PSU for individual clutches. Clutches raised in fresh water could not survive beyond metamorphosis, suggesting that acclimation to fresh water could not occur in a single generation. Results suggest the importance of natural selection during freshwater invasion events, given the inability of plasticity to generate a freshwater phenotype, and the presence of genetic variation for plasticity upon which natural selection could act.  相似文献   

4.
Marine to freshwater colonizations constitute among the most dramatic evolutionary transitions in the history of life. This study examined evolution of ionic regulation following saline-to-freshwater transitions in an invasive species. In recent years, the copepod Eurytemora affinis has invaded freshwater habitats multiple times independently. We found parallel evolutionary shifts in ion-motive enzyme activity (V-type H(+) ATPase, Na(+) /K(+) -ATPase) across independent invasions and in replicate laboratory selection experiments. Freshwater populations exhibited increased V-type H(+) ATPase activity in fresh water (0 PSU) and declines at higher salinity (15 PSU) relative to saline populations. This shift represented marked evolutionary increases in plasticity. In contrast, freshwater populations displayed reduced Na(+) /K(+) -ATPase activity across all salinities. Most notably, modifying salinity alone during laboratory selection experiments recapitulated the evolutionary shifts in V-type H(+) ATPase activity observed in nature. Maternal and embryonic acclimation could not account for the observed shifts in enzyme activity. V-type H(+) ATPase function has been hypothesized to be critical for freshwater and terrestrial adaptations, but evolution of this enzyme function had not been previously demonstrated in the context of habitat transitions. Moreover, the speed of these evolutionary shifts was remarkable, within a few generations in the laboratory and a few decades in the wild.  相似文献   

5.
The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (δ 18O) was enriched (4.8 ± 0.2‰) in the DS relative to the WS (0.0 ± 0.1‰), but groundwater δ 18O remained constant between seasons (DS: 2.2 ± 0.4‰; WS: 2.1 ± 0.1‰). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil–groundwater mix (δ 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on δ 18O data, the roots of R. mangle roots were exposed to salinities of 25.4 ± 1.4 PSU, less saline than either C. jamaicense (39.1 ± 2.2 PSU) or S. portulacastrum (38.6 ± 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to global sea level rise and human-induced changes in freshwater flows.  相似文献   

6.
Summary

Reductions in salinity can have adverse effects on larval development and larval survival in some invertebrate taxa but not others. Salinity tolerance of larvae may be particularly important in echinoderms because they are both poor ion regulators and stenohaline. I examined the effect of six levels of salinity (15, 18, 21, 24, 27 and 33 PSU) on survival and rate of development of larvae in the subtropical sea urchin Echinometra lucunter. In the short-term, mortality rate was significantly lower in 33 PSU than in all other salinities except 27 PSU, and it was significantly greater in 15 and 18 PSU than in all higher salinities. In the long-term, daily and cumulative mortality were significantly greater in 15 PSU than in most other salinities over 11 days of development (except for cumulative mortality in 18 PSU). They were significantly greater in 18 PSU than in 21 PSU or 33 PSU over a period of 13 days. Furthermore, daily mortality was significantly greater in 18 PSU than in 24 PSU or 27 PSU at 13 d after fertilization. Daily and cumulative mortality were significantly lower in 33 PSU than in 21, 24 or 27 PSU over a period of 17 days. Although in the control (33 PSU) 75% of larvae completed development to the 8-arm stage at 35 d, no larvae developed further than the 4-arm stage in 18, 21, 24 or 27 PSU; in 15 PSU, ~60% of larvae did not develop further than swimming blastulae. Since prolonged exposure to salinities as high as 27 PSU (frequently recorded in the adult habitat) can result in great larval losses, adaptive behaviours that prevent larvae from entering water layers of low salinity will enhance their chance for survival.  相似文献   

7.
Colonizations from marine to freshwater environments constitute among the most dramatic evolutionary transitions in the history of life. Colonizing dilute environments poses great challenges for acquiring essential ions against steep concentration gradients. This study explored the evolution of body fluid regulation following freshwater invasions by the copepod Eurytemora affinis. The goals of this study were to determine (1) whether invasions from saline to freshwater habitats were accompanied by evolutionary shifts in body fluid regulation (hemolymph osmolality) and (2) whether parallel shifts occurred during independent invasions. We measured hemolymph osmolality for ancestral saline and freshwater invading populations reared across a range of common-garden salinities (0.2-25 PSU). Our results revealed the evolution of increased hemolymph osmolality (by 16-31%) at lower salinities in freshwater populations of E. affinis relative to their saline ancestors. Moreover, we observed the same evolutionary shifts across two independent freshwater invasions. Such increases in hemolymph osmolality are consistent with evidence of increased ion uptake in freshwater populations at low salinity, found in a previous study, and are likely to entail increased energetic costs upon invading freshwater habitats. Our findings are consistent with the evolution of increased physiological regulation accompanying transitions into stressful environments.  相似文献   

8.
Maintenance of genetic variation at loci under selection has profound implications for adaptation under environmental change. In temporally and spatially varying habitats, non‐neutral polymorphism could be maintained by heterozygote advantage across environments (marginal overdominance), which could be greatly increased by beneficial reversal of dominance across conditions. We tested for reversal of dominance and marginal overdominance in salinity tolerance in the saltwater‐to‐freshwater invading copepod Eurytemora affinis. We compared survival of F1 offspring generated by crossing saline and freshwater inbred lines (between‐salinity F1 crosses) relative to within‐salinity F1 crosses, across three salinities. We found evidence for both beneficial reversal of dominance and marginal overdominance in salinity tolerance. In support of reversal of dominance, survival of between‐salinity F1 crosses was not different from that of freshwater F1 crosses under freshwater conditions and saltwater F1 crosses under saltwater conditions. In support of marginal overdominance, between‐salinity F1 crosses exhibited significantly higher survival across salinities relative to both freshwater and saltwater F1 crosses. Our study provides a rare empirical example of complete beneficial reversal of dominance associated with environmental change. This mechanism might be crucial for maintaining genetic variation in salinity tolerance in E. affinis populations, allowing rapid adaptation to salinity changes during habitat invasions.  相似文献   

9.
Both phenotypic plasticity and local genetic adaptation may contribute to a species’ ability to inhabit different environmental conditions. While phenotypic plasticity is usually considered costly, local adaptation takes generations to respond to environmental change and may be constrained by strong gene flow. The majority of marine species have complex life-cycles with pelagic stages that might be expected to promote gene flow and plastic responses, and yet several notable examples of local adaptation have been found in species with broadcast larvae. In the ascidian, Ciona intestinalis (Linnaeus, 1767),—a common marine species with broadcast spawning and a short larval stage—previous studies have found marked differences in salinity tolerance of early life-history stages among populations from different salinity regimes. We used common-garden experiments to test whether observed differences in salinity tolerance could be explained by phenotypic plasticity. Adult ascidians from two low salinity populations [2–5 m depth, ~25 practical salinity units (PSU)], and two full salinity populations (25–27 m depth, ~31 PSU) were acclimated for 2–4 weeks at both 25 and 31 PSU. Gametes were fertilized at the acclimation salinities, and the newly formed embryos were transferred to 10 different salinities (21–39 PSU) and cultured to metamorphosis. Adult acclimation salinity had an overriding and significant effect on larval metamorphic success: tolerance norms for larvae almost fully matched the acclimation salinity of the parents, independent of parental origin (deep or shallow). However we also detected minor population differences that could be attributed to either local adaptation or persistent environmental effects. We conclude that differences in salinity tolerance of C. intestinalis larvae from different populations are driven primarily by transgenerational phenotypic plasticity, a strategy that seems particularly favourable for an organism living in coastal waters where salinity is less readily predicted than in the open oceans.  相似文献   

10.
Newly hatched larvae of the California killifish ( Fundulus parvipinnis ) reared in the laboratory, were tolerant of salinities from fresh water to 70‰. Their salinity tolerance was influenced by incubation salinity; larvae hatched in lower incubation salinities exhibited greater freshwater tolerance than those hatched in higher salinities. In gradual acclimation tests, the upper median lethal salinity for the larvae was 130‰. Freshwater tolerance of the larvae decreased with age; yolk sac larvae were completely tolerant of fresh water while larvae more than 15 days old were least resistant.  相似文献   

11.
Ontogenetic changes in osmoregulation were compared between two geographically separate populations of a South American shrimp, Macrobrachium amazonicum, originating from the Amazon delta (A) and the Pantanal (P), respectively. Population A lives in coastal rivers and estuaries in northern Brazil, whereas population P may be considered as land-locked, spending its entire life cycle in inland freshwater (FW) habitats in southwestern Brazil. All life-history stages of population A tolerated brackish and seawater (SW) conditions, being hyper-osmoregulators at salinities < 17, iso-osmotic at ca. 17, and hypo-regulators at higher concentrations. The capabilities to survive and osmoregulate in FW were in this population expressed already at hatching (zoea I), but not any longer in the subsequent larval stages (II-IX), which showed complete mortality during an experimental 24 h exposure to fully limnic conditions. FW tolerance re-appeared only in the juvenile and adult life-history stages. Similarly, the ability to hyper-regulate at salinities 1-5 was strong in the zoea I, weaker in the subsequent larval stages, and increasing again after metamorphosis. The function of hypo-regulation in concentrated media including SW was present throughout ontogeny, particularly in late larval and early juvenile stages. These ontogenetic patterns of osmoregulation and FW tolerance are congruent with a diadromous life cycle, which includes larval release in FW and a subsequent downstream transport of the salt-dependent early larvae towards estuarine or coastal marine waters, where development to metamorphosis is possible. The FW-tolerant juveniles can later migrate upstream, recruiting to riverine populations. In the land-locked population P, all life-history stages tolerated FW and brackish conditions up to salinity 25, but mortality was high in SW (100% in adults). All postembryonic stages of this population were hyper-osmoregulators at salinities < 17, with a strong osmoregulatory capacity in FW. Unlike in population A, all stages were osmoconformers at higher salinities, lacking the function of hypo-regulation. In summary, our results show in two hydrologically and genetically isolated shrimp populations close relationships between differential patterns of ontogenetic change in osmoregulatory functions, salinity tolerance, and the ecology of successive life-history stages. In all postembryonic stages of the hololimnetic Pantanal population, the acquisition of an increased ability to hyper-osmoregulate in FW and, in particular, the complete loss of the ability to hypo-osmoregulate at high salt concentrations represent striking differences to the diadromous population from the Amazon estuary. These differences reflect different life styles and reproductive strategies, suggesting an at least incipient phylogenetic separation.  相似文献   

12.
BD Kearney  PG Byrne  RD Reina 《PloS one》2012,7(8):e43427
Recent anthropogenic influences on freshwater habitats are forcing anuran populations to rapidly adapt to high magnitude changes in environmental conditions or face local extinction. We examined the effects of ecologically relevant elevated salinity levels on larval growth, metamorphosis and survival of three species of Australian anuran; the spotted marsh frog (Limnodynastes tasmaniensis), the painted burrowing frog (Neobatrachus sudelli) and the green and golden bell frog (Litoria aurea), in order to better understand the responses of these animals to environmental change. Elevated salinity (16% seawater) negatively impacted on the survival of L. tasmaniensis (35% survival) and N sudelli (0% survival), while reduced salinity had a negative impact on L. aurea. (16% seawater: 85% survival; 0.4% seawater: 35% survival). L. aurea tadpoles survived in salinities much higher than previously reported for this species, indicating the potential for inter-populations differences in salinity tolerance. In L. tasmaniensis and L. aurea, development to metamorphosis was fastest in low and high salinity treatments suggesting it is advantageous for tadpoles to invest energy in development in both highly favourable and developmentally challenging environments. We propose that this response might either maximise potential lifetime fecundity when tadpoles experience favourable environments, or, facilitate a more rapid escape from pond environments where there is a reduced probability of survival.  相似文献   

13.
Cui B  He Q  Zhang K  Chen X 《Oecologia》2011,166(4):1067-1075
Vegetation zonation patterns in coastal marshes are hypothesized to be the result of both physical stress and competitive interactions. How these patterns may be driven by these factors at different life history stages remains poorly understood. We investigated the relative importance of species tolerance (response to physical stress) and competitive ability in determining the distributions of two dominant marsh species across a salt–fresh marsh interface in the Yellow River Estuary, China. There is a steep gradient in salinity across this interface and Suaeda salsa, an annual, dominates the saline side of the interface, while Phragmites australis, a perennial species, dominates the freshwater side. Using a series of field transplants, we examined the roles of physical stress and competition in mediating this zonation at different life history stages. Suaeda salsa performed well in its home zone, but seedling emergence, seedling survival, adult survival and adult growth were significantly suppressed by competition in the freshwater P. australis zone. Emergence, survival and growth of P. australis were inhibited in the saline S. salsa zone, regardless of neighbor treatments, but it performed well in its home zone. The magnitude of the competitive effect on the performance of S. salsa differed among the life history stages. Competition from P. australis had a much stronger effect on S. salsa seedling emergence and adult growth than on seedling survival and adult survival. Our results reveal that both physical stress and competition contributed to the observed zonation patterns in this marsh system. However, for S. salsa, the effect of competition varied with life-history stage. Insight into these ecological processes is critical to understanding how the zonation pattern in the marsh system is formed and maintained.  相似文献   

14.
Abstract. Water salinity is an intense physiological stress for amphibians. However, some species, such as Bufo calamita, breed in both brackish and freshwater environments. Because selection under environmentally stressful conditions can promote local adaptation of populations, we examined the existence of geographic variation in water salinity tolerance among B. calamita populations from either fresh or brackish water ponds in Southern Spain. Comparisons were made throughout various ontogenetic stages. A combination of field transplant and common garden experiments showed that water salinity decreased survival probability of individuals in all populations, prolonged their larval period, and reduced their mass at metamorphosis. However, significant population X salinity interactions indicated that the population native to brackish water (Saline) had a higher salinity tolerance than the freshwater populations, suggesting local adaptation. Saline individuals transplanted to freshwater environments showed similar survival probabilities, length of larval period, and mass at metamorphosis than those native to freshwater. This indicates that increased tolerance to osmotic stress does not imply a loss of performance in freshwater, at least during the larval and juvenile phases. Despite the adaptive process apparently undergone by Saline, all populations still shared the same upper limit of embryonic stress tolerance (around 10 g/l), defining a window of salinity range within which selection can act. Significant differences in embryonic and larval survival in brackish water among sibships for all populations suggest the existence of a genetic basis for the osmotic tolerance.  相似文献   

15.
Bowman, W. D. 1988. Ionic and water relations responses of twopopulations of a non-halophyte to salinity.–J. exp. Bot39: 97–105 Salinity-induced changes in the ionic and water relations inplants from two naturally-occurring populations of the C4 non-halophyteAndropogon glomeratus were measured to detect differences inthe capacity to adjust osmotic potentials and in ion contentpotentially responsible for the osmotic adjustment Pressure-volumecurves and leaf ion content were measured in plants from twopopulations, salt marsh and inland, after long-term exposureto three salinity levels. Osmotic adjustment and decreases inthe bulk tissue elasticity occurred to a similar extent in bothpopulations with increasing salinity. Cl concentrationsincreased with increasing salinity in both populations, whereasleaf Na+ concentrations increased only in the inland population,but were higher at all salinities in the marsh population. K+concentrations changed little with increasing salinity. Prolineconcentrations increased only at the highest salinity level,and did not difler significantly between populations. Theseresults suggest a role for Na+ uptake and regulation in osmoticadjustment in the marsh population, contrasting with studiesof salt tolerance in other nonhalophytic grasses  相似文献   

16.
Anger  Klaus  Riesebeck  Kim  P&#;schel  Cornelia 《Hydrobiologia》2000,426(1):161-168
The neotropical crab Armases miersii (Rathbun, 1897) breeds in supratidal rock pools, where great salinity variations occur. In laboratory experiments, all larval stages and the first juveniles were reared at six different salinities (5–55 PSU, intervals of 10 PSU). In five series of experiments, exposure to these conditions began either from hatching (Zoea I) or from the onset of successively later stages (Zoea II, III, Megalopa, Crab I). Growth was measured in terms of dry weight, carbon, nitrogen and hydrogen content. At osmotically extreme conditions (5 and 55 PSU, resp.), all stages showed minimum biomass accumulation; this was consistent with maximum mortality and longest duration of development (data presented in a separate paper). Successively later exposure to these salinities tended to reduce these effects. Lowest mortality and shortest time of development occurred generally at 15–25 PSU, indicating an optimum at moderately reduced salinities. This response pattern, however, was not congruent with that observed in growth. Biomass accumulation was initially maximum within a wide range of salinities (15–45 PSU), but in the Zoea II and III stages, this range tended to narrow and to shift towards higher salinities (35–45 PSU). These trends reversed in the Megalopa and Crab I, where maximum growth occurred again in a wider range and at lower salinities (15–35 PSU). The reduction of zoeal growth in moderately dilute media (15–25 PSU), which were optimal for survival and development, is interpreted as an energetic cost of hyper-osmoregulation, which begins already at hatching. Five PSU caused hypo-osmotic stress, exceeding in the long term the larval capacity for hyper-regulation. Poor zoeal survival and growth at 55 PSU are interpreted as effects of hyper-osmotic stress. In the Megalopa and Crab I, reduced growth at salinities 35 PSU may reflect the energetic costs of hypo-osmoreguation beginning in these stages. Our data suggest that the physiological adaptations of larval and early juvenile A. miersii allowing for survival and development in a physically harsh and unpredictable habitat imply a trade-off with reduced growth, due to energetic costs of osmoregulation.  相似文献   

17.
Halophytes, such as seagrasses, predominantly form habitats in coastal and estuarine areas. These habitats can be seasonally exposed to hypo-salinity events during watershed runoff exposing them to dramatic salinity shifts and osmotic shock. The manifestation of this osmotic shock on seagrass morphology and phenology was tested in three Indo-Pacific seagrass species, Halophila ovalis, Halodule uninervis and Zostera muelleri, to hypo-salinity ranging from 3 to 36 PSU at 3 PSU increments for 10 weeks. All three species had broad salinity tolerance but demonstrated a moderate hypo-salinity stress response – analogous to a stress induced morphometric response (SIMR). Shoot proliferation occurred at salinities <30 PSU, with the largest increases, up to 400% increase in shoot density, occurring at the sub-lethal salinities <15 PSU, with the specific salinity associated with peak shoot density being variable among species. Resources were not diverted away from leaf growth or shoot development to support the new shoot production. However, at sub-lethal salinities where shoots proliferated, flowering was severely reduced for H. ovalis, the only species to flower during this experiment, demonstrating a diversion of resources away from sexual reproduction to support the investment in new shoots. This SIMR response preceded mortality, which occurred at 3 PSU for H. ovalis and 6 PSU for H. uninervis, while complete mortality was not reached for Z. muelleri. This is the first study to identify a SIMR in seagrasses, being detectable due to the fine resolution of salinity treatments tested. The detection of SIMR demonstrates the need for caution in interpreting in-situ changes in shoot density as shoot proliferation could be interpreted as a healthy or positive plant response to environmental conditions, when in fact it could signal pre-mortality stress.  相似文献   

18.
Larvae of the land-crab, Cardisoma guanhumi, Latreille. weremaintained in 24 different combinations of salinity and temperaturefrom the time of hatching. Survival to the first crab occurredin salinities of 15–45 p.p.t., 25° and 30°C. Durationof the five zoeal and one megalops stages was similar in salinitiesof 20–40 p.p.t., but at 15 and 45 p.p.t. a greater periodof time was required for total development. Mortality of allthe larvae at 20°C suggests that temperature plays a moreimportant role in survival and distribution of the larvae ofC. guanhumi than salinity. Increments of size in crabs during the first seven post-larvalmolts were similar in salinities of 5–35 p.p.t., 25°C,but in fresh water increase in size at the time of molting wasreduced. Although there was no apparent relationship betweenfrequency of molting and salinities of 5–35 p.p.t., theduration of intermolt was reduced in crabs maintained in freshwater, and survival was also lower. From the present study there is no indication that the morphologicaland physiological processes that are associated with adaptationof the adult crab to the terrestrial environment are initiatedduring larval development. Although the adult crabs have successfullypenetrated the terrestrial environment, the pelagic larvae arestill subject to the numerous ecological variables of the estuarineand marine environments.  相似文献   

19.
1. The Laurentian Great Lakes are among the most invaded freshwater ecosystems in the world. Historically, the major vector for the introduction of non‐indigenous species (NIS) has been the release of contaminated ballast water via transoceanic ships. Despite regulations implemented in 1993, requiring vessels carrying fresh ballast water to exchange this water with saline ocean water, new reports of invasions have continued. 2. NIS often have a wide environmental tolerance allowing them to adapt to and invade a variety of habitats. It has been hypothesized that NIS with broad salinity tolerance may be able to survive ballast water exchange (BWE) and continue to pose an invasion risk to the Great Lakes. 3. We tested the short‐term salinity tolerance of eight recent invaders to the Great Lakes, specifically three cladocera (Bosmina coregoni, Bythotrephes longimanus, Cercopagis pengoi), two molluscs (Dreissena polymorpha, Dreissena rostriformis bugensis), and one species each of the families Gammaridae, Mysidae and Gobidae (Echinogammarus ischnus, Hemimysis anomala, Neogobius melanostomus) to determine if they could have survived salinities associated with BWE. 4. Overall, short‐term exposure to highly saline water dramatically reduced survival of all species. Two different methods of BWE tested, simultaneous and sequential, were equally effective in reducing survival. Species that survived the longest in highly saline water either possess behavioural characteristics that reduce exposure to adverse environments (valve closure; both Dreissena species) or are reported to have some degree of salinity tolerance in their native region (Echinogammarus). Given that exposure in our trials lasted a maximum of 48 h, and that species in ballast tanks would typically be exposed to saline water for c. 5 days, it appears that BWE is an effective method to reduce the survival of these NIS. These results provide impetus for tightening policy and monitoring of BWE, in particular for ships entering the Great Lakes from freshwater ports.  相似文献   

20.
Soil salinity and the salinity of trophic resources may alter the osmoregulatory processes of arthropod, challenging the smooth regulation of body water, and, ultimately, survival. The intra and extracellular build-up of osmolytes represent a common strategy to attenuate acute hyperosmotic stress in several arthropod species. In the present study, we aimed to determine the impact of substrate and trophic resource salinities on salt tolerance in the female wolf spider, Arctosa fulvolineata, which is considered a specialist salt marsh species. We evaluated adult female survival and egg laying, and quantified the osmo-induced accumulation of compatible solutes (GC-MS). Three concentrations of substrate salinity were tested (0‰, 35‰ and 70‰) under three trophic conditions (starved spiders, spiders fed with salt prey [intertidal amphipods] and spiders fed with unsalted prey [freshwater amphipods]). We found no support for diet preferences in female A. fulvolineata, which exhibited similar predation rates on freshwater and marine amphipods. Survival and egg-laying were significantly impaired when female A. fulvolineata were exposed to hypersaline conditions for 12days. Our results showed an increase in the level of several compatible solutes when spiders were exposed for 12days to saline conditions. For instance, α-alanine, β-alanine, arginine, asparagine, aspartate, homoserine, glutamine, glycine, proline and serine levels were 4-10 times higher under hypersaline conditions. The osmo-induced accumulation of amino acids may increase the osmolality of body fluids, thus enhancing the smooth regulation of body fluids and survival ability of wolf spider under extreme saline conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号