首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytoplasmically inherited symbiotic Wolbachia bacteria are known to induce a diversity of phenotypes on their numerous arthropod hosts including cytoplasmic incompatibility, male-killing, thelytokous parthenogenesis, and feminization. In the wasp Asobara tabida (Braconidae), in which all individuals harbor three genotypic Wolbachia strains (wAtab1, wAtab2 and wAtab3), the presence of Wolbachia is required for insect oogenesis. To elucidate the phenotype of each Wolbachia strain on host reproduction, especially on oogenesis, we established lines of A. tabida harboring different combinations of these three bacterial strains. We found that wAtab3 is essential for wasp oogenesis, whereas the two other strains, wAtabl and wAtab2, seem incapable to act on this function. Furthermore, interline crosses showed that strains wAtab1 and wAtab2 induce partial (about 78%) cytoplasmic incompatibility of the female mortality type. These results support the idea that bacterial genotype is a major factor determining the phenotype induced by Wolbachia on A. tabida hosts. We discuss the implications of these findings for current hypotheses regarding the evolutionary mechanisms by which females of A. tabida have become dependent on Wolbachia for oogenesis.  相似文献   

2.
Dedeine F  Boulétreau M  Vavre F 《Heredity》2005,95(5):394-400
Wolbachia are symbiotic bacteria that induce a diversity of phenotypes on their numerous invertebrate host species. In the wasp Asobara tabida (Braconidae), each individual harbours three Wolbachia strains: wAtab3, which is required for host oogenesis, and wAtab1 and wAtab2, that do not have this function but induce cytoplasmic incompatibility. In this study, we surveyed and identified Wolbachia strains in four additional Asobara species. We detected Wolbachia in one of these species, but both the identity (based on wsp gene) and prevalence of the Wolbachia detected in natural population indicate that this host species is not dependent on Wolbachia for oogenesis. We also compared A. tabida lines of different geographical origin for their dependence on Wolbachia. All individuals from 16 A. tabida lines proved to be infected by the three Wolbachia strains wAtab1, wAtab2 and wAtab3, but, interestingly, we found variation among lines in the degree to which females were dependent on Wolbachia to produce their oocytes. In three lines, aposymbiotic females (cured from the three Wolbachia strains by antibiotics) can produce some oocytes. However, these aposymbiotic females produce fewer and smaller oocytes than symbiotic ones, and the larvae they produce die before full development. Thus, depending on which nuclear genotype they have, A. tabida females depend on Wolbachia either because they fail to produce any oocyte or because the few oocytes they do produce generate unviable offspring. We discuss the implications of these findings for the understanding of the physiological and genetic deficiency of aposymbiotic females.  相似文献   

3.
4.
Mouton L  Henri H  Boulétreau M  Vavre F 《Heredity》2005,94(2):187-192
Cytoplasmic incompatibility (CI) is a sperm-egg incompatibility commonly induced by the intracellular endosymbiont bacterium Wolbachia that, in diploid species, results in embryo mortality. In haplodiploid species, two types of CI exist depending on whether the incompatible fertilized eggs develop into males (male development (MD)) or abort (female mortality (FM)). CI allows multiple infections to be maintained in host populations, and thus allows interactions to occur between co-infecting strains. In Leptopilina heterotoma, three Wolbachia strains coexist naturally (wLhet1, wLhet2, wLhet3). When these three strains are all present, they induce a CI of FM type, whereas wLhet1 alone expresses a CI phenotype intermediate between MD and FM. Here, we compare CI effects in crosses involving insect lines sharing the same nuclear background, but harboring different mixtures of strains. Mating experiments showed that: (i) wLhet2 and wLhet3 also induce an intermediate CI when acting alone, and show a bidirectional incompatibility; (ii) there is no interaction between the co-infecting strains in CI expression; (iii) the diversity of Wolbachia present within a male host influences the expression of CI: an increase in the number of strains is correlated with a decrease in the proportion of the MD type, which is also correlated with an increase in bacterial density. All these data suggest that the CI of FM type results from a stronger effect than the MD type, which conflicts with the conventional hypotheses used to explain CI diversity in haplodiploids, and could provide some new information about CI mechanisms in insects.  相似文献   

5.
Regulation of microbial population density is a necessity in stable symbiotic interactions. In Wolbachia symbiosis, both bacterial and host genotypes are involved in density regulation, but environmental factors may also affect bacterial population density. Here, we studied the interaction between three strains of Wolbachia in two divergent homozygous lines of the wasp Leptopilina heterotoma at two different temperatures. Wolbachia density varied between the two host genotypes at only one temperature. Moreover, at this temperature, reciprocal-cross F1 insects displayed identical Wolbachia densities, which were intermediate between the densities in the two parental lines. While these findings confirm that the host genotype plays an important role in Wolbachia density, they also highlight its interaction with environmental conditions, making possible the evolution of local adaptations for the regulation of Wolbachia density.  相似文献   

6.
Wolbachia strains are endosymbiotic bacteria typically found in the reproductive tracts of arthropods. These bacteria manipulate host reproduction to ensure maternal transmission. They are usually transmitted vertically, so it has been predicted that they have evolved a mechanism to target the host's germ cells during development. Through cytological analysis we found that Wolbachia strains display various affinities for the germ line of Drosophila. Different Wolbachia strains show posterior, anterior, or cortical localization in Drosophila embryos, and this localization is congruent with the classification of the organisms based on the wsp (Wolbachia surface protein) gene sequence. This embryonic distribution pattern is established during early oogenesis and does not change until late stages of embryogenesis. The posterior and anterior localization of Wolbachia resembles that of oskar and bicoid mRNAs, respectively, which define the anterior-posterior axis in the Drosophila oocyte. By comparing the properties of a single Wolbachia strain in different host backgrounds and the properties of different Wolbachia strains in the same host background, we concluded that bacterial factors determine distribution, while bacterial density seems to be limited by the host. Possible implications concerning cytoplasmic incompatibility and evolution of strains are discussed.  相似文献   

7.
Wolbachia bacteria are intracellular parasites, vertically transmitted from mothers to offspring through the cytoplasm of the eggs. They manipulate the reproduction of their hosts to increase in frequency in host populations. In terrestrial isopods for example, Wolbachia are responsible for the full feminization of putative males, therefore increasing the proportion of females, the sex by which they are transmitted. Vertical transmission, however, is not the only means for Wolbachia propagation. Infectious (i.e., horizontal) transmission between different host species or taxa is required to explain the fact that the phylogeny of Wolbachia does not parallel that of their hosts. The aim of this study was to investigate, by experimental transinfections, whether Wolbachia strains could be successfully transferred to a different, previously uninfected isopod host. While Wolbachia survived in all the studied recipient species, vertical transmission was efficient only in cases where donor and recipient species were closely related. Even in this case, Wolbachia strains did not always keep their ability to entirely feminize their host, a deficiency that can be link to a low bacterial density in the host tissues. In addition, Wolbachia infection was associated with a decrease in host fertility, except when the bacterial strain came from the same host population as the recipient animals. This suggest that Wolbachia could be adapted to local host populations. It therefore seems that isopod Wolbachia are highly adapted to their host and can hardly infect another species of hosts. The successful infection of a given Wolbachia strain into a new isopod host species therefore probably requires a strong selection on bacterial variants.  相似文献   

8.
Wolbachia are intracellular bacteria that occur in an estimated 20% of arthropod species. They are of broad interest because they profoundly affect the reproductive fitness of diverse host taxa. Here we document the apparent ubiquity and diversity of Wolbachia in the insect orders Anoplura (sucking lice) and Mallophaga (chewing lice), by detecting single or multiple infections in each of 25 tested populations of lice, representing 19 species from 15 genera spanning eight taxonomic families. Phylogenetic analyses indicate a high diversity of Wolbachia in lice, as evidenced by the identification of 39 unique strains. Some of these strains are apparently unique to lice, whereas others are similar to strains that infect other insect taxa. Wolbachia are transmitted from infected females to their offspring via egg cytoplasm, such that similar species of lice are predicted to have similar strains of Wolbachia. This predicted pattern is not supported in the current study and may reflect multiple events of recent horizontal transmission between host species. At present, there is no known mechanism that would allow for this latter mode of transmission to and within species of lice.  相似文献   

9.
Infection density is among the most important factors for understanding the biological effects of Wolbachia and other endosymbionts on their hosts. To gain insight into the mechanisms of infection density regulation, we investigated the adzuki bean beetles Callosobruchus chinensis and their Wolbachia endosymbionts. Double-infected, single-infected and uninfected host strains with controlled nuclear genetic backgrounds were generated by introgression, and infection densities in these strains were evaluated by a quantitative polymerase chain reaction technique. Our study revealed previously unknown aspects of Wolbachia density regulation: (i) the identification of intra-specific host genotypes that affect Wolbachia density differently and (ii) the suppression of Wolbachia density by co-infecting Wolbachia strains. These findings shed new light on symbiont-symbiont and host-symbiont interactions in the Wolbachia-insect endosymbiosis and strongly suggest that Wolbachia density is determined through a complex interaction between host genotype, symbiont genotype and other factors.  相似文献   

10.
Wolbachia are maternally inherited endosymbiotic bacteria that infect many arthropod species and may induce cytoplasmic incompatibility (CI), resulting in abortive embryonic development. One Wolbachia host, Culex pipiens complex mosquitoes, displays high levels of variability in both CI crossing types (cytotypes) and DNA markers. We report here an analysis of 14 mosquito strains, containing 13 Wolbachia variants, and with 13 different cytotypes. Cytotypes were Wolbachia-dependent, as antibiotic treatment rendered all strains tested compatible. Cytotype distributions were independent of geographical distance between sampling sites and host subspecies, suggesting that Wolbachia does not promote a reproductive isolation depending on these parameters. Backcross analysis demonstrated a mild restoring effect of the nuclear genome, indicating that CI is mostly cytoplasmically determined for some crosses. No correlation was found between the phenotypic and genotypic variability of 16 WO prophage and transposon markers, except for the WO prophage Gp15 gene, which encodes a protein similar to a bacterial virulence factor. However, Gp15 is partially correlated with CI expression, suggesting that it could be just linked to a CI gene.  相似文献   

11.
Wolbachia are maternally inherited endosymbiotic bacteria that infect many arthropod species and may induce cytoplasmic incompatibility (CI) resulting in abortive embryonic development. Among all the described host species, mosquitoes of the Culex pipiens complex display the highest variability of CI crossing types. Paradoxically, searches for polymorphism in Wolbachia infecting strains and field populations hitherto failed or produced very few markers. Here, we show that an abundant source of the long-sought polymorphism lies in WO prophage sequences present in multiple copies dispersed in the genome of Wolbachia infecting C. pipiens (wPip). We identified up to 66 different Wolbachia variants in C. pipiens strains and field populations and no occurrence of superinfection was observed. At least 49 different Wolbachia occurred in Southern Europe C. pipiens populations, and up to 10 different Wolbachia were even detected in a single population. This is in sharp contrast with North African and Cretan samples, which exhibited only six variants. The WO polymorphism appeared stable over time, and was exclusively transferred maternally. Interestingly, we found that the CI pattern previously described correlates with the variability of Gp15, a prophage protein similar to a bacterial virulence protein. WO prophage sequences thus represent variable markers that now open routes for approaching the molecular basis of CI, the host effects, the structure and dynamics of Wolbachia populations.  相似文献   

12.
Wolbachia are a genus of bacterial symbionts that are known to manipulate the reproduction of their arthropod hosts, both by distorting the host sex ratio and by inducing cytoplasmic incompatibility. Previous work has suggested that some Wolbachia clades specialize in particular host taxa, but others are diverse. Furthermore, the frequency with which related strains change in phenotype is unknown. We have examined these issues for Wolbachia bacteria from Acraea butterflies, where different interactions are known in different host species. We found that bacteria from Acraea butterflies mostly cluster together in several different clades on the bacterial phylogeny, implying specialization of particular strains on these host taxa. We also observed that bacterial strains with different phenotypic effects on their hosts commonly shared identical gene sequences at two different loci. This suggests both that the phenotypes of the strains have changed recently between sex ratio distortion and cytoplasmic incompatibility, and that host specialization is not related to the bacterial phenotype, as suggested from previous data. We also analysed published data from other arthropod taxa, and found that the Wolbachia infections of the majority of arthropod genera tend to cluster together on the bacterial phylogeny. Therefore, we conclude that Wolbachia is most likely to move horizontally between closely related hosts, perhaps because of a combination of shared vectors for transmission and physiological specialization of the bacteria on those hosts.  相似文献   

13.
【目的】Wolbachia 是一种广泛存在于节肢动物中的胞内共生细菌,影响寄主的生物学特性。花蓟马 Frankliniella intonsa (Trybom)是重要的害虫,对农作物及园林植物造成危害。本研究旨在明确 Wolbachia 在花蓟马中的感染情况,并分析其与寄主线粒体DNA多样性的关系。【方法】采集中国境内26个花蓟马自然种群,运用多位点序列分型技术(multilocus sequence typing, MLST)对其体内 Wolbachia 感染率及株系进行分析;利用线粒体 COI 分子标记研究花蓟马的遗传分化及遗传多样性;通过比较感染和未感染 Wolbachia 个体 COI 数据,探究 Wolbachia 多样性与寄主线粒体DNA多样性之间的关系。【结果】花蓟马中 Wolbachia 的感染率为0%~60%,共检测到5种 Wolbachia 株系(wFint1,wFint2,wFint3,wFint4及wFint5),均属于B大组且形成一个单系群。Wolbachia感染情况与这些花蓟马种群(除CC, GZ, TA和TY, N<5)的线粒体DNA多样性相关,表现为不感染 Wolbachia 的种群中线粒体DNA单倍型多样性(Hd)与核苷酸多样性(Pi)均高于感染 Wolbachia 的种群,且 Wolbachia 感染率与 Hd 呈显著负相关( P <0.05)。AMOVA分析表明花蓟马线粒体DNA遗传分化与Wolbachia 感染情况有关。【结论】 Wolbachia 可能在侵染花蓟马种群后出现遗传分化;Wolbachia 感染与寄主线粒体DNA多样性有关。  相似文献   

14.
Duron O  Fort P  Weill M 《Heredity》2007,98(6):368-374
Wolbachia are maternally inherited endocellular bacteria, widespread in invertebrates and capable of altering several aspects of host reproduction. Cytoplasmic incompatibility (CI) is commonly found in arthropods and induces hatching failure of eggs from crosses between Wolbachia-infected males and uninfected females (or females infected by incompatible strains). Several factors such as bacterial and host genotypes or bacterial density contribute to CI strength and it has been proposed, mostly from Drosophila data, that older males have a lower Wolbachia load in testes which, thus, induces a lighter CI. Here, we challenge this hypothesis using different incompatible Culex pipiens mosquito strains and show that CI persists at the same intensity throughout the mosquito life span. Embryos from incompatible crosses showed even distributions of abortive phenotypes over time, suggesting that host ageing does not reduce the sperm-modification induced by Wolbachia. CI remained constant when sperm was placed in the spermathecae of incompatible females, indicating that sperm modification is also stable over time. The capacity of infected females to rescue CI was independent of age. Last, the density of Wolbachia in whole testes was highly strain-dependent and increased dramatically with age. Taken together, these data stress the peculiarity of the C.pipiens/Wolbachia interaction and suggest that the bacterial dosage model should be rejected in the case of this association.  相似文献   

15.
The pandemic distribution of Wolbachia (alpha-proteobacteria) across arthropods is largely due to the ability of these maternally inherited endosymbionts to successfully shift hosts across species boundaries. Yet it remains unclear whether Wolbachia has preferential routes of transfer among species. Here, we examined populations of eight species of the North American funnel-web spider genus Agelenopsis to evaluate whether Wolbachia show evidence for host specificity and the relative contribution of horizontal vs. vertical transmission of strains within and among related host species. Wolbachia strains were characterized by multilocus sequence typing (MLST) and Wolbachia surface protein (WSP) sequences, and analysed in relation to host phylogeny, mitochondrial diversity and geographical range. Results indicate that at least three sets of divergent Wolbachia strains invaded the genus Agelenopsis. After each invasion, the Wolbachia strains preferentially shuffled across species of this host genus by horizontal transfer rather than cospeciation. Decoupling of Wolbachia and host mitochondrial haplotype (mitotypes) evolutionary histories within single species reveals an extensive contribution of horizontal transfer also in the rapid dispersal of Wolbachia among conspecific host populations. These findings provide some of the strongest evidence to support the association of related Wolbachia strains with related hosts by means of both vertical and horizontal strain transmission. Similar analyses across a broader range of invertebrate taxa are needed, using sensitive methods for strain typing such as MLST, to determine if this pattern of Wolbachia dispersal is peculiar to Agelenopsis (or spiders), or is in fact a general pattern in arthropods.  相似文献   

16.
Wolbachia are endosymbiotic bacteria that may alter the reproductive mechanisms of arthropod hosts. Eusocial termites provide considerable scope for Wolbachia studies owing to their ancient origin, their great diversity and their considerable ecological, biological and behavioral plasticity. This article describes the phylogenetic distribution of Wolbachia infecting termites of the Cubitermes genus, which are particularly abundant soil-feeders in equatorial Africa. Fourteen colonies of the Cubitermes sp. affinis subarquatus complex of species were screened using five bacterial genes (wsp, ftsZ, coxA, fbpA and 16S rRNA genes) and a striking diversity of Wolbachia strains was identified within these closely related species. In the host complex, three Wolbachia variants were found that were not in the super groups usually reported for termites (F and H), each infecting one or two Cubitermes species.  相似文献   

17.
Wolbachia are cytoplasmically inherited bacteria responsible for reproductive incompatibility in a wide range of insects. There has been little exploration, however, of within species Wolbachia polymorphisms and their effects on compatibility. Here we show that some strains of the parasitic wasp Nasonia vitripennis are infected with two distinct bacterial strains (A and B) whereas others are singly infected (A or B). Double and single infections are confirmed by both PCR amplification and Southern analysis of genomic DNA. Furthermore, it is shown that prolonged larval diapause (the overwintering stage of the wasp) of a double-infected strain can lead to stochastic loss of one or both bacterial strains. After diapause of a double-infected line, sublines were produced with AB, A only, B only or no Wolbachia. A and B sublines are bidirectionally incompatible, whereas males from AB lines are unidirectionally incompatible with females of A and B sublines. Results therefore show rapid development of bidirectional incompatibility within a species due to segregation of associated symbiotic bacteria.  相似文献   

18.
Wolbachia are intracellular maternally inherited alpha-Proteobacteria infecting a wide range of arthropods. In the common pill bug Armadillidium vulgare, the known Wolbachia strain is responsible for feminization of genetic males. We have investigated Wolbachia diversity in 20 populations of A. vulgare from west and east Europe, north Africa and north America. A new Wolbachia strain (wVulM) was identified through the variability of the wsp gene, distantly related to that previously known (wVulC) in this host species. No individual with multiple infections was detected. Inoculation experiments indicated that the new wVulM bacterial strain also induces feminization in A. vulgare. However, the wVulC strain showed a higher transmission rate than the wVulM strain and was the most geographically widespread Wolbachia in A. vulgare populations. Mitochondrial 16SrDNA gene sequencing was conducted in Wolbachia-infected individuals, revealing the occurrence of four host lineages. The comparison of bacterial strains and their respective host mitochondrial phylogenies failed to show concordance, indicating horizontal transmission of the Wolbachia strains within populations of A. vulgare.  相似文献   

19.
BACKGROUND: Wolbachia and Cardinium are endosymbiotic bacteria infecting many arthropods and manipulating host reproduction. Although these bacteria are maternally transmitted, incongruencies between phylogenies of host and parasite suggest an additional role for occasional horizontal transmission. Consistent with this view is the strong evidence for recombination in Wolbachia, although it is less clear to what extent recombination drives diversification within single host species and genera. Furthermore, little is known concerning the population structures of other insect endosymbionts which co-infect with Wolbachia, such as Cardinium. Here, we explore Wolbachia and Cardinium strain diversity within nine spider mite species (Tetranychidae) from 38 populations, and quantify the contribution of recombination compared to point mutation in generating Wolbachia diversity. RESULTS: We found a high level of genetic diversity for Wolbachia, with 36 unique strains detected (64 investigated mite individuals). Sequence data from four Wolbachia genes suggest that new alleles are 7.5 to 11 times more likely to be generated by recombination than point mutation. Consistent with previous reports on more diverse host samples, our data did not reveal evidence for co-evolution of Wolbachia with its host. Cardinium was less frequently found in the mites, but also showed a high level of diversity, with eight unique strains detected in 15 individuals on the basis of only two genes. A lack of congruence among host and Cardinium phylogenies was observed. CONCLUSIONS: We found a high rate of recombination for Wolbachia strains obtained from host species of the spider mite family Tetranychidae, comparable to rates found for horizontally transmitted bacteria. This suggests frequent horizontal transmission of Wolbachia and/or frequent horizontal transfer of single genes. Our findings strengthens earlier reports of recombination for Wolbachia, and shows that high recombination rates are also present on strains from a restrictive host range. Cardinium was found co-infecting several spider mite species, and phylogenetic comparisons suggest also horizontal transmission of Cardinium among hosts.  相似文献   

20.
Stable infections by maternally transmitted symbionts are frequently found in field populations, especially in arthropods. Many questions remain regarding their contribution to host biology and ecology, and especially on environmental adaptation of their host. Wolbachia is one of the most common endosymbiont of invertebrates. This cytoplasmically inherited endocellular bacterium induces number of reproductive alterations in its arthropod hosts and various fitness effects that allow it to spread in host populations. To better understand the influence of Wolbachia on host phenotypes and consequences of the manipulation of reproduction on the host genetic differentiation, it is crucial to be able to discriminate Wolbachia strains and determine their prevalence, which requires exhaustive screening. In the present report, we proposed the use of a new tool for the population studies, based on the high resolution melting (HRM) analysis, less expensive and faster than the 'classical' methods for large-scale studies. We investigated the effectiveness of HRM to explore and characterize the diversity of Wolbachia strains. Results obtained showed that HRM is a powerful tool to identify strains and detect polymorphism in singly infected hosts. When individuals harboured a mixture of Wolbachia strains (multiple infections), there is a risk of underestimation of the diversity if the proportions of the strains are highly different. However, the same limitations exist for the other techniques commonly used. Overall, this study demonstrated that HRM analysis is a rapid and reliable technique useful for studying, without a priori, Wolbachia strains diversity in field populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号