首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Methanococcus thermolithotrophicus can use either H2 or formate as the electron donor for methanogenesis from CO2. Resuspended-cell experiments revealed that the ability to use H2 as the source of electrons for methanogenesis was constitutive; cells grown on formate or H2-CO2 were equally capable of H2-CO2 methanogenesis. The ability to metabolize formate at high rates was observed only in cells previously grown on formate. Two such strains were distinguished: strain F and strain HF. Strain F was repeatedly grown exclusively on formate for over 3 years; this strain showed a constitutive capacity to metabolize formate to methane, even after subsequent repeated transfers to medium containing only H2-CO2. Strain HF could only metabolize formate to methane when grown in the presence of formate with no H2 present; this strain was recently derived from another strain (H) that had been exclusively grown on H2-CO2 and which upon initial transfer to formate medium could only metabolize formate to methane at a very slow rate. Initial adaptation of strain H to growth on formate was preceded by a long lag. The specific activities of hydrogenase and formate dehydrogenase in cell extracts derived from these different strains confirmed these findings. Similar levels of hydrogenase were observed in all strains, independent of the presence of H2 in the growth medium medium. High levels of formate dehydrogenase were also constitutive in strain F. Only low formate dehydrogenase activities were observed in strain H. High levels of formate dehydrogenase were observed in strain HF only when these cells were grown with formate in the absence of H2. In all strains the two- to threefold fluctuations of both hydrogenase and formate dehydrogenase cell-free activities were observed during growth, with peak activities reached in the middle of the exponential phase.  相似文献   

2.
The flagella of the archaebacteria Methanococcus thermolithotrophicus and Methanospirillum hungatei enter the cells in regions with ultrastructure resembling that of the polar organelles found in a variety of eubacteria. Flagella of both organisms consist of a filament, a hook, and a basal body with two rings similar to those of gram-positive eubacteria. The integrity of the flagella of M. thermolithotrophicus is lost in the absence of high salt concentrations, and those of both organisms are unstable at high pH. The flagellar filaments of M. hungatei are composed of two flagellins of 24 and 26 kilodaltons.  相似文献   

3.
Methanococcus thermolithotrophicus was grown in a mineral salts medium at 65° C in a fermenter gassed with H2 and CO2, which were the sole carbon and energy sources. Evolution of growth parameters during batch culture experiments showed the existence of an uncoupling phenomenon. The growth was then studied using a continuous technique and steady states for various gas flow rates were obtained. Y CH 4and the maintenance coefficient varied with the gas input. The maximum Y CH 4 determined for Methanococcus thermolithotrophicus was 3.33 g·mol-1 CH4. An excess of energy and carbon sources induced uncoupling of growth.  相似文献   

4.
An autotrophic thermophilic motile coccoid methanogen was isolated from geothermally heated sea sediments close to Naples, Italy. Growth occurs on H2/CO2 and on formate between 30 and 70°C with an optimum at 65°C. The optimal doubling time is only 55 min. The NaCl-concentration ranges from 1.3% to 8.3% with an optimum around 4%. By its G+C-content of 31.3 mol%, its subunit envelope, and by DNA-RNA hybridization the new isolate is clearly defined to be a member of the genusMethanococcus. We name itMethanococcus thermolithotrophicus.Abbreviations G+C Guanine + Cytosine - SDS Sodium dodecylsulfate (Sodium lauryl sulfate)  相似文献   

5.
The application of 50-MPa pressure did not increase the thermostabilities of adenylate kinases purified from four related mesophilic and thermophilic marine methanogens. Thus, while it has been reported that some thermophilic enzymes are stabilized by pressure (D. J. Hei and D. S. Clark, Appl. Environ. Microbiol. 60:932-939, 1994), hyperbaric stabilization is not an intrinsic property of all enzymes from deep-sea thermophiles.  相似文献   

6.
When sucrose is present in the external medium, it is internalized by Methanococcus thermolithotrophicus. Sucrose internalization, as determined by both natural abundance (sup13)C nuclear magnetic resonance spectroscopy and [(sup14)C]sucrose uptake, is directly proportional to external sucrose levels. The uptake is energy independent and exhibits kinetic behavior consistent with a simple passive diffusion process. In the presence of 0.2 M sucrose, methanogenesis is inhibited as the NaCl concentration in the external medium is increased. Growth, as determined by protein content, is inhibited by 0.2 M sucrose when the external NaCl concentration is 1.4 M. These results are important because they show that (i) sucrose cannot be used as a noncharged solute to replace NaCl in experiments to evaluate how external osmotic strength affects the internal solute composition of M. thermolithotrophicus, and (ii) sucrose cannot be used as an impermeable marker for the extracellular volume in experiments to measure the intracellular volume of M. thermolithotrophicus.  相似文献   

7.
N Belay  R Sparling    L Daniels 《Applied microbiology》1986,52(5):1080-1085
Methanococcus thermolithotrophicus is a methanogenic archaebacterium that can use either H2 or formate as its source of electrons for reduction of CO2 to methane. Growth and suspended-whole-cell experiments show that H2 plus CO2 methanogenesis was constitutive, while formate methanogenesis required adaptation time; selenium was necessary for formate utilization. Cells grown on formate had 20 to 100 times higher methanogenesis rates on formate than cells grown on H2-CO2 and transferred into formate medium. Enzyme assays with crude extracts and with F420 or methyl viologen as the electron acceptor revealed that hydrogenase was constitutive, while formate dehydrogenase was regulated. Cells grown on formate had 10 to 70 times higher formate dehydrogenase activity than cells grown on H2-CO2 with Se present in the medium; when no Se was added to H2-CO2 cultures, even lower activities were observed. Adaptation to and growth on formate were pH dependent, with an optimal pH for both about one pH unit above that optimal for H2-CO2 (pH 5.8 to 6.5). When cells were grown on H2-CO2 in the presence of formate, formate (greater than or equal to 50 mM) inhibited both growth and methanogenesis at pH 5.8 to 6.2, but not at pH greater than 6.6. Both acetate and propionate produced similar inhibition. Formate inhibition was also observed in Methanospirillum hungatei.  相似文献   

8.
Methanococcus thermolithotrophicus is a methanogenic archaebacterium that can use either H2 or formate as its source of electrons for reduction of CO2 to methane. Growth and suspended-whole-cell experiments show that H2 plus CO2 methanogenesis was constitutive, while formate methanogenesis required adaptation time; selenium was necessary for formate utilization. Cells grown on formate had 20 to 100 times higher methanogenesis rates on formate than cells grown on H2-CO2 and transferred into formate medium. Enzyme assays with crude extracts and with F420 or methyl viologen as the electron acceptor revealed that hydrogenase was constitutive, while formate dehydrogenase was regulated. Cells grown on formate had 10 to 70 times higher formate dehydrogenase activity than cells grown on H2-CO2 with Se present in the medium; when no Se was added to H2-CO2 cultures, even lower activities were observed. Adaptation to and growth on formate were pH dependent, with an optimal pH for both about one pH unit above that optimal for H2-CO2 (pH 5.8 to 6.5). When cells were grown on H2-CO2 in the presence of formate, formate (greater than or equal to 50 mM) inhibited both growth and methanogenesis at pH 5.8 to 6.2, but not at pH greater than 6.6. Both acetate and propionate produced similar inhibition. Formate inhibition was also observed in Methanospirillum hungatei.  相似文献   

9.
The in vitro protein folding activity of an FKBP (FK506 binding protein, abbreviated to MTFK) from a thermophilic archaeon, Methanococcus thermolithotrophicus, was investigated. MTFK exhibited FK506 sensitive PPIase (peptidyl prolyl cis-trans isomerase) activity which accelerated the speed of ribonuclease T1 refolding, which is rate-limited by isomerization of two prolyl peptide bonds. In addition, MTFK suppressed the aggregation of folding intermediates and elevated the final yield of rhodanese refolding. We called this activity of MTFK the chaperone activity. The chaperone activity of MTFK was also inhibited by FK506. Alignment of the amino acid sequences of MTFK with human FKBP12 showed that MTFK has two insertion sequences, consisting of 13 and 44 amino acids, at the N- and C-termini, respectively [Furutani, M., Iida, T., Yamano, S., Kamino, K., and Maruyama, T. (1998) J. Bacteriol. 180, 388-394]. To study the relationship between chaperone and PPIase activities of MTFK, mutant MTFKs with deletions of these insertion sequences or with amino acid substitutions were created. Their PPIase and chaperone activities were measured using a synthetic oligopeptide and denatured rhodanese as the substrates, respectively. The far-UV circular dichroism spectra of the wild type and the mutants were also analyzed. The results suggested that (1) the PPIase activity did not correlate with chaperone activity, (2) both insertion sequences were required for MTFK to take a proper conformation, and (3) the insertion sequence (44 amino acids) in the C-terminus was important for the chaperone activity.  相似文献   

10.
A restriction fragment of Methanococcus thermolithotrophicus genomic DNA was cloned into pUC8 to produce plasmid pET9301, which complements mutations in the hisA gene of Escherichia coli. Sequencing the DNA (2,155 base pairs) cloned from this thermophilic methanogen demonstrated that the M. thermolithotrophicus hisA gene is located within a cluster of open reading frames (ORFs) and is 68 and 69% homologous at the nucleotide level to the hisA genes of the mesophilic methanococci M. voltae and M. vannielii, respectively. The ORF (ORF 206) immediately 5' to the hisA gene of M. thermolithotrophicus is partially deleted in the genomes of the two mesophilic species, whereas ORF 114, which is 5' to ORF 206, is conserved in all three species.  相似文献   

11.
The amino acid sequence of a two (4Fe-4S) ferredoxin from the methanogenic bacterium Methanococcus thermolithotrophicus (FdMt) has been determined. This thermostable protein comprises 60 amino acid residues (Mr 6541) and two (4Fe-4S) clusters chelated to the protein through the eight cysteines. FdMt contains a relatively high number of lysines [5], threonines [4] and valines [10]. The three-dimensional molecular model generated from the Peptococcus aerogenes X-ray structure keeps the characteristic overall ferredoxin folding thanks to complementary substitutions of residues of the hydrophobic core. The major structural features of the model are the different environments of both clusters, and the patch of three lysines at one end of the molecule. The possible role of several structural factors in the thermostability of the protein is discussed.  相似文献   

12.
Methanogenesis from various elemental metals as electron sources has been demonstrated before. In this study, we have examined the influence of pH on the methanogenic activity of Methanococcus thermolithotrophicus dependent on cathodic hydrogen produced by elemental aluminum wires. When grown on H2+CO2, M. thermolithotrophicus had an optimum pH of 6.2, but when all the H2 was supplied from A1°, the pH optimum was 5.7, consistent with thermodynamic predictions. The results also indicated that aluminum is quite resistant to anaerobic corrosion when compared to iron, most likely due to adhesion of aluminum oxide or hydroxide layers on the surface of the wires. Correspondence to: R. Boopathy  相似文献   

13.
Elevated hydrostatic pressure has been shown to affect the growth rate of the thermophilic methanobacterium Methanococcus thermolithotrophicus without extending its temperature range of viability. Analysis of the cell inventory after ≈ 10 h of incubation at 65°C and 50 MPa (applying high-pressure liquid chromatography and two-dimensional gel electrophoresis) proved that pressure induces alterations in the protein pattern and the amino acid composition of the total cell hydrolysate. Gels showed that after pressurization a series of (basic) proteins with a molecular mass in the range of 38 and 70 kilodaltons occurs which is not detectable in cells grown at normal atmospheric pressure. The question of whether the observed alterations are caused by the perturbation of the balance of protein synthesis and turnover or by the pressure-induced synthesis of compounds analogous to heat shock proteins remains unanswered.  相似文献   

14.
A second ferredoxin protein was isolated from the thermophilic anaerobic bacterium Clostridium thermoaceticum and termed ferredoxin II. This ferredoxin was found to contain 7.9 +/- 0.3 iron atoms and 7.4 +/- 0.4 acid-labile sulfur atoms per mol of protein. Extrusion studies of the iron-sulfur centers showed the presence of two [Fe4-S4] centers per mol of protein and accounted for all of the iron present. The absorption spectrum was characterized by maxima at 390 nm (epsilon 390 = 30,400 M-1cm-1) and 280 nm (epsilon 280 = 41.400 M-1 cm-1) and by a shoulder at 300 nm. The ration of the absorbance of the pure protein at 390 nm to the absorbance at 280 nm was 0.74. Electron paramagnetic resonance data showed a weak signal in the oxidized state, and the reduced ferredoxin exhibited a spectrum typical of [Fe4-S4] clusters. Double integration of the reduced spectra showed that two electrons were necessary for the complete reduction of ferredoxin II. Amino histidine, and 1 arginine, and a molecular weight of 6,748 for the native protein. The ferredoxin is stable under anaerobic conditions for 60 min at 70 degrees C. The average oxidation-reduction potential for the two [Fe4-S4] centers was measured as -365 mV.  相似文献   

15.
16.
Methanococcus thermolithotrophicus is able to produce methane either from H2-CO2 or from formate. The route of formate entry into the methanogenic pathway was investigated by using 2H2O or [13C]formate and analysis by mass spectrometry. When cells (H2-CO2 or formate grown) were transferred to formate medium in 95% 2H water, the proportion of 2H in methane was 95%. When cells (H2-CO2 or formate grown) were transferred to media containing [13C]formate in the presence of H2-CO2 or He-CO2, the ratio of 13CH4 to 12CH4 increased over time parallel to the ratio of 13CO2 to 12CO2. The cells catalyzed a significant exchange of label between [13C]formate and 13CO2.  相似文献   

17.
13C- and 15N-NMR spectroscopy have been used to identify beta-aminoglutaric acid (beta-glutamic) as a major soluble component of the thermophilic, autotrophic marine methanogen Methanococcus thermolithotrophicus. This rare, non-protein amino acid has been recognized as a major dissolved free amino acid in marine sediments, but the microorganism responsible for its production has not previously been identified. The concentration of beta-aminoglutarate (beta-glutamate) is about one half that of free alpha-glutamate and increases (relative to the alpha-isomer) as cells enter the stationary phase. Analysis of the 13C label distribution in a 13CO2-pulse/12CO2-chase experiment shows that label enters the beta-aminoglutarate pool after it has decayed from other small soluble molecules. This implies that beta-aminoglutarate is a catabolic product of the cells. Preliminary biosynthesis studies with labeled precursors indicate that only a single acetate moiety is incorporated in this unusual compound. This information is used to suggest possible biosynthetic pathways.  相似文献   

18.
19.
Three forms of ferredoxin FdI, FdI′, and FdII have been isolated from Desulfovibrio gigas, a sulfate reducer. They are separated by a combination of DEAE-cellulose and gel filtration chromatographic procedures. FdI and FdI′ present a slight difference in isoelectric point which enables the separation of the two forms over DEAE-cellulose, while FdII is easily separated from the two other forms by gel filtration. The three forms have the same amino acid composition and are isolated in different aggregation states. Molecular weight determinations by gel filtration gave values of 18 000 for FdI and FdI′ and 24 000 for FdII, whereas a value of 6000 is determined when dissociation is accomplished with sodium dodecyl sulfate. The electronic spectra are different and their ultraviolet-visible absorbance rations are 0.77, 0.87 and 0.68 respectively for FdI, FdI′ and FdII. Despite these differences, the physiological activities of the three forms are similar as far as the reduction of sulfite by molecular hydrogen is concerned.  相似文献   

20.
A diuretic peptide (Periplaneta-DP) has been isolated from extracts of whole heads of the cockroach, Periplaneta americana. The purified peptide increases cyclic AMP production and the rate of fluid secretion by isolated Malpighian tubules in vitro. In the fluid secretion assay, the response to native Periplaneta-DP is comparable to that obtained with crude extracts of cockroach corpora cardiaca, and the EC50 lies between 10(-8) and 10(-9) M. The primary structure of Periplaneta-DP was established as a 46-residue amidated peptide: T G S G P S L S I V N P L D V L R Q R L L L E I A R R R M R Q S Q D Q I Q A N R E I L Q T I-NH2. Periplaneta-DP is a further member of the recently established family of CRF-related insect diuretic peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号