首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(1) Incubation of the beef heart mitochondrial ATPase, F1 with Mg-ATP was required for the binding of the natural inhibitor, IF1, to F1 to form the inactive F1-IF1 complex. When F1 was incubated in the presence of [14C]ATP and MgCl2, about 2 mol 14C-labeled adenine nucleotides were found to bind per mol of F1; the bound 14C-labeled nucleotides consisted of [14C]ADP arising from [14C]ATP hydrolysis and [14C]ATP. The 14C- labeled nucleotide binding was not prevented by IF1. These data are in agreement with the idea that the formation of the F1-IF1 complex requires an appropriate conformation of F1. (2) The 14C-labeled adenine nucleotides bound to F1 following preincubation of F1 with Mg-[14C] ATP could be exchanged with added [3H]ADP or [3H]ATP. No exchange occurred between added [3H]ADP or [3H]ATP and the 14 C-labeled adenine nucleotides bound to the F1-IF1 complex. These data suggest that the conformation of F1 in the isolated F1-IF1 complex is further modified in such a way that the bound 14C-labeled nucleotides are no longer available for exchange. (3) 32Pi was able to bind to isolated F1 with a stoichiometry of about 1 mol of Pi per mol of F1 (Penefsky, H.S. (1977) J. Biol. Chem. 252, 2891-2899). There was no binding of 32Pi to the F1-IF1 complex. Thus, not only the nucleotides sites, but also the Pi site, are masked from interaction with external ligands in the isolated F1-IF1 complex.  相似文献   

2.
1. A formula is given that describes the appearance of [14C]ATPADP outside the mitochondria after the addition of [14C] 1atp during the steady-state uncoupler-induced hydrolysis of extramitochondrial ATP. If the transported adenine nucleotides equilibrate with the intramitochondrial pool, [14C]ADP0 would be expected to appear with a lag phase that corresponds with the time needed for the radioactive labelling of the intramitochondrial adenine nucleotide pool. 2. The rates of formation of [14C]ADP outside the mitochondria after addition of [14C]ATP during the steady-state uncoupler-induced ATP hydrolysis catalysed by rat-liver mitochondria at 0 degree C were measured. 3. In the presence of carbonyl cyanide m-chlorophenylhydrazone the time course of the [14]ADPo formation was the same as that predicted on the basis of the above assumption. 4. In the presence of the less effective uncoupler, 2,4-dinitrophenol, the time course of [14C]ADPo formation was not consistent with the theoretical predictions: no lag phase was present and the measured rate was higher than the maximal calculated rate. These results can be explained by assuming a functional interaction between the adenine nucleotide translocator and the mitochondrial ATPase (F1). 5. It is concluded that under phosphorylating as well as dephosphorylating conditions, the adenine nucleotide translocator and the mitochondrial ATPase can be functionally linked to catalyse phosphorylation or dephosphorylation of extramitochondrial ADP or ATP, without participation of the intramitochondrial adenine nucleotides.  相似文献   

3.
1. [14C]ADP is incorporated into washed broken chloroplasts in the light. The bound labelled nucleotides which cannot be removed by washing are almost exclusively related to coupling factor CF1. [14C]ADP binding exhibits a monophasic concentration curve with a Km of 2 μM.2. By illumination of the chloroplasts, previously incorporated labelled nucleotides are released. A fast release is obtained in the presence of unlabelled ADP and ATP, indicating an energy-dependent exchange. A slow and incomplete release is induced by light in the absence of unlabelled adenine nucleotides. Obviously, under those conditions, an adenine nucleotide depleted CF1 conformation is established.3. Re-binding of [14C]ADP by depleted membranes is an energy-independent process. Even after solubilization of adenylate-depleted CF1, [14C]ADP is incorporated into the protein. By re-binding of ADP in the dark, CF1 is converted to a non-exchangeable form.4. Energy-dependent adenine nucleotide exchange on CF1 is suggested to include three different conformational states of the enzyme: (1) a stable, non-exchangeable form which contains firmly bound nucleotides, is converted to (2), an unstable form containing loosely bound adenine nucleotides. This conformation allows adenylate exchange; it is in equilibrium with (3) a metastable, adenylate-depleted form. The transition from state (1) to state (2) is the energy-requiring step.  相似文献   

4.
Metabolism of [14C]adenosine in a dose of 100 mg per 1 kg of mass and [14C]ATP in the equimolar quantity was studied in rats after intraperitoneal administration. Adenosine is shown to enter tissues of the liver, spleen, thymus, heart and erythrocytes where it phosphorylates into adenine nucleotides (mainly ATP) and deaminates into inosine. The content of adenosine increases for a short period in the above tissues, except for erythrocytes and plasma. The latter accumulates a considerable amount of inosine and hypoxanthine, but only traces of uric acid, xanthine and adenine nucleotides. ATP administered to rats catabolizes through the adenosine formation. The exogenic adenosine and ATP replace in tissues and erythrocytes only a slight part (1-12%) of their total adenine nucleotide pool. The content of these metabolites and ADP in the blood plasma does not change essentially under the effect of adenosine, ATP and AMP. It is shown on rats whose adenine nucleotide pool of cells is marked by the previous administration of [14C]adenine that injections of adenosine, ATP and inosine do not accelerate catabolism of adenine nucleotides in tissues and erythrocytes as well as do not increase the level of catabolism products in the blood plasma. Adenosine enhances and ATP lowers the content of cAMP in spleen and myocardium, respectively.  相似文献   

5.
Studies with rat thymocytes labeled with [14C]adenine and fractionated by digitonin treatment revealed that the cytoplasm of these cells contains about 60% of the total adenine nucleotide pool with a higher ATP/ADP ratio and metabolic activity as compared with the structural components. The incorporation of [14C]adenine and [14C]adenosine into thymocyte adenine nucleotides results in predominant labeling of cytoplasmic ATP, in which the specific radioactivity of this nucleoside triphosphate is two and three times as high as in subcellular structures. Concanavalin A decreases the ATP level in thymocytes without changing its specific radioactivity. This compound does not influence the total content and amount labeled adenine nucleotides in the structural fraction. Papaverine accelerates the catabolism of ATP, mainly in thymocyte cytoplasm and, in a lesser degree, in its structural fraction. In each fraction the papaverine-induced catabolism of ATP is localized in the compartment which is more intensively labeled with [14C]adenine than the whole fractionation ATP pool. Adenosine markedly accelerates adenine nucleotide catabolism in the cytoplasmic and structural fractions of thymocytes; however, only in the first one of them this acceleration is due to ATP elevation. Papaverine and adenosine do not directly influence either the content or specific radioactivity of adenine nucleotides of the structural fraction isolated from [14C]adenine-labeled thymocytes.  相似文献   

6.
S Sadis  L E Hightower 《Biochemistry》1992,31(39):9406-9412
The mammalian 70-kilodalton heat shock cognate protein (Hsc70) is an abundant, cytosolic molecular chaperone whose interactions with protein substrates are regulated by ATP hydrolysis. In vitro, purified Hsc70 was found to have a slow, intrinsic ATPase activity in the absence of protein substrates. The addition of an unfolded protein such as apocytochrome c stimulated ATP hydrolysis 2-3-fold. In contrast, the native holoprotein, cytochrome c, did not stimulate the ATPase rate, in accord with recent observations that 70-kilodalton heat shock proteins interact selectively with unfolded proteins. Stimulation of ATP hydrolysis by apocytochrome c was due to an increase in the Vmax, with no effect on the Km for ATP. Following hydrolysis of [3H]ATP, a relatively stable [3H]ADP.Hsc70 complex was formed. Release of [3H]ADP from Hsc70 was most efficient in the presence of other nucleotides such as ADP or ATP, suggesting that ADP release occurs as an ADP/ATP exchange reaction. The loss of radiolabeled ADP from Hsc70 in the presence of exogenous nucleotides followed first-order kinetics. In the presence of nucleotides, apocytochrome c induced a 2-fold increase in the rate of ADP release from Hsc70. Moreover, rate constants of the nucleotide exchange reaction measured in the absence and presence of apocytochrome c (0.16 and 0.34 min-1, respectively) closely matched the kcat values derived from ATP hydrolysis measurements (0.15 and 0.38 min-1, respectively). The results suggest that ADP release in a rate-limiting step in the Hsc70 ATPase reaction and that unfolded proteins stimulate ATP hydrolysis by accelerating the rate of ADP/ATP exchange.  相似文献   

7.
Isolated rat kidneys were perfused with a recirculating medium containing exogenous adenosine 3':5'-monophosphate (cyclic AMP) or guanosine 3':5'-monophosphate (cyclic GMP) at an initial concentration of 0.1 mM. Both cyclic nucleotides were rapidly removed from the perfusate. Urinary excretion accounted for about 20% and 40% of the respective cyclic AMP and cyclic GMP lost from the perfusate. The metabolism of the cyclic nucleotides was studied by 14C-labeled cyclic nucleotides in the perfusate. During 60 min, 30% of added cyclic [14C]AMP was metabolized to renal [14C]adenine nucleotides (ATP, ADP, and AMP) and 30% to perfusate [14C]uric acid. Similarly, 20% of cyclic[14C]GMP was metabolized to renal [14C]guanine nucleotides (GTP, GDP, and GMP) and 30% to perfusate [14C]uric acid. Urine contained principally unchanged 14C-labeled cyclic nucleotide. Addition of 0.1 mM cyclic AMP to the perfusate elevated the renal ATP and ADP contents 2-fold. Addition of 0.1 mM of either cyclic AMP or cyclic GMP to the perfusate also elevated the renal production of uric acid 2- to 3-fold. The production and distribution of metabolites of exogenous cyclic nucleotides were also studied in the intact rat. Within 60 min after injection, 3.3 mumol of either 14C-labeled cyclic AMP or cyclic GMP was cleared from the plasma. Kidney cortex and liver were the principal tissues for 14C accumulation. Urinary excretion accounted for about 20 and 45% of the cyclic [14C]AMP and cyclic [14C]GMP lost from the plasma, respectively. The 14C found in the kidney and liver was present almost entirely as the respective purine mono-, di-, and trinucleotides. The other principal metabolite was [14C]allantoin, found in the urine and, to a lesser extent, the liver. The urine contained mostly unchanged 14C-labeled cyclic nucleotide. Unlike the findings with the perfused kidney, [14C]uric acid was not a significant metabolite of the 14C-labeled cyclic nucleotides in these in vivo experiments.  相似文献   

8.
The atractyloside-insensitive accumulation of adenine nucleotides by rat liver mitochondria (as opposed to the exchange-diffusion catalysed by the adenine nucleotide translocase) has been measured by using the luciferin/luciferase assay as well as by measuring [14C]ATP uptake. In foetal rat liver mitochondria ATP is accumulated more rapidly than ADP, whereas AMP is not taken up. The uptake of ATP occurs against a concentration gradient, and the rate of ATP uptake is greater in foetal than in adult rat liver mitochondria. The accumulated [14C]ATP is shown to be present within the mitochondrial matrix space and is freely available to the adenine nucleotide translocase for exchange with ATP present in the external medium. The uptake is specific for ATP and ADP and is not inhibited by adenosine 5'-[beta gamma-imido] triphosphate, GTP, CTP, cyclic AMP or Pi, whereas dATP and AMP do inhibit ATP accumulation. The ATP accumulation is also inhibited by carbonyl cyanide m-chlorophenylhydrazone, KCN and mersalyl but is insensitive to atractyloside. The ATP uptake is concentration-dependent and exhibits Michaelis-Menten kinetics. The divalent cations Mg2+ and Ca2+ greatly enhance ATP accumulation, and the presence of hexokinase inhibits the uptake of ATP by foetal rat liver mitochondria. These latter effects provide an explanation for the low adenine nucleotide content of foetal rat liver mitochondria and the rapid increase that occurs in the mitochondrial adenine nucleotide concentration in vivo immediately after birth.  相似文献   

9.
Recently, phospholipase D-mediated hydrolysis of phosphatidylethanolamine (PtdEtn) was shown to be stimulated by activators of protein kinase C (Kiss, Z., and Anderson, W. B. (1989) J. Biol. Chem. 264, 1483-1487), suggesting that PtdEtn metabolism may play a role in signal transduction. Here we have studied the possible regulation of PtdEtn hydrolysis by adenine and guanine nucleotides, as well as by sphingosine, both in membranes isolated from [14C]ethanolamine- or [32P]PtdEtn-prelabeled NIH 3T3 cells and in intact cells. In isolated membranes both ATP and ADP stimulated the hydrolysis of PtdEtn. Both nucleotides had maximal (approximately 2-fold) effects at about 0.5 mM concentration. The main water-soluble product of [14C]PtdEtn hydrolysis was [14C]ethanolamine, while in [32P] PtdEtn-prelabeled membranes the nucleotides stimulated the formation of [32P]phosphatidic acid, suggesting the involvement of a phospholipase D-type enzyme. The hydrolysis-resistant analogs of GTP, such as guanosine 5'-3-O-(thio)triphosphate and guanyl-5'-yl imidodiphosphate, greatly potentiated the stimulatory effects of ATP and ADP on PtdEtn hydrolysis. On the other hand, the nonphosphorylating analogs of ATP, adenyl-5'-yl beta,gamma-imidodiphosphate and beta,gamma-methyl-eneadenosine 5'-triphosphate, failed to stimulate PtdEtn hydrolysis both in the absence and presence of guanosine triphosphates. Sphingosine, while exhibiting no effect alone, had a relatively modest (1.2-1.3-fold) potentiating effect on ATP-stimulated PtdEtn hydrolysis in isolated membranes. The effect of sphingosine was mimicked by threo- and erythrosphinganines, while N-acetylsphingosine was without effect. In studies with [14C]ethanolamine-prelabeled intact NIH 3T3 cells, externally added ATP did not stimulate PtdEtn hydrolysis. In contrast, sphingosine and sphinganines had much greater stimulatory effects on PtdEtn hydrolysis in intact cells than with isolated membranes. These data indicate that PtdEtn hydrolysis may be regulated by adenine and guanine nucleotides in addition to, or in cooperation with, the activators of protein kinase C, and that sphingosine may be an additional regulator of PtdEtn hydrolysis.  相似文献   

10.
In newborn rat liver, the adenine nucleotide content (ATP + ADP + AMP) of mitochondria increases severalfold within 2 to 3 h of birth. The net increase in mitochondrial adenines suggests a novel mechanism by which mitochondria are able to accumulate adenine nucleotides from the cytosol (J. R. Aprille and G. K. Asimakis, 1980, Arch. Biochem. Biophys.201, 564.). This was investigated further in vitro. Isolated newborn liver mitochondria incubated with 1 mM ATP for 10 min at 30 °C doubled their adenine nucleotide content with effects on respiratory functions similar to those observed in vivo: State 3 respiration and adenine translocase activity increased, but uncoupled respiration was unchanged. The mechanism for net uptake of adenine nucleotides was found to be specific for ATP or ADP, but not AMP. Uptake was concentration dependent and saturable. The apparent Km′s for ATP and ADP were 0.85 ± 0.27 mM and 0.41 ± 0.20 mM, respectively, measured by net uptake of [14C]ATP or [14C]ADP. The specific activities of net ATP and ADP uptake averaged 0.332 ± 0.062 and 0.103 ± 0.002 nmol/min/mg protein, respectively. ADP was a competitive inhibitor of net ATP uptake. If Pi was omitted from the incubations, net uptake of ATP or ADP was reduced by 51%. Either mersalyl or N-ethylmaleimide severely inhibited the accumulation of adenine nucleotides. Net ATP uptake was stoichiometrically dependent on MgCl2, suggesting that Mg2+ is accumulated along with ATP (or ADP). Uptake was energy dependent as indicated by the following results: Net AdN uptake (especially ADP uptake) was stimulated by the addition of an oxidizable substrate (glutamate) and inhibited by FCCP (an uncoupler). Antimycin A had no effect on net ATP uptake but inhibited net ADP uptake, suggesting that ATP was able to serve as an energy source for its own accumulation. If carboxyatractyloside was added to inhibit the exchange translocase, thereby preventing rapid access of exogenous ATP to the matrix, net ATP uptake was inhibited; carboxyatractyloside had no effect on ADP uptake. It was concluded that the net uptake of adenine nucleotides from the extramitochondrial space occurs by a specific transport process distinct from the classic adenine nucleotide exchange translocase. The accumulation of adenine nucleotides may regulate matrix reactions which are allosterically affected by adenines or which require adenines as a substrate.  相似文献   

11.
During net nucleoside triphosphate synthesis by chloroplast ATP synthase the extent of water oxygen incorporation into each nucleoside triphosphate released increases with decrease in ADP, GDP or IDP concentration. Likewise, during net ATP hydrolysis by the Mg2+-activated chloroplast ATPase, the extent of water oxygen incorporation into each Pi released increases as the ATP, GTP, or ITP concentration is decreased. However, the concentration ranges in which substrate modulation occurs differs with each nucleotide. Modulation of oxygen exchange during synthesis and hydrolysis of adenine nucleotides, as measured by variation in the extent of water oxygen incorporation into products, occurs below 250 microM. In contrast, guanosine and inosine nucleotides alter the extent of exchange at higher and much wider concentration ranges. Activation of the chloroplast ATPase by either heat or trypsin results in similar catalytic behavior as monitored by ATP modulation of oxygen exchanges during hydrolysis in the presence of Mg2+. More exchange capacity is evident with octylglucoside-activated enzyme at all ATP concentrations. High levels of tentoxin were also found to alter the catalytic exchange parameters resulting in continued water oxygen exchange into Pi released during hydrolysis at high ATP concentrations. Little or no oxygen exchange accompanies ATP hydrolysis in the presence of Ca2+. The [18O]Pi species formed from highly gamma-18O-labeled ATP at lower ATP concentrations gives a distribution as expected if only one catalytic pathway is operative at a given ATP concentration. This and other results support the concept of catalytic cooperativity between alternating sites as explanation for the modulation of oxygen exchange by nucleotide concentration.  相似文献   

12.
The total amount of bound exchangeable and nonexchangeable adenine nucleotides in Escherichia coli F1-ATPase (BF1) was determined; three exchangeable nucleotides were assessed by equilibrium dialysis in a [14C]ADP-supplemented medium. When BF1 was purified in a medium supplemented with ATP, a stoichiometry of nearly 6 mol of bound nucleotides/mol of enzyme was found; three of the bound nucleotides were ATP and the others ADP. When BF1 was filtered on Sephadex G-50 in a glycerol medium (Garrett, N.E., and Penefsky, H.S. (1975) J. Biol. Chem. 250, 6640-6647), bound ADP was rapidly released, in contrast to bound ATP which remained firmly attached to the enzyme. Upon incubation of BF1 with [14C]ADP, the bound ADP rather than the bound ATP was exchanged. Of the three [14C]ADPs which have bound to BF1 by exchange after equilibrium dialysis, one was readily lost by gel filtration on Sephadex G-50; the loss of bound [14C]ADP was markedly reduced by incubation of BF1 with aurovertin, a specific ligand of the beta subunit which is known to increase the affinity of the beta subunit for nucleotides (Issartel, J.-P., and Vignais, P. V. (1984) Biochemistry 23, 6591-6595). Upon photoirradiation of BF1 with [alpha-32P]2-azido-ADP, only the beta subunit was labeled; concomitantly, bound ADP was released, but the content in bound ATP remained stable. These results suggest that specific sites located on the three beta subunits bind nucleotides in a reversible manner. Consequently, the tightly bound ATP of native BF1 would be located on the alpha subunits.  相似文献   

13.
Using DTT-modulated thylakoid membranes we studied tight nucleotide binding and ATP content in bound nucleotides and in the reaction mixture during [14C] ADP photophosphorylation. The increasing light intensity caused an increase in the rate of [14C] ADP incorporation and a decrease in the steady-state level of tightly bound nucleotides. Within the light intensity range from 11 to 710 w m–2, ATP content in bound nucleotides was larger than that in nucleotides of the reaction mixture; the most prominent difference was observed at low degrees of ADP phosphorylation. The increasing light intensity was accompanied by a significant increase of the relative ATP content in tightly bound nucleotides. The ratio between substrates and products formed at the tight nucleotide binding site during photophosphorylation was suggested to depend on the light-induced proton gradient across the thylakoid membrane.Abbreviations AdN adenine nucleotide - Chl chlorophyll - DTT dithiothreitol - FCCP carbonylcianide p-trifluoromethoxyphenilhydrazone - Pi inorganic orthophosphate - PMS phenazine methosulfate - TLC thin-layer chromatography - Tricine N-[tris(hydroxymethyl)methyl] glycine  相似文献   

14.
The F1-ATPase from Micrococcus lysodeikticus is isolated in the absence of exogenous nucleotides. After removing loosely bound nucleotides from the isolated enzyme by gel permeation chromatography, analysis for tightly bound nucleotides revealed in 14 experiments 0.4 +/- 0.1 mol ADP, 0.5 +/- 0.2 mol GDP, and 0.8 +/- 0.2 mol ATP per mol of F1. Incubation of the isolated enzyme with Mg2+ or Ca2+ did not alter the endogenous nucleotide composition of the enzyme, indicating that endogenous ATP is not bound to a catalytic site. Incubation of the enzyme with P(i) decreased the amount of tightly bound ADP and GDP but did not effect the ATP content. Hydrolysis of MgATP in the presence of sulfite raised the tightly bound ADP and lowered tightly bound GDP on the enzyme. In the reciprocal experiment, hydrolysis of MgGTP in the presence of sulfite raised tightly bound GDP and lowered tightly bound ADP. Turnover did not affect the content of tightly bound ATP on the enzyme. These results suggest that endogenous ADP and GDP are bound to exchangeable catalytic sites, whereas endogenous ATP is bound to noncatalytic sites which do not exchange. The presence of endogenous GDP on catalytic sites of isolated F1 suggests that the F0F1-ATP synthase of M. lysodeikticus might synthesize both GTP and ATP under physiological conditions. In support of this hypothesis, we have found that plasma membrane vesicles derived from M. lysodeikticus synthesize [32P]GTP from [32P]P(i) using malate as electron donor for oxidative phosphorylation.  相似文献   

15.
G Brandolin  I Marty  P V Vignais 《Biochemistry》1990,29(41):9720-9727
A rapid filtration technique has been used to measure at room temperature the kinetics of ADP and ATP transport in rat heart mitochondria in the millisecond time range. Transport was stopped by cessation of the nucleotide supply, without the use of a transport inhibitor, thus avoiding any quenching delay. The mitochondria were preincubated for 30 s either in isotonic KCl containing succinate, MgCl2, and Pi (medium P) or in isotonic KCl supplemented only with EDTA and Tris (medium K); they were referred to as energized and resting mitochondria, respectively. The kinetics of [14C]ADP transport in energized mitochondria were apparently monophasic. The plateau value for [14C]ADP uptake reached 4-5 nmol of nucleotide.(mg of protein)-1. Vmax values for [14C]ADP transport of 400-450 nmol exchanged.min-1.(mg of protein)-1 with Km values of the order of 13-15 microM were calculated, consistent with rates of phosphorylation in the presence of succinate of 320-400 nmol of ATP formed.min-1.(mg of protein)-1. The rate of transport of [14C]ATP in energized mitochondria was 5-10 times lower than that of [14C]ADP. Upon uncoupling, the rate of [14C]ATP uptake was enhanced, and that of [14C]ADP uptake was decreased. However, the two rates did not equalize, indicating that transport was not exclusively electrogenic. Transport of [14C]ADP and [14C]ATP by resting mitochondria followed biphasic kinetics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Helguera G  Beauge L 《Plant physiology》1997,115(4):1397-1403
ATP-ADP exchange was estimated in the presence of plasma membrane H+-ATPase of oat (Avena sativa) roots partially purified with Triton X-100 by measuring [14C]ATP formation from [14C]ADP. Most studies were done at 0[deg]C. At pH 6.0 the exchange showed: (a) Mg2+ requirement with a biphasic response giving maximal activity at 152 [mu]M and (b) insensitivity to ionic strength, [Na+], and [K+]. ATP and ADP dependence were analyzed with a model in which nucleotide-enzyme interactions are at rapid-random equilibrium, whereas E1ATP [left right arrow] E1P-ADP transitions occur in steady state. The results indicated competition between ADP and ATP for the catalytic site, whereas ATP interaction with the ADP site was extremely weak. At 0[deg]C the exchange showed a 3-fold pH increase, from pH 5.5 to 9.0. At an alkaline pH the reaction was not affected by sodium azide and carbonyl cyanide p-trifluometoxyphenyl-hydrazone, had a biphasic response to Mg2+ (maximal at 513 [mu]m), and was insensitive to ionic strength. At 20[deg]C ATP-ADP exchange was pH insensitive. At both temperatures ATP hydrolysis displayed a bell-shaped response, with a maximum around pH 6.0 to 6.5. Because no adenylate kinase activity was detected under any condition, these results demonstrate the existence of an ATP-ADP exchange reaction catalyzed by the plant H+-ATPase.  相似文献   

17.
Pea chloroplasts were found to take up actively ATP and ADP and exchange the external nucleotides for internal ones. Using carrier-free [14C]ATP, the rate of nucleotide transport in chloroplasts prepared from 12-14-day-old plants was calculated to be 330 mumol ATP/g chlorophyll/min, and the transport was not affected by light or temperature between 4 and 22 degrees C. Adenine nucleotide uptake was inhibited only slightly by carboxyatractylate, whereas bongkrekic acid was nearly as effective an inhibitor of the translocator in pea chloroplasts as it was in mammalian mitochondria. There was no counter-transport of adenine nucleotides with substrates carried on the phosphate translocator including inorganic phosphate, 3-phosphoglycerate and dihydroxyacetone phosphate. However, internal or external phosphoenolpyruvate, normally considered to be transported on the phosphate carrier in chloroplasts, was able to exchange readily with adenine nucleotides. Furthermore, inorganic pyrophosphate which is not transported by the phosphate carrier initiated efflux of phosphoenolpyruvate as well as ATP from the chloroplast. These findings illustrate some interesting similarities as well as differences between the various plant phosphate and nucleotide transport systems which may relate to their role in photosynthesis.  相似文献   

18.
The rapid translocation of external ADP-[14C]by corn mitochondria is inhibited by high concentrations of atractyloside with enhanced inhibition occurring in the presence of Mg2+. This translocation is also inhibited by AMP or ATP but CDP, GDP, IDP or UDP have little effect. Backward exchange of internal ADP-[14C] occurs in the presence of AMP, ADP or ATP but is not promoted by other nucleoside diphosphates. It is suggested that the adenine nucleotide (AdN) carrier is specific for ADP and ATP and that apparent translocation of AMP is a result of adenylate kinase activity. The translocated ADP can be separated into 3 components: (1) atractyloside-insensitive binding; (2) carrier-bound ADP saturated at ca 30 μM external ADP; and (3) exchanged ADP saturated as ca 5 μM external ADP. It is suggested that the adenine nucleotide carrier of plant mitochondria possesses similar properties to the classical carrier of vertebrate mitochondria.  相似文献   

19.
20.
The binding of ADP and ATP to noncatalytic sites of dithiothreitol-modified chloroplast ATP synthase was studied. Selective binding of nucleotides to noncatalytic sites was provided by preliminary light incubation of thylakoid membranes with [14C]ADP followed by its dissociation from catalytic sites during dark ATP hydrolysis stimulated by bisulfite ions (“cold chase”). Incorporation of labeled nucleotides increased with increasing light intensity. Concentration-dependent equilibrium between free and bound nucleotides was achieved within 2–10 min with the following characteristic parameters: the maximal value of nucleotide incorporation was 1.5 nmol/mg of chlorophyll, and the dissociation constant was 1.5 μM. The dependence of nucleotide incorporation on Mg2+ concentration was slight and changed insignificantly upon substituting Ca2+ for Mg2+. Dissociation of nucleotide from noncatalytic sites was illumination dependent. The dissociation kinetics suggested the existence of at least two nucleotide-binding sites with different dissociation rate constants. __________ Translated from Biokhimiya, Vol. 70, No. 11, 2005, pp. 1514–1520. Original Russian Text Copyright ? 2005 by Malyan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号