首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pure phloem sap from rice plant was collected by a method similarto the aphid technique using leafhoppers and planthoppers instead.A Yttrium-Aluminium Garnet laser was used to sever the insectstylets. Sap exuded from the plant through the stylet for upto 3 hr at a rate of 0.2 µl/hr. Analysis of the sap forsugars revealed that the only carbohydrate present was sucrose;its content was estimated to be 17% and remained at this levelfor 3 hr. (Received April 16, 1980; )  相似文献   

2.
A virus that causes chlorotic streaks on ryegrass leaves was transmitted by the eriophyid mite Abacarus hystrix (Nalepa). Virus-free mites acquired the virus in 2 hr. feeding on infected ryegrass and the proportion that became infective increased with increased feeding time up to 12 hr.; vectors lost infectivity within 24 hr. of leaving the infected leaves. All instars of A. hystrix transmitted the virus.
The virus was transmitted by manual inoculation of sap to other species of Gramineae, including oats, rice, cocksfoot and meadow fescue, but none of these hosts seemed to contain as much virus as ryegrass; their saps did not precipitate specifically with antiserum prepared against the virus in ryegrass, whereas sap from infected ryegrass precipitated up to a dilution of 1/32. Infective sap of S22 Italian ryegrass contained flexuous rod-shaped particles; the dilution end-point of the virus was about 1 in 1000; the virus was inactivated when held for 10 min. at 60°C. and most of its infectivity was lost after 24 hr. at room temperature.  相似文献   

3.
The chronology of the development of the egg chorion of Listronotus oregonensis (Coleoptera: Curculionidae) was studied using transmission and scanning electronic microscopy. The exochorion is uniformly covered with tubercles that reduce surface contact with plant sap. These structures could also function as a physical gill. The endochorion is thin and the vitelline membrane, at first granular, changed after oviposition to a lamellar structure. The serosal cuticle continued development until about 72 hr after oviposition, at which time it comprised 90 layers.  相似文献   

4.
The influence of controlled temperatures on levels of sorbitol and other carbohydrates was determined to provide further information on dormancy of apple trees (Malus sylvestris Mill.). For 3 years, 2-year-old “Red Delicious” apple shoots were collected from mature trees in an orchard at intervals during the autumn and winter, and shoots were stored for 6 hr to 1 week at temperatures from 18 to ?60 °C. Sorbitol and other carbohydrates were estimated in the sap or wood by gas chromatography.Controlled temperatures had a marked influence on the carbohydrate content of excised 2-year-old apple shoots. Levels of sorbitol in the sap were maximum at ?0.6 °C. The increase was greatest at the earliest sampling before complete hardening had occurred in each of the 3 years tested. Total sorbitol in the wood was less influenced by storage at various controlled temperatures than sorbitol in the sap. Levels of fructose, glucose, and sucrose in the wood were higher at temperatures below ?0.6 °C than at warmer temperatures. Levels of starch were usually inversely related to soluble sugars.  相似文献   

5.

Background

Floral nectar contains sugars and amino acids to attract pollinators. In addition, nectar also contains different secondary compounds, but little is understood about their origin or function. Does nectar composition reflect phloem composition, or is nectar synthesized and/or modified in nectaries? Studies where both, the nectar as well as the phloem sap taken from the same plant species were analyzed in parallel are rare. Therefore, phloem sap and nectar from different plant species (Maurandya barclayana, Lophospermum erubescens, and Brassica napus) were compared.

Methodology and Principal Findings

Nectar was collected with microcapillary tubes and phloem sap with the laser-aphid-stylet technique. The nectar of all three plant species contained high amounts of sugars with different percentages of glucose, fructose, and sucrose, whereas phloem sap sugars consisted almost exclusively of sucrose. One possible reason for this could be the activity of invertases in the nectaries. The total concentration of amino acids was much lower in nectars than in phloem sap, indicating selective retention of nitrogenous solutes during nectar formation. Nectar amino acid concentrations were negatively correlated with the nectar volumes per flower of the different plant species. Both members of the tribe Antirrhineae (Plantaginaceae) M. barclayana and L. erubescens synthesized the iridoid glycoside antirrhinoside. High amounts of antirrhinoside were found in the phloem sap and lower amounts in the nectar of both plant species.

Conclusions/Significance

The parallel analyses of nectar and phloem sap have shown that all metabolites which were found in nectar were also detectable in phloem sap with the exception of hexoses. Otherwise, the composition of both aqueous solutions was not the same. The concentration of several metabolites was lower in nectar than in phloem sap indicating selective retention of some metabolites. Furthermore, the existence of antirrhinoside in nectar could be based on passive secretion from the phloem.  相似文献   

6.
FERGUSON  A. R. 《Annals of botany》1980,46(6):791-801
Large differences in composition were found between xylem sapcollected from Actinidia chinensis (Chinese gooseberry or kiwifruit) as bleeding sap and sap collected by vacuum extraction.A comparison of saps collected by the two methods has littlemeaning, however, unless the position on the plant from whichsap was collected and the prior treatment of the plant are specified.Furthermore the composition of bleeding sap changes rapidlywith time, probably because of marked gradients in concentrationof individual solutes in the xylem sap from the base to thetop of the plant. Contamination of vacuum-extracted sap by cellularcontents was shown to be insignificant. Sap collected as bleeding sap and by vacuum extraction are ofsomewhat different origins. It would be difficult to predictthe composition of bleeding sap simply from a knowledge of vacuum-extractedsap: it may be similarly unwise to predict the composition ofthe transpiration stream from that of vacuum extracted sap. Actinidia chinensis, kiwi fruit, Chinese gooseberry, xylem sap, bleeding sap, vacuum-extraction  相似文献   

7.

Background

Plant systemic signaling characterized by the long distance transport of molecules across plant organs involves the xylem and phloem conduits. Root-microbe interactions generate systemic signals that are transported to aerial organs via the xylem sap. We analyzed the xylem sap proteome of soybean seedlings in response to pathogenic and symbiotic interactions to identify systemic signaling proteins and other differentially expressed proteins.

Results

We observed the increase of a serine protease and peroxidase in the xylem sap in response to Phytophthora sojae elicitor treatment. The high molecular weight fraction of soybean xylem sap was found to promote the growth of Neurospora crassa in vitro at lower concentrations and inhibit growth at higher concentrations. Sap from soybean plants treated with a P. sojae elicitor had a significantly higher inhibitory effect than sap from control soybean plants. When soybean seedlings were inoculated with the symbiont Bradyrhizobium japonicum, the abundance of a xyloglucan transendoglycosyl transferase protein increased in the xylem sap. However, RNAi-mediated silencing of the corresponding gene did not significantly affect nodulation in soybean hairy root composite plants.

Conclusion

Our study identified a number of sap proteins from soybean that are differentially induced in response to B. japonicum and P. sojae elicitor treatments and a majority of them were secreted proteins.  相似文献   

8.
Transpiration inhibition by stored xylem sap from well-watered maize plants   总被引:3,自引:0,他引:3  
There is increasing evidence that a chemical signal exists in xylem sap of plants subjected to water deficits which influences physiological responses in plant shoots. An important method of studying this signal is the transpiration response of excised leaves exposed to xylem sap collected from plants. However, Munns et al [Plant, Cell & Environment 16, 867–877] cautioned that transpiration inhibition is observed when xylem sap collected from wheat and barley is stored before determining physiological activity. The objective of the study reported here was to determine if transpiration inhibition develops in maize sap collected from well-watered plants when the sap is stored under various conditions. It was found that storage of maize sap collected from well-watered plants for only 1 d at -20°C resulted in the development of substantial transpiration inhibition in bioassay leaves. Storage of sap at 4°C resulted in the development of the effect after 2 weeks, while storage at ?86°C showed only small transpiration inhibition after 3 weeks. The major source of the transpiration inhibition was the development of a substance in the stored sap that resulted in physical blockage of the transpiration stream in bioassay leaves. However, a small signal component may also have developed in the stored sap. Because of the possibility of ionic activity under freezing conditions at ?20°C, calcium was studied for its potential involvement in the transpiration inhibition. However, the calcium concentrations found to inhibit transpiration were nearly an order of magnitude larger than the calcium concentrations observed in xylem sap.  相似文献   

9.
We investigated if concentrations of abscisic acid (ABA) andother solutes measured in the first few droplets of xylem sapfrom detopped root systems, are good estimates of those in thetranspiration stream as it enters the shoot-base of whole plants.Xylem sap from root systems of pot-grown tomato plants (Lycopersiconesculentum Mill., cv. Ailsa Craig), at the seven-leaf stage,was obtained by placing root systems in chambers pressurizedto 0.3 MPa with air. The first sample was taken from the cut-surfaceof the hypo-cotyl stump within 30 s of removing the shoot. ABA,sucrose and other osmolytes were more concentrated in the initial100–200 mm3 of xylem sap than in subsequent samples. Thissuggested the sap was contaminated and not unchanged transpirationfluid. The effect was reproduced on the same plant, severaltimes, by recutting the hypocotyl prior to reassembling thesap collecting set-up and repressurizing. Similar results werefound with castor-oil plants (Ricinus communis L., cv. Gibsonii).However, neither release of ABA from the cut surface of thehypocotyl stump, nor the effects of pressure to the roots causedthe contamination. Instead, small radial pressures exerted bya rubber sleeve attached to the hypocotyl stump, for collectingthe sap, were responsible. The effect was reproduced by lightlysqueezing the hypocotyl by hand. The possibility was examined that reliable estimates of ABAconcentrations in transpiration stream fluid may be obtainedfrom sap samples taken immediately after rejecting the initial,contaminated 200 mm3. However, ABA concentrations in these latersamples were also unsatisfactory since they changed with rateof sap flow. The problem may be overcome by analysing sap inducedto flow through detached root systems at rates close to thoseof whole-plant transpiration. Key words: Tomato, Lycopersicon esculentum Mill., Castor-oil plant, Ricinus communis L., roots, root to shoot communication, xylem sap, abscisic acid, sucrose, transpiration stream  相似文献   

10.

Background and aims

Soil drying leads to the generation of chemical signals in plants that regulate water use via control of the stomatal aperture. The aim of our work was to identify the presence and identity of potential chemical signals, their dynamics, and their relationship with transpiration rate during soil drying in hop (Humulus lupulus (L.)) plants.

Methods

We used pressure chamber technique for measurement of shoot water potential and collection of shoot xylem sap. We analyzed concentrations of abscisic acid (ABA), nitrate, phosphate, sulphate and malate in sap and also the rate of whole plant transpiration.

Results

Transpiration rate decreased prior to changes in shoot water potential. The concentration of ABA in xylem sap continuously increased from early to later stages of water stress, whereas in leaves it increased only at later stages. Shoot sap pH increased simultaneously with the decrease of transpiration rate. Xylem sap alkalization was in some cases accompanied by a decrease in nitrate concentration and an increase in malate concentration. Concentration of sulphate increased in xylem sap during drying and sulphate in combination with a higher ABA concentration enhanced stomatal closure.

Conclusions

Several early chemical signals appear in sap of hop plants during soil drying and their impact on transpiration may vary according to the stage of soil drying.  相似文献   

11.
The extent of interference from xylem sap in an enzyme-linked immunosorbent assay was determined for a woody perennial [ Populus trichocarpa Torr. & Gray x P deltoides Bart, ex Marsh (Hybrid 1l–ll)] and a herbaceous annual ( Phasesolus vulgaris L. cv. Contender). Crude xylem sap collected from excised roots from both species interfered with the assay for zeatin riboside. Assays for zeatin riboside in xylem sap collected from Popidus overestimated endogenous levels, and added standards could not be accurately measured from a range of sap dilutions. When Phaseolus plants were grown under various nutrient regimens, interference in the assay was dependent on nutrient availability. Of xylem sap components (inorganic minerals, amino acids and sucrose) which may vary with environmental conditions or among species, only sucrose interfered at the concentrations tested. Since the pH of xylem sap varies it was necessary to buffer samples prior to analysis. Partial purification using anion exchange columns and Sep-Paks cffectively eliminated interference. These results demonstrate that estimates of plant growth regulators in xylem sap by the ELISA (enzyme-linked immunosorbant assay) method can be influenced by species and environmental conditions such as plant nutritional status.  相似文献   

12.
Under two monoxenic culture techniques of growing plants (filter paper and silica sand cultures), sugar in root exudate from Meloidogyne incognita-infected tomato increased 133 to 836% over controls. In contrast, amino acids were moderately reduced 52 to 56%. Chromatographic analysis showed that galled root exudate contained three sugars, twelve amino acids, and three organic acids, whereas healthy root exudate contained four sugars, fifteen amino acids, and four organic acids. Polysaccharide was responsible for the large increase of sugars in galled root exudates. The concn and the absolute amount of total sugars in the infected plant xylem sap were greater than in healthy plant xylem sap up to 6 wk after inoculation, whereas amino acids were moderately lower than in controls throughout the test period. Chromatographic analysis showed that xylem sap from both healthy and infected plants at 4 wk after inoculation contained four sugars and five organic acids. We identified 18 and 17 amino acids in the healthy and infected plant xylem sap, respectively. The concn of sugar increased as the nematode inoculum increased at 2, 4 and 6 wk after inoculation. The amino acids in all samples from the infected plant moderately decreased with an increase of nematode inoculum. We suggest that changes in total sugars and amino acids, of infected plant xylem sap and root exudate are a probable mechanism by which tomato plants are predisposed to Fusarium wilt.  相似文献   

13.
Extraction of apoplastic sap from plant roots by centrifugation   总被引:10,自引:0,他引:10  
A centrifugal method for extracting apoplastic sap from roots of lupin ( Lupinus angustifolius ) and pea ( Pisum sativum ) plants, and a method to analyse malic dehydrogenase in the sap using capillary electrophoresis, are described. Osmolality of apoplastic sap was relatively constant at relative centrifugal forces (RCFs) between 600 and 3000 g for lupin, and between 600 and 4000 g for pea. Electropherograms of a marker enzyme (malic dehydrogenase) and other components in apoplastic and symplastic saps revealed that contamination occurred at 7000 g . It is suggested that apoplastic sap expelled from plant roots at RCF between 600 and 3000 g is free from symplastic contamination, and is regarded as being of apoplastic origin. The proposed method was used to measure apoplastic pH changes in the plant roots in response to external pH, ammonium, nitrate and vanadate.  相似文献   

14.
SOME EFFECTS OF HOST-PLANT NUTRITION ON THE MULTIPLICATION OF VIRUSES   总被引:1,自引:0,他引:1  
The amounts of tobacco mosaic virus present in systemically infected tobacco plants varied greatly with the mineral nutrition of the plants and were related to the effects on plant growth. With plants in soil, supplements of phosphorus produced the greatest increases in plant size, in virus concentration of expressed sap, and in total virus per plant; nitrogen increased plant size only when phosphorus was also added, and only then increased virus concentration and total virus per plant. Combined supplements of phosphorus and nitrogen doubled the virus concentration of sap and increased the total virus per plant by factors up to forty. Potassium slightly reduced the virus concentration of sap, though it usually increased plant size and total virus per plant. From all plants, only about one-third of the virus contained in leaves was present in sap. Virus production seemed to occur at the expense of normal plant proteins, and the ratio of virus to other nitrogenous materials was highest in plants receiving a supplement of phosphorus but not of nitrogen.
The effects of host nutrition on the production of virus in inoculated leaves resembled those in systemically infected leaves, but were more variable.
No evidence was obtained, with plants grown in soil or sand, that host nutrition had any consistent effect on the intrinsic infectivity of tobacco mosaic virus.
The concentration of virus in sap from potato plants systemically infected with two strains of potato virus X was not consistently affected by fertilizers; the chief effect of host nutrition on virus production was indirect by altering plant size.  相似文献   

15.
This study was conducted lo determine whether naturally occurring xylem cytokinins, when supplied to leaves via the xylem at approximately endogenous concentrations, increase transpiration and delay senescence in selected monocot species (oat and wheat). The concentrations of some of the major cytokinins (zeatin, dihydrozeatin, ciszeatin and their ribosides, the O-glucosides and nucleotides) were determined in the xylem exudate of oat and wheat seedlings by radioimmunoassay. Evidence is presented that the small volume of exudate (4–5 mm3) collected per plant was xylem sap in transit at the time of shoot excision. Using the data on cytokinin levels, the individual bases and ribosides (and a base/riboside mixture), at multiples of concentrations determined in xylem sap, were tested in transpiration and senescence bioassays. The individual O-glucosides (and mixtures of the O-glucosides) were similarly tested at (i) multiples of the molar concentrations of the corresponding bases and ribosides, and/or at (ii) multiples of the endogenous concentrations. Similarly, zeatin and dihydrozeatin nucleotides were tested at multiples of the molar concentration of zeatin riboside and, in some instances, at multiples of endogenous concentrations. Our results suggest that, at least in oat and possibly in wheat, zeatin-type bases, ribosides and O-glucosides supplied to the leaf in xylem sap are likely to play a role in regulating transpiration in vivo. O-glucosides in oat xylem sap may be important regulators of leaf senescence in the intact plant. The nucleotides were present in xylem sap at lower concentrations than most of the bases, ribosides and O-glucosides. The nucleotides appear likely to play a lesser role than the bases, riboside and O-glucosidcs in controlling transpiration and senescence in the intact plant.  相似文献   

16.
Abstract: Samples of xylem sap from 5-week-old Ricinus corn-munis L. were obtained after severing a lamina, or shoot, from plants pressurized at the roots with air to raise hydrostatic xylem water potentials to atmospheric. In situ sap flow gauges, and mass flow measurements, showed that removing the lamina approximately doubted sap flow rate through the petiole stub that remained attached to the plant. This was a consequence of flow out of the roots being diverted along this low-resistance pathway and away from leaves higher in the canopy. Leaf and whole shoot excision temporarily released extra solutes in to sap as it discharged from the cut petiole or from the hypo-cotyl stump. This contamination prevented the use of sap extracted from detached lamina by overpressurizing in a Scholan-der bomb. To minimise distortions to sap flow and wound-induced contamination, estimates of in planta concentration and delivery (concentration × sap flow rate) of ABA and osmolality in xylem sap were made using sap flow rates measured before excision and concentrations in flowing sap collected approximately 30 mm after excision. At this time, effects of excision on solute contamination had subsided. The approach revealed that withholding water from upper roots increased ABA delivery from roots into the shoot base 3-fold. However, approximately half this ABA was lost en route to the youngest fully open leaf. This loss of ABA may explain the slow stomatal response to drying of upper roots shown by R. communis .  相似文献   

17.
植物组织粗汁液中的番木瓜环斑病毒的ELISA检测技术   总被引:14,自引:0,他引:14  
本研究建立和改进了检测番木瓜和西葫芦组织粗汁液里的番木瓜环斑病毒(PRV)的DAC-ELISA法和Dot-ELISA法。用不同的ELISA方法来检测不同寄主植物粗汁液里的PRV,其所用的合适的制备粗汁液的缓冲液是不同的。用DAC-ELISA法检测西葫芦粗汁液时,以0.5mol/L磷酸盐缓冲液(pH7.5,内含0.1mol/L乙二胺四乙酸二钠)为宜;而检测番木瓜粗汁液时,则还要加入0.25mol/L脲。用Dot-ELISA法检测时,在上述磷酸盐缓冲液中加入2%聚乙烯吡咯烷铜能提高对西葫芦粗汁液的检测效果。应用合适的制备粗汁液的缓冲液,DAC-ELISA法和Dot-ELISA法的灵敏度分别提高到1/4096和1/1024(稀释度)。本研究还表明,影响DAC-ELISA法的定过测定的主要因素是粗汁液的稀释度和包被液(0.05mol/L碳酸盐缓冲液,pH9.6)的用过。在较高粗汁液稀释度和包被液的用量相同时,粗汁液里的病毒含量与DAC-ELISA法的OD492nm值呈真实的线性关系。  相似文献   

18.
Relationships between tree size and physiological processes such as transpiration may have important implications for plant and ecosystem function, but as yet are poorly understood. We used a process‐based model of the soil–plant–atmosphere continuum to investigate patterns of whole‐tree sap flow in ponderosa pine trees of different size and age (36 m and ~250 years versus 13 m and 10–50 years) over a developing summer drought. We examined three different hypothetical controls on hydraulic resistance, and found that size‐related differences in sap flow could be best explained by absolute differences in plant resistance related to path length (hypothesis 1) rather than through different dynamic relationships between plant resistance and leaf water potential (hypothesis 2), or alterations in rates of cumulative inducement and repair of cavitation (hypothesis 3). Reductions in sap flow over time could be best explained by rising soil–root resistance (hypothesis 1), rather than by a combination of rising plant and soil–root resistance (hypothesis 2), or by rising plant resistance alone (hypothesis 3). Comparing hourly predictions with observed sap flow, we found that a direct relationship between plant resistance and leaf water potential (hypothesis 2) led to unrealistic bimodal patterns of sap flow within a day. Explaining seasonal reduction in sap flow purely through rising plant resistance (hypothesis 3) was effective but failed to explain the observed decline in pre‐dawn leaf water potential for small trees. Thus, hypothesis 1 was best corroborated. A sensitivity analysis revealed a significant difference in the response to drought‐relieving rains; precipitation induced a strong recovery in sap flow in the hypothetical case of limiting soil–root resistance (hypothesis 1), and an insignificant response in the case of limiting plant resistance (hypothesis 3). Longer term monitoring and manipulation experiments are thus likely to resolve the uncertainties in hydraulic constraints on plant function.  相似文献   

19.
植物夜间液流的发生、生理意义及影响因素研究进展   总被引:3,自引:0,他引:3  
方伟伟  吕楠  傅伯杰 《生态学报》2018,38(21):7521-7529
植物夜间液流是指在夜间通过植物根、茎、叶的液流量。通过对不同物种、生境条件和生态系统的野外观测,发现植物普遍存在夜间液流现象。阐述了夜间液流的大小和组成,并从夜间液流的生理意义、影响因素以及生态水文效应方面对已有的研究进展进行了综述和分析。夜间液流占到全天液流量的比例一般为5%—20%。夜间液流包括夜间的茎干补水和夜间的蒸腾作用两个过程,但是目前没有确切的研究或技术将两个过程区分开来。虽然总体上夜间液流占全天液流量的比例较少,但是夜间液流的储水作用和蒸腾作用对植物生长有重要的生理意义:夜间储水作用提高了夜间茎干水势,减少了木质部栓塞化的形成,加强了植物对干旱环境的适应;而蒸腾作用在营养物质和氧气的运输,以及水力提升等方面有重要的作用。影响夜间液流的因素较多,气象因素是主要的环境驱动因子,而土壤水分对夜间液流的影响与生境有关;夜间液流还受到物种和生境条件的影响。由于夜间液流的发生,对不同尺度的生态水文过程产生了影响。未来的研究可进一步探索在全球气候变化条件下,夜间液流与植物生理过程的关系,定量评估夜间液流对生态水文过程的影响,深入研究夜间液流对环境变化的响应。  相似文献   

20.
Collection of Xylem Sap at Flow Rate Similar to in vivo Transpiration Flux   总被引:3,自引:0,他引:3  
We have explored a method to collect xylem sap using a Scholanderpressure chamber for potted plants. Intact root system in potswhich fitted the pressure chamber was pressurised at a pneumaticpressure numerically equal to the absolute value of shoot waterpotential. The rate of xylem flow obtained from the stem stumpunder such pressure was found similar to the rate of transpirationbefore detopping. The rate of pressurised flow from detop-pedroots was linearly related to the pressure applied in both well-wateredand soil-dried plants. The osmotic concentration of the xylemsap was negatively related to the rate of volume flow, suggestingthe necessity to collect xylem sap at in vivo flow rate if originalsolute concentration is to be evaluated. The concentration ofABA in the xylem sap, however, did not show such a relationshipwith water flux. Both well-watered and soil-dried plants showedthe concentration of ABA in xylem sap largely stable with arange of volume flow rate, indicating a linear relationshipbetween the rate of ABA delivery through xylem and that of volumeflow. We also compared the concentrations of ABA in xylem sapsequentially collected from pressurised roots with that fromdetached shoots of the same plants. The concentration of ABAin the initial saps from shoots showed to be similar to thatfrom roots. However, a decrease in the concentration of ABAin the xylem sap collected from detached leaf or twig was observedwhen more volume of sap was collected, which might also be dependenton the plant species and the volume of xylem vessels concerned. (Received February 3, 1997; Accepted October 7, 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号