首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract. The phylogenetic relationships within the Order Aplousobranchiata (Ascidiacea) are largely unexplored. In this work, we study the phylogenetic status of the genera Clavelina and Pycnoclavella. Traditionally, both genera had been included in the family Clavelinidae, until the new family Pycnoclavellidae was defined, removing the genus Pycnoclavella from Clavelinidae. Not all authors accept the validity of Clavelina and Pycnoclavella as distinct genera, let alone their belonging to different families. In addition, the assignment of species to these genera, as well as to the genus Archidistoma , has been controversial. We analyzed sequences of the mitochondrial gene cytochrome c oxidase subunit I belonging to ten species of Pycnoclavella (including several formerly assigned to Archidistoma and Clavelina ), 11 species of Clavelinidae, and ten species of other aplousobranch genera belonging to seven families, plus two outgroups. Two different tree construction methods (maximum likelihood and Bayesian inference) showed similar results. Pycnoclavella and Clavelina appeared in distinct clades but formed a monophyletic group relative to representatives of the main families of the order Aplousobranchiata. Our phylogenetic results indicate that both genera are valid but should be included within a single family, with the name Clavelinidae having precedence. The monotypic clavelinid genus Nephtheis branches in our trees within the clade of the genus Clavelina. Our results also confirm that some forms assigned to Archidistoma and Clavelina have been misplaced and belong to the genus Pycnoclavella. Pycnoclavella martae n.sp. is described.  相似文献   

2.
Eight microsatellite loci were characterized in the colonial ascidian Pycnoclavella sp. from an enriched library of genomic DNA. Most microsatellites were large and compound. Allelic variation was assessed in 30 individuals collected from Cerro Gordo (SW Mediterranean Sea). The number of alleles per locus ranged from one to nine, observed heterozygosity from 0.05 to 0.29 and expected heterozygosity from 0.15 to 0.39. No significant linkage disequilibrium between pairs of loci was detected, but five loci showed significant heterozygote deficiency that may be explained either by inbreeding, population substructure or the presence of null alleles.  相似文献   

3.
The Order Stolidobranchiata comprises the families Pyuridae, Styelidae and Molgulidae. Early molecular data was consistent with monophyly of the Stolidobranchiata and also the Molgulidae. Internal phylogeny and relationships between Styelidae and Pyuridae were inconclusive however. In order to clarify these points we used mitochondrial and nuclear sequences from 31 species of Styelidae and 25 of Pyuridae. Phylogenetic trees recovered the Pyuridae as a monophyletic clade, and their genera appeared as monophyletic with the exception of Pyura. The Styelidae, on the other hand, appeared as a paraphyletic group split into several clades. One of them was formed by solitary oviparous species, of which the Pyuridae were a sister group. A second clade included the colonial genera Botryllus, Botrylloides and Symplegma. The remaining colonial and solitary genera formed several poorly resolved clades. One of the more species genus, Polycarpa, was shown to be polyphyletic, and the species Styela plicata grouped into two genetically distant clades suggesting the existence of two cryptic species. The internal phylogeny of Styelidae has bearings on the origin of coloniality in this family. We suggest to abandon the traditional division of colonial forms into social and compound species and use instead the categories of aggregated colonies that do not have common vascular systems, and integrated colonies, that do possess such systems. Our molecular results indicate that there have been several independent acquisitions of coloniality in the Styelidae, and that viviparity may be a pre-adaptation for a colonial life-style.  相似文献   

4.
Dispersal triggers gene flow, which in turn strongly affects the ensuing genetic population structure of a species. Using nuclear microsatellite loci and mitochondrial DNA (mtDNA), we estimated the genetic population structure of the wasp Polistes olivaceus throughout Bangladesh. The level of population differentiation using nuclear markers (F ST) appeared to be much lower than that estimated using mtDNA haplotype sequences (ФST), even after correcting for effective population size differences between the two markers. These results suggest a philopatric tendency, in which gynes disperse less than males. We observed no isolation by distance among the study populations at either the nuclear or mtDNA level, suggesting nonequilibrium between gene flow and drift as a result of very frequent interpopulation movement. For the nuclear markers, an individual assignment test showed no genetically and geographically distinct groups. Instead, phylogenetic analyses as well as a minimum spanning network using mtDNA haplotypes consistently revealed two distinct lineages. The distribution of haplotypes indicated western populations with a single lineage and offered clear evidence for restricted gene flow across the Jamuna–Padma–Upper Meghna river system. Mismatch distributions exhibited a unimodal distribution, which along with a starlike haplotype network, suggested a population expansion in lineage I but not in lineage II. Overall, these results suggest that gene flow among populations of P. olivaceus was affected by both female philopatry and a major river system across Bangladesh.  相似文献   

5.
Kinship plays a significant role in shaping the social and geneticstructures of many vertebrate populations. Evidence of kinship,however, may be substantially influenced by the spatial andtemporal scales over which co-ancestry is monitored. For example,while data on social group composition may yield little indicationof relatedness among reproductive partners, data on the demographicstructure of a population may reveal considerable shared ancestryamong mates. We explored relationships among social group composition,individual movements, and population-level patterns of kinshipusing data from a 7-year field study of the colonial tuco-tuco(Ctenomys sociabilis), a group-living subterranean rodent thatis endemic to southwestern Argentina. Our analyses indicatethat social groups are composed of 1–4 generations ofclosely related females and a single, immigrant male, suggestingthat reproductive partners are not related to one another. Monitoringindividual movements, however, revealed that (1) most male dispersaloccurs within the local population and (2) most new social groupsare founded by females born in the study population, indicatingthat individuals reared in different burrow systems may shareconsiderable co-ancestry. Simulation analyses revealed thatup to 67% of reproductive partnerships consist of animals thatshare co-ancestry within the last 5–7 generations. Thus,while analyses of social group composition provide little evidenceof kinship among reproductive partners, population-level analysesof dispersal and group formation suggest that co-ancestry amongmates is common. These findings have important implicationsfor interpreting social interactions and genetic structure inthis species.  相似文献   

6.
The relative importance of separation by distance and by environment to population genetic diversity can be conveniently tested in river networks, where these two drivers are often independently distributed over space. To evaluate the importance of dispersal and environmental conditions in shaping microbial population structures, we performed genome-resolved metagenomic analyses of benthic Microcoleus-dominated cyanobacterial mats collected in the Eel and Russian River networks (California, USA). The 64 Microcoleus genomes were clustered into three species that shared >96.5% average nucleotide identity (ANI). Most mats were dominated by one strain, but minor alleles within mats were often shared, even over large spatial distances (>300 km). Within the most common Microcoleus species, the ANI between the dominant strains within mats decreased with increasing spatial separation. However, over shorter spatial distances (tens of kilometres), mats from different subwatersheds had lower ANI than mats from the same subwatershed, suggesting that at shorter spatial distances environmental differences between subwatersheds in factors like canopy cover, conductivity, and mean annual temperature decreases ANI. Since mats in smaller creeks had similar levels of nucleotide diversity (π) as mats in larger downstream subwatersheds, within-mat genetic diversity does not appear to depend on the downstream accumulation of upstream-derived strains. The four-gamete test and sequence length bias suggest recombination occurs between almost all strains within each species, even between populations separated by large distances or living in different habitats. Overall, our results show that, despite some isolation by distance and environmental conditions, sufficient gene-flow occurs among cyanobacterial strains to prevent either driver from producing distinctive population structures across the watershed.  相似文献   

7.
Phylogeographical analysis of Paracentrotus lividus was carried out by means of sequencing the mitochondrial cytochrome b gene (1143 bp) of 260 individuals collected at 22 Mediterranean and four Atlantic localities. Against a background of high haplotype diversity and shallow genetic structuring, we observed significant genetic divergence between the Adriatic Sea and the rest of the Mediterranean, as well as between the Mediterranean and the Atlantic sample groups. Furthermore, on the largest spatial scale, isolation by distance was detected. Three main haplogroups were identified by network and Bayesian assignment analyses. The relative proportions of haplogroups were different in the four regions considered, with the exception of Western and Eastern Mediterranean that showed a similar pattern. This result together with the outcome of Snn statistics, analysis of molecular variance and network analyses allowed to identify three weakly differentiated populations corresponding to the Atlantic, Western + Eastern Mediterranean, and Adriatic seas. Analyses of mismatch distribution and neutrality tests were consistent with the presence of genetic structuring and past demographic expansion(s). From a fisheries perspective, the results obtained in the present study are consistent with genetic sustainability of current exploitation; local depleted stocks are recurrently replenished by recruits that may have originated from nonharvested areas. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 910–923.  相似文献   

8.
The delimitation of populations, defined as groups of individuals linked by gene flow, is possible by the analysis of genetic markers and also by spatial models based on dispersal probabilities across a landscape. We combined these two complimentary methods to define the spatial pattern of genetic structure among remaining populations of the threatened Florida scrub-jay, a species for which dispersal ability is unusually well-characterized. The range-wide population was intensively censused in the 1990s, and a metapopulation model defined population boundaries based on predicted dispersal-mediated demographic connectivity. We subjected genotypes from more than 1000 individual jays screened at 20 microsatellite loci to two Bayesian clustering methods. We describe a consensus method for identifying common features across many replicated clustering runs. Ten genetically differentiated groups exist across the present-day range of the Florida scrub-jay. These groups are largely consistent with the dispersal-defined metapopulations, which assume very limited dispersal ability. Some genetic groups comprise more than one metapopulation, likely because these genetically similar metapopulations were sundered only recently by habitat alteration. The combined reconstructions of population structure based on genetics and dispersal-mediated demographic connectivity provide a robust depiction of the current genetic and demographic organization of this species, reflecting past and present levels of dispersal among occupied habitat patches. The differentiation of populations into 10 genetic groups adds urgency to management efforts aimed at preserving what remains of genetic variation in this dwindling species, by maintaining viable populations of all genetically differentiated and geographically isolated populations.  相似文献   

9.
Metalasia is a genus in tribe Gnaphalieae (Asteraceae), endemic to South Africa and with its main distribution in the Cape Floristic Region. The genus comprises 57 species and, with a number of closely related genera, it constitutes the ‘Metalasia clade’. A species‐level phylogenetic analysis is presented, based on DNA sequences from two nuclear (internal and external transcribed spacer: ITS, ETS) and two plastid (psbA‐trnH, trnL‐trnF) regions together with morphological data. Analyses combining molecular and morphological data attempt not only to resolve species interrelationships, but also to detect patterns in character evolution. Phylogenetic analyses corroborate our earlier study and demonstrate that Metalasia is formed of two equally sized, well‐supported sister groups, one of which is characterized by papillose cypselas. The results differ greatly from earlier hypotheses based on morphology alone, as few morphological characters support the phylogenetic patterns obtained. The two clades of Metalasia do, however, appear to differ in distribution, corresponding to the different rainfall regimes of South Africa. Analyses show a few taxa to be problematic; one example is the widely distributed M. densa which appears to be an intricate species complex. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 173–198.  相似文献   

10.
In order to describe the genetic diversity of five geographical populations of cuttlefish (Sepiella japonica) along with Chinese coast and determined their phylogenetic relationship, partial mitochondrial COI gene (681bp in length) was amplified from 96 individuals collected from these populations and sequenced. The 5 populations of cuttlefish inhabit Yellow Sea, East China Sea and South China Sea. Out of 22 polymorphic nucleotides identified, 8 were represented by a single sequence, 12 were parsimony informative, which defined 22 haplotypes. Haplotype and nucleotide diversity were low among populations. Of 22 haplotypes, 15 appeared only in a single population, 6 appeared in 2 or 3 populations and 1 was shared by all populations. The COI gene was monomorphic in Qingdao population. The haplotypes identified clustered into 2 clades, each covered individuals from 5 populations each. Pairwise FST were not proportional to the geographical distances. Among the 5 populations, relatively high level of genetic diversity was found in Ningde population which was recommended to be the best choice of germplasm resources for artificial releasing project.  相似文献   

11.
G. ARONNE  D. RUSSO 《Plant biosystems》2013,147(3):189-195
ABSTRACT

The role of carnivorous mammals as seed dispersers of Myrtus communis L. in the Mediterranean environment was studied. Seeds of M. communis were found in faeces of red fox (Vulpes vulpes L.) and carnivores from the genus Martes, at four sites on the Tyrrhenic coast of Southern Italy in the period autumn-winter 1993–1995. All the study sites are covered by Mediterranean shrublands with M. communis as one of the dominant species. Content analysis of fox scats showed that fruits of M. communis constitute a relevant component of the diet of these carnivores, although other food categories were also well represented. Further investigations on the effect of mammal digestion on seed germinability showed that carnivores not only moved the seeds away from the mother plant but also enhanced their germinability. This species was known to be bird- and ant-dispersed and the adaptive implications of a multi-vectorial seed dispersal process is discussed.  相似文献   

12.
ABSTRACT. Ultrastructural studies on Eimeria (syn. Epieimeria ) anguillae (Apicomplexa), parasite of the digestive tract of the eel, have shown that the development of this parasite takes place completely within the host cell. Merogony and gamogony are intracellular but in the epicytoplasmic position. Sporogony is also located within the epithelial cells, which agrees with assignment of this coccidian in the family Eimeriidae. However, depending on the intensity of infection and the physiopathological reaction of the host, the gamont may behave in two ways. 1) In massive infections, gamogony stages cause a genuine destruction of intestinal epithelium. Large numbers of gamonts form nodules and parts of the seriously destroyed epithelium peel off and are released into the lumen of the gut and quickly discharged into the outer environment. This discharged epithelium envelops cells containing immature oocysts that then sporulate outside the host. 2) In light infections, the host cells, which are necrotic due to the presence of a zygote, are pushed between the surrounding intact cells towards the base of the epithelium. Closely above its basal lamella, the oocyst then undergoes sporulation. These results show no taxonomically important biological features (e.g. special mode of implantation to the host cell or active movement of the zygote). Because the morphological characteristics of Epieimeria do not differ significantly from Eimeria , we propose to suppress the genus Epieimeria Dyková and Lom, 1981, and relegate its species into the genus Eimeria .  相似文献   

13.
A new rupicolous species, Pinguicula saetabensis, belonging to P. sect. Pinguicula is described from calcareous cliffs of central-southern Valencia province, in the eastern Iberian Peninsula. It has previously been confused with P. mundi and P. vallisneriifolia, two close allies endemic to southern Spain which share some morphological traits and a similar habitat. However, some peculiarities allow recognition of those Valencian plants at the specific rank. Data on morphology, ecology, biogeography and conservation are reported for the new species, and its taxonomic affinities are discussed on the basis of phylogenetic analyses of the internal transcribed spacer region of nuclear ribosomal DNA. Furthermore, the presence of one population of P. vallisneriifolia is confirmed in that province, also based on morphological and molecular data.  相似文献   

14.
The mite genus Steganacarus is represented in the Canary Islands by three endemic species, one recently discovered species, and several morphotypes of uncertain taxonomic position. We used a fragment of the mitochondrial cytochrome oxidase I gene to reconstruct the phylogenetic relationships among representatives of the different taxa from the three central islands of the archipelago, Tenerife, La Gomera and Gran Canaria. Sequence data were analysed by both maximum parsimony and maximum likelihood methods. The inferred phylogenetic relationships do not correlate well with current morphological taxonomy but reveal four deeply divergent and geographically coherent lineages, one each on Gran Canaria and La Gomera and two on Tenerife. No pattern of molecular differentiation was observed among different morphotypes. Possible explanations for this incongruence are suggested in relation to the ecology and biogeography of the group. A recently discovered Steganacarus species from La Gomera, morphologically quite distinct from the other Canarian Steganacarus, is clearly identified as a taxon distantly related to all the other Canarian samples.  相似文献   

15.
How the often highly endemic biodiversity of islands originated has been debated for decades, and it remains a fervid research ground. Here, using mitochondrial and nuclear gene sequence analyses, we investigate the diversity, phylogenetic relationships, and evolutionary history of the mayfly Baetis gr. rhodani on the three largest northwestern Mediterranean islands (Sardinia, Corsica, Elba). We identify three distinct, largely co‐distributed, and deeply differentiated lineages, with divergences tentatively dated back to the Eocene–Oligocene transition. Bayesian population structure analyses reveal a lack of gene exchange between them, even at sites where they are syntopic, indicating that these lineages belong to three putative species. Their phylogenetic relationships with continental relatives, together with the dating estimates, support a role for three processes contributing to this diversity: (1) vicariance, primed by microplate disjunction and oceanic transgression; (2) dispersal from the continent; and (3) speciation within the island group. Thus, our results do not point toward a prevailing role for any of the previously invoked processes. Rather, they suggest that a variety of processes equally contributed to shape the diverse and endemic biota of this group of islands.  相似文献   

16.
Yunnanopilia longistaminea (W.Z. Li) C.Y. Wu & D.Z. Li, which is a controversial species in Opiliaceae, is treated as a variety of Champereia manillana (Blume) Merrill in the Flora of China and morphological analysis has produced conflicting results regarding its affinity to Melientha and Champereia. To determine the systematic position of Yunnanopilia in Opiliaceae, we selected two nuclear regions (internal transcribed spacer [ITS4‐ITS5] and 18S rDNA) and four chloroplast regions (rbcL, matK, psbAtrnH, and trnStrnG) to test the phylogenetics of the family Opiliaceae using maximum likelihood and Bayesian inference analysis. Morphological characteristics were also examined to clarify the similarities and differences among Y. longistaminea and two closely related species. Agonandra was located at the basal position in the family Opiliaceae; in the large clade including other remaining genera, two main clades were clearly identified and correlated with inflorescence morphological characteristics. All samples of Y. longistaminea formed a clade. Yunnanopilia, Melientha, and Champereia were more closely related than other genera of Opiliaceae. Yunnanopilia longistaminea was sister to M. suavis Pierre and was more closely related to M. suavis than to C. manillana. Morphological analysis also showed that differences in the inflorescences and flowers between Y. longistaminea and M. suavis were substantial enough to warrant the retention of Y. longistaminea in its current genus. Thus, we suggest that the monotypic Yunnanopilia be treated as a distinct genus and that the name Y. longistaminea should be adopted.  相似文献   

17.
The molecular phylogeny of the genus Odontobuthus Vachon, 1950 (Scorpiones: Buthidae) in Iran was evaluated using two mitochondrial DNA genes, cytochrome c oxidase, subunit I (COI) and 16S ribosomal RNA (16S rRNA). The molecular phylogenetic analyses were performed using Maximum Parsimony, Maximum Likelihood and Bayesian inference methods. The resulting topologies supported two main clades: the clade comprising Odontobuthus doriae, O. bidentatus, and O. tavighiae, and another one which is the O. tirgari clade. The results clearly presented additional support for the taxonomic validity of the recently described species, O. tirgari and O. tavighiae. In addition, the monophyly of two previously described species O. doriae and O. bidentatus was confirmed. According to the data presented here, three taxonomically valid species belonging to the genus Odontobuthus occur in Iran.  相似文献   

18.
Cryptic species have been increasingly revealed in the marine realm through an analytical approach incorporating multiple lines of evidence (e.g., mtDNA, nuclear genes and morphology). Illustrations of cryptic taxa improve our understanding of species diversity and evolutionary histories within marine animals. The pen shell Atrina pectinata is known to exhibit extensive morphological variations that may harbour cryptic diversity. In this study, we investigated A. pectinata populations along the coast of China and one from Japan to explore possible cryptic diversity and hybridization using a combination of mitochondrial (cytochrome c oxidase subunit I, mtCOI) and nuclear (ribosomal internal transcribed spacer, nrITS) genes as well as morphology. Phylogenetic analyses of mtCOI ‘DNA barcoding gene’ sequences resolved six divergent lineages with intralineage divergences between 0.4% and 0.8%. Interlineage sequence differences ranged from 4.3% to 22.0%, suggesting that six candidate cryptic species are present. The nrITS gene revealed five deep lineages with Kimura 2‐parameter distances of 3.7–30.3%. The five nuclear lineages generally corresponded to mtCOI lineages 1–4 and (5 + 6), suggestive of five distinct evolutionary lineages. Multiple nrITS sequences of significant variance were found within an individual, clearly implying recent hybridization events between/among the evolutionary lineages, which contributed to cytonuclear discordance. Morphologically, five morphotypes matched the five genetic lineages, although the intermediates may well blur the boundaries of different morphotypes. This study demonstrates the importance of combining multiple lines of evidence to explore species cryptic diversity and past evolutionary histories.  相似文献   

19.
Abstract.— The American seven-spined gobies (Gobiidae, Gobiosomatini) are highly diverse both in morphology and ecology with many endemics in the Caribbean region. We have reconstructed a molecular phylogeny of 54 Gobio-somatini taxa (65 individuals) based on a 1646-bp region that includes the mitochondrial 12S rRNA, tRNA-Val, and 16S rRNA genes. Our results support the monophyly of the seven-spined gobies and are in agreement with the existence of two major groups within the tribe, the Gobiosoma group and the Microgobius group. However, they reject the monophyly of some of the Gobiosomatini genera. We use the molecular phylogeny to study the dynamics of speciation in the Gobiosomatini by testing for departures from the constant speciation rate model. We observe a burst of speciation in the early evolutionary history of the group and a subsequent slowdown. Our results show a split among clades into coastal-estuarian, deep ocean, and tropical reef habitats. Major habitat shifts account for the early significant acceleration in lineage splitting and speciation rate and the initial divergence of the main Gobiosomatini clades. We found that subsequent diversification is triggered by behavior and niche specializations at least in the reef-associated clades. Overall, our results confirm that the diversity of Gobiosomatini has arisen during episodes of adaptive radiation, and emphasize the importance of ecology in marine speciation.  相似文献   

20.
Abstract Identification of aphid species is always difficult due to the shortage of easily distinguishable morphological characters. Aphid genus Toxoptera consists of species with similar morphology and similar to Aphis in most morphological characters except the stridulatory apparatus. DNA barcodes with 1 145 bp sequences of partial mitochondrial cytochrome‐coxidase I (COI) genes were used for accurate identification of Toxoptera. Results indicated mean intraspecific sequence divergences were 1.33%, whereas mean interspecific divergences were greater at 8.29% (0.13% and 7.79% if T. aurantii 3 and T. aurantii 4 are cryptic species). Sixteen samples were distinguished to four species correctly by COI barcodes, which implied that DNA barcoding was successful in discrimination of aphid species with similar morphology. Phylogenetic relationships among species of this genus were tested based on this portion of COI sequences. Four species of Toxoptera assembled a clade with low support in maximum‐parsimony (MP) analysis, maximum‐likelihood (ML) analysis and Bayesian phylogenetic trees, the genus Toxoptera was not monophyletic, and there were two sister groups, such as T. citricidus and T. victoriae, and two clades of T. aurantii which probably presented cryptic species in the genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号