首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
A bioanalytical method for the determination of atovaquone in 100 μl blood-spots by solid-phase extraction and high-performance liquid chromatography has been developed and validated. Atovaquone was extracted from the sampling paper in 0.2 M phosphoric acid and a structurally similar internal standard was added with acetonitrile before being loaded onto a C8 end-capped solid-phase extraction column. Atovaquone and internal standard were analysed by high-performance liquid chromatography on a C18 J’Sphere ODS-M80 (150×4.0 mm) column with mobile phase acetonitrile–phosphate buffer, 0.01 M, pH 7.0 (65:35, v/v) and UV detection at 277 nm. The intra-assay precision was 2.7% at 12.00 μM and 13.5% at 1.00 μM. The inter-assay precision was 3.3% at 12.00 μM and 15.6% at 1.00 μM. The lower limit of quantification was 1.00 μM. The limit of detection was 0.50 μM.  相似文献   

2.
A sensitive reversed-phase high-performance liquid chromatographic method for the determination of atevirdine and its primary metabolite in human saliva or cerebrospinal fluid using solid-phase extraction is described. Samples mixed with internal standard and sodium phosphate buffer were applied to an activated C18 solid-phase extraction column. The reconstituted eluate was injected onto a Zorbax RX C8 column utilizing a mobile phase of 100 mM ammonium acetate (pH 4.0)–isopropyl alcohol–acetonitrile (55:20:25, v/v/v). Fluorescence detection was employed with excitation at 295 nm and emission at 456 nm. Quantitation was achieved using peak-height ratios. The detection response curve was linear from 2 to 850 nM for atevirdine in both human saliva and cerebrospinal fluid and from 2 to 250 nM for the metabolite in human saliva. The method was utilized to analyze cerebrospinal fluid and saliva samples from clinical studies.  相似文献   

3.
A simple, sensitive and reproducible method was developed for the determination of lamotrigine in whole blood with on-line solid phase extraction followed by HPLC separation with UV detection. Whole blood samples were diluted 1:1 with water and then injected directly on a clean-up column dry-packed with 40microm C8 silica and separated on a C18 reversed-phase column (150x4.6mm) at room temperature. The extraction column was activated with methanol and conditioned with phosphate buffer of pH 4.5. Mobile phases consisted of phosphate buffer of pH 4.5 for the extraction column and of phosphate buffer of pH 4.5 - acetonitrile (60:40, v/v) for the analytical column. At a flow rate of 1.0ml/min and a connection time of 1.0min, the complete cycle time was 10.0min. Detection was carried out at 260nm. No internal standard was necessary. The method was linear over concentration range 0.2-20.0microg/ml for lamotrigine. Recovery was 98%. Within-day and between-day coefficients of variation ranged from 1.8 to 6.7%.  相似文献   

4.
A HPLC method with UV detection has been developed for the simultaneous determination of levomepromazine, clozapine and their main metabolites: N-desmethyl-levomepromazine, levomepromazine sulphoxide, O-desmethyl-levomepromazine, N-desmethylclozapine and clozapine N-oxide. The analytes were separated on a C8 reversed-phase column using a mobile phase composed of acetonitrile and a pH 2.0, 34 mM phosphate buffer containing 0.3% triethylamine (29:71, v/v). Loxapine was used as the internal standard. A reliable biological sample pre-treatment procedure by means of solid-phase extraction on C1 cartridges was implemented, which allows to obtain good extraction yields (>91%) for all analytes and appropriate sample purification from endogenous interference. The method was validated in terms of extraction yield, precision and accuracy. These assays gave RSD% values for precision always lower than 4.9% and mean accuracy values higher than 92%. The method is suitable for the therapeutic drug monitoring (TDM) of patients undergoing polypharmacy with levomepromazine and clozapine.  相似文献   

5.
A high-performance liquid chromatographic method for the quantitation of alendronate as the 9-fluorenylmethyl derivative (FMOC) in human urine is presented. The sample preparation involved coprecipitation with calcium phosphate, separation on diethylamine (DEA) solid-phase extraction (SPE) cartridge and derivatization with 9-fluorenylmethyl chloroformate in citrate buffer pH 11.9. Liquid chromatography was performed on an octadecylsilica column (150 x 4.6 mm, 3 microm particles); a gradient method with starting mobile phase acetonitrile-methanol-citrate/pyrophosphate buffer (20:15:65 v/v) was employed. The total run time was 21 min. The fluorimetric detector was operated at the following wavelengths: 260 nm (excitation) and 310 nm (emission). Pamdronate was used as the internal standard. The limit of quantitation was 3.5 ng/ml using 5 ml of urine. Within-day and between-day precision expressed by relative standard deviation was less than 8% and inaccuracy did not exceed 9%. The assay was applied to the analysis of samples from a pharmacokinetic study.  相似文献   

6.
Amosulalol is an antihypertensive drug with selective postsynaptic alpha 1 and non-selective beta blocking effects. A simple solid-phase extraction and high-performance liquid chromatographic (HPLC) method has been developed and validated for the quantitative determination of amosulalol in human plasma. A reversed phase C18 column was used for the separation of amosulalol and ethyl paraben (internal standard) with a mobile phase composed of 0.025 M phosphate buffer (pH 6.0).acetonitrile (73:27, v/v) at a flow rate of 1.5 mL/min. The ultraviolet detector was operated at the 272 nm wavelength. Intra- and inter-day precision and accuracy were acceptable for all quality control samples including the lower limit of quantification of 30 ng/mL. Recovery of amosulalol from human plasma was >95.6%. Amosulalol was stable in human plasma under various storage conditions. This method was used successfully for a pharmacokinetic study in plasma after oral administration of a single 20 mg dose of amosulalol hydrochloride to 16 healthy volunteers.  相似文献   

7.
Abouthiouzine is a newly synthesized antithyroid agent with a proposed less adverse effects profile than other currently used drugs. A simple and rapid reversed phase high performance liquid chromatography assay was developed to determine the concentration of abouthiouzine in human plasma. The procedure involved extraction of the drug and propranolol (internal standard) from the plasma using ethylacetate. The extract was evaporated under nitrogen and the residue was constituted with the mobile phase and injected onto micro-Bondapack phenyl column (10 microm, 3.9 mm x 150 mm). The mobile phase consisted of 10 mM potassium dihydrogen phosphate buffer, acetonitrile, and methanol in the ratio of 60:25:15 (v/v/v, pH=3.0), which was delivered at a rate of 1.5 ml/min. Abouthiouzine and the internal standard were monitored using UV detection at 240 nm; the run time was less than 5 min. The detection limit of abouthiouzine is 0.5 microg/ml. The within- and between-day coefficients of variation were less than 7%. Our method has been successfully used to measure abouthiouzine plasma concentrations in a rabbit model following an intravenous administration of the drug.  相似文献   

8.
A simple and sensitive method was developed for determination of irbesartan by liquid chromatography with fluorescence detection. Irbesartan and losartan (I.S.) in human plasma were extracted using diethyl ether:dichloromethane (7:3, v/v) followed by back extraction with 0.05 M sodium hydroxide. Neutralized samples were analyzed using 0.01 M potassium dihydrogen phosphate buffer (containing 0.07% triethylamine as peak modifier, pH was adjusted with orthophosphoric acid to pH 3.0) and acetonitrile (66:34, v/v). Chromatographic separation was achieved on an ODS-C-18 column (100 mm x 4.6 mm i.d., particle size 5 microm) using isocratic elution (at flow rate 1.25 ml/min). The peak was detected using a fluorescence detector set at Ex 259 nm and Em 385 nm, and the total time for a chromatographic separation was approximately 13 min. The validated quantitation ranges of this method were 15-4000 ng/ml with coefficients of variation between 0.75 and 12.53%. Mean recoveries were 73.3-77.1% with coefficients of variation of 3.7-6.3%. The between- and within-batch precision were 0.4-2.2% and 0.9-6.2%, respectively. The between- and within-batch relative errors (bias) were (-5.5) to 0.9% and (-0.6) to 6.9%, respectively. Stability of irbesartan in plasma was >89%, with no evidence of degradation during sample processing and 60 days storage in a deep freezer at -70 degrees C. This validated method is sensitive and simple with between-batch precision of <3% and can be used for pharmacokinetic studies.  相似文献   

9.
We established a method for automated quantitative analysis of (es-)citalopram and desmethyl(es-)citalopram in serum using column-switching high performance liquid chromatography (HPLC). For sample clean-up serum was injected onto a LiChrospher CN 20 microm precolumn using 8% acetonitrile in deionized water. Drugs were eluted by back-flush flow onto the analytical column (LiChrospher CN 5 microm) at a flow rate of 1.5 ml/min with phosphate buffer 8 mmol/l pH 6.4/acetonitrile (50/50, v/v). Haloperidol was used as internal standard. Analytes were detected by ultraviolet spectrophotometry at 210 nm. Detection limit of (es-)citalopram was 6 ng/ml. The method was found to be suitable for therapeutic drug monitoring of patients treated with citalopram or escitalopram.  相似文献   

10.
A sensitive high-performance liquid chromatographic (HPLC) method for the determination of metronidazole in vaginal tissue is reported. The method uses a Zorbax SB phenyl column with a 0.01 M aqueous monobasic potassium phosphate buffer (pH 4.0)-absolute methanol (85:15, v/v) as mobile phase at a flow-rate of 1.0 ml/min and detection at 313 nm. Tinidazole was used as the internal standard. The method employed homogenization of tissue followed by solid-phase extraction. The quantitation was achieved within 30 min with sensitivity in the ng/g range. Metronidazole was linear in the 100–2000 ng/g range. The accuracy and precision were in the 1–4% range for the drug and the limit of detection was approximately 100 ng/g based on a signal-to-noise ratio of 3 and a 100-μl injection.  相似文献   

11.
A column-switching, reversed-phase high-performance liquid chromatographic (HPLC) method for the determination of a new carbapenem antibiotic assay using ultraviolet detection has been developed for a new carbapenem antibiotic L-749,345 in human plasma and urine. A plasma sample is centrifuged and then injected onto an extraction column using 25 mM phosphate buffer, pH 6.5. After 3 min, using a column-switching valve, the analyte is back-flushed with 10.5% methanol–phosphate buffer for 3 min onto a Hypersil 5 μm C18 BDS 100×4.6 mm analytical column and then detected by absorbance at 300 nm. The sample preparation and HPLC conditions for the urine assay are similar, except for a longer analytical column 150×4.6 mm. The plasma assay is specific and linear from 0.125 to 50 μg/ml; the urine assay is linear from 1.25 to 100 μg/ml.  相似文献   

12.
A rapid, simple and sensitive high-performance liquid chromatographic (HPLC) assay has been developed for the simultaneous quantification of the HIV-protease inhibitors indinavir, amprenavir, ritonavir, saquinavir and nelfinavir in human plasma. The method involved the solid-phase extraction of the five drugs and the internal standard (I.S., verapamil) from 400 μl of human plasma. The HPLC analysis used a reversed-phase C18 analytical column and a mobile phase consisting of a gradient with 15 mM phosphate buffer (pH 5.75)–acetonitrile and UV monitoring. The method was linear over the therapeutic concentration range for the five HIV-protease inhibitors. The accuracy of the method ranged from 98.2 to 106.7% and the precision values ranged from 1.4 to 8.1% for intra-day precision and from 3.1 to 6.4% for the inter-day values.  相似文献   

13.
A study, using on-line column-switching high-performance liquid chromatography, evaluated two different extraction columns for the determination of flunitrazepam and its major metabolites: 7-aminoflunitrazepam, 7-acetamidoflunitrazepam and desmethylflunitrazepam. The procedure was based on the enrichment of benzodiazepines on the extraction column, followed by transfer of the compounds to the analytical column. The two extraction columns were compared: the first column was a BioTrap 500 MS (hydrophobic polymer), 20×4 mm I.D., and the second was a LiChrospher RP-18 ADS, 25×4 mm I.D. The analytical column used was a LiChrospher select B RP-8, 125×3 mm I.D. with 5 μm particle size. The extraction conditions for the two pre-concentration columns, such as extraction temperature, buffer concentration, buffer pH, acetonitrile percentage and flow-rate, were studied for the extraction from plasma of flunitrazepam and its metabolites mentioned above. The mobile phase of the analytical column was isocratic and composed of acetonitrile–20 mM phosphate buffer at pH 2.1 (35:65, v/v) and at a flow-rate of 0.3 ml/min.  相似文献   

14.
This paper presents an assay of clindamycin phosphate injection in human plasma or serum. A 0.5-ml volume of plasma was used with the internal standard, propranolol. The sample was loaded onto a silica extraction column. The column was washed with deionized water and then eluted with methanol. The eluates were evaporated under nitrogen gas. The residue was reconstituted with the mobile phase and injected onto the high-performance liquid chromatographic system: a 5-μm, 25 cm×4.6 mm I.D. ODS2 column was used with acetonitrile, tetrahydrofuran and 0.05 M phosphate buffer as the mobile phase and with ultraviolet detection at 204 nm. A limit of quantitation of 0.05 μg/ml was found, with a coefficient of variation of 11.6% (n=6). The linear range is between 0.05 and 20.00 μg/ml and gives a coefficient of determination (r2) of 0.9992. The method has been successfully applied to the bioavailability study of two commercial preparations of clindamycin phosphate injection (300 mg each) in twelve healthy adult male volunteers.  相似文献   

15.
A simple, rapid and validated high performance liquid chromatography method with UV detection for the quantification of an opioid agonist, fentanyl (FEN), in rat plasma was developed. The assay procedure involved chromatographic separation using a ZIC-HILIC SeQUANT column (250 mm × 4.6 mm, i.d., 5 μm) and a mobile phase of acetonitrile and acetate buffer (pH 3.4, 20mM) of ratio (=65:35, v/v) at a flow rate of 1.2 mL/min and detection wavelength of 201 nm. Plasma sample (100 μL) pretreatment was based on simple deprotienization by acetonitrile spiked with clonidine as an internal standard (I.S.) of 20 ng/mL followed by extraction with tert-butyl methyl ether and centrifugation. The organic layer was evaporated under N(2) gas and reconstituted with 100 μL of acetate buffer (pH 3.4, 20mM), and 50-μL portions of reconstituted sample were injected onto the column. Sample analysis including sample pretreatment was achieved within 35 min. Calibration curve was linear (r ≥ 0.998) from 5 to 100 ng/mL. Both intra- and inter-day assay precisions that are presented through RSD were lower than 12.6% for intra-day and lower than 12.0% for inter-day assessment. Limit of detection was 0.8 ng/mL at S/N of 3. This method was omitting the use of expensive solid phase extraction and time consuming liquid extraction procedures. Moreover, the present method was successfully applied to study pharmacokinetic parameters of FEN after intraperitoneal administration to male Wistar rat. Pharmacokinetic parameters estimated by using moment analysis were T(1/2) 198.3 ± 44.7 min, T(max) 28.3 ± 2.9 min and AUC(0-180) 15.6 ± 2.9(× 10(2))ngmin/mL.  相似文献   

16.
A new, sensitive and simple high-performance liquid chromatographic method for analysis of topiramate, an antiepileptic agent, using 4-chloro-7-nitrobenzofurazan as pre-column derivatization agent is described. Following liquid-liquid extraction of topiramate and an internal standard (amlodipine) from human serum, derivatization of the drugs was performed by the labeling agent in the presence of dichloromethane, methanol, acetonitrile and borate buffer (0.05 M; pH 10.6). A mixture of sodium phosphate buffer (0.05 M; pH 2.4): methanol (35:65 v/v) was eluted as mobile phase and chromatographic separation was achieved using a Shimpack CLC-C18 (150 x 4.6 mm) column. In this method the limit of quantification of 0.01 microg/mL was obtained and the procedure was validated over the concentration range of 0.01 to 12.8 microg/mL. No interferences were found from commonly co-administrated antiepileptic drugs including phenytoin, phenobarbital carbamazepine, lamotrigine, zonisamide, primidone, gabapentin, vigabatrin, and ethosuximide. The analysis performance was carried-out in terms of specificity, sensitivity, linearity, precision, accuracy and stability and the method was shown to be accurate, with intra-day and inter-day accuracy from -3.4 to 10% and precise, with intra-day and inter-day precision from 1.1 to 18%.  相似文献   

17.
A HPLC method with UV detection was developed and validated for the determination of thiorphan in human plasma. Nevirapine was used as the internal standard. Separation was performed by a Waters sunfire C18 reversed-phase column maintained at 35 degrees C. The mobile phase was a mixture of 0.05 M phosphate buffer with the pH adjusted to 2.6 and acetonitrile (74:26, v/v) at a flow rate of 1.0 mL/min. The UV detector was set at 210 nm. An original pre-treatment of plasma samples was developed, based on solid-phase extraction (SPE) with solid-phase extraction cartridges (Oasis HLB 3 mL, 60 mg). The extraction recovery for plasma samples of thiorphan at 0.1, 0.4 and 2.0 microg/mL was 93.5%, 98.2% and 97.8%, respectively. The calibration curve was linear with the correlation coefficient (r) above 0.9998. Linearity was verified over the range of 0.05-4 microg/mL thiorphan in plasma. The limit of quantification (LOQ) is 0.05 microg/mL. The mean accuracy was 92.7-99.6%. The coefficient of variation (precision) in the within- and between-batch was 2.2-8.4% and 4.1-8.1%, respectively. This method is simple, economical and specific, and has been used successfully in a pharmacokinetic study of thiorphan.  相似文献   

18.
A sensitive and specific liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) is described for quantitation of salbutamol in human urine using nadolol as the internal standard (I.S.). Urine samples were hydrolyzed with beta-glucuronidase followed by a solid-phase extraction procedure using Bond Elut-Certify cartridges. The HPLC column was an Agilent Zorbax SB-C(18) column. A mixture of 0.01 M ammonium formate buffer (pH 3.5)-acetonitrile (85:15, v/v) was used as the mobile phase. Analytes were quantitated using positive electrospray ionization in a quadrupole spectrometer. Selected ion monitoring (SIM) mode was used to monitor m/z 166 for salbutamol and m/z 310 for I.S. Good linearity was obtained in the range of 10.0-2000.0 ng/ml. The limit of quantification was 10.0 ng/ml. The intra- and inter-run precision, calculated from quality control (QC) samples was less than 7.3%. The accuracy as determined from QC samples was within +/-2.6%. The method was applied for determining excretion curves of salbutamol.  相似文献   

19.
A fully automated liquid chromatographic method was developed for the determination of Ro 28-2653, a new synthetic inhibitor of matrix metalloproteinases (MMPs), in ovine serum and plasma. The method was based on the coupling of a pre-column packed with restricted access material, namely LiChrospher RP-8 ADS (alkyl diol silica), for sample clean-up to an analytical column containing octyl silica stationary phase. One hundred microl of biological sample, to which 2-propanol was automatically added, were injected onto the ADS pre-column, which was then washed with a washing liquid consisting of a mixture of 25 mM phosphate buffer (pH 7.0) and acetonitrile (90:10; v/v) for 10 min. By rotation of the switching valve, the analyte was then eluted in the back-flush mode with the LC mobile phase composed of a mixture of acetonitrile and 25 mM phosphate buffer (pH 7.0) (57:43; v/v). The UV detection was performed at 395 nm. The main parameters likely to influence the sample preparation technique were investigated. The method was then validated over a concentration range from 17.5 to 1950 ng/ml, the first concentration level corresponding to the lower limit of quantitation. At this concentration level, the mean bias and the R.S.D. value for intermediate precision were -2.4% and 4.2%, respectively.  相似文献   

20.
An improved high-performance liquid chromatography method using a diisopropyl-C14 reversed-phase column (Zorbax Bonus-RP column) and a liquid–liquid extraction technique with UV detection is presented for the analysis of pyronaridine in human whole blood and plasma. Tribasic phosphate buffer (50 mM, pH 10.3) and diethyl ether were used for liquid–liquid extraction. The mobile phase consists of acetonitrile–0.08 M potassium dihydrogen phosphate buffer (13:87, v/v) with the pH 2.8 adjusted by orthophosphoric acid. Amodiaquine was found to be a suitable internal standard for the method. The quantification limit with UV detection at 275 nm was 3 ng on-column for both plasma and blood samples. The method was applied to plasma and blood specimens from a rabbit after a single intramuscular dose of pyronaridine tetraphosphate (20 mg/kg as base). From this in vivo study, evidence was found that pyronaridine is concentrated in blood cells, with a blood:plasma ratio ranging from 4.9 to 17.8. We conclude that blood is the preferred matrix for clinical pharmacokinetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号