首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of some fatty acids on the phase behavior of hydrated dipalmitoylphosphatidylcholine (DPPC) bilayer was investigated with special interest in possible difference between saturated and unsaturated fatty acids. The phase behavior of hydrated DPPC bilayer was followed by a differential scanning calorimetry and a Fourier transform infrared spectroscopy. The addition of palmitic acid (PA) increased the bilayer phase transition temperature with the increase of the PA content in the mixture. In addition, DPPC molecules in gel phase bilayer became more rigid in the presence of PA compared with those in the absence of PA. This effect of PA on the phase behavior of hydrated DPPC bilayer is common to other saturated fatty acids, stearic acid, myristic acid, and also to unsaturated fatty acid with trans double bond, elaidic acid. Contrary to these fatty acids, oleic acid (OA), the unsaturated fatty acid with cis double bond in the acyl chain, exhibited quite different behavior. The effect of OA on the bilayer phase transition temperature was rather small, although a slight decrease in the temperature was appreciable. Furthermore, the IR spectral results demonstrated that the perturbing effect of OA on the gel phase bilayer of DPPC was quite small. These results mean that OA does not disturb the hydrated DPPC bilayer significantly.  相似文献   

2.
Unsaturated fatty acid auxotrophs of Escherichia coli are able to use only unsaturated fatty acids of the cis configuration as the required growth supplement. A mutation in the fatA gene allows such auxotrophs to utilize unsaturated fatty acids with a trans double bond as well as fatty acids having a cis double bond. The fatA gene was mapped to min 69 near argG, and the allele studied (fatA1) was found to be dominant over the wild-type gene. fatA1 mutant strains grew at similar rates when supplemented with elaidate (trans-9-octadecenoate) or oleate (cis-9-octadecenoate). The fat+ strain, however, lysed when supplemented with the trans fatty acid. Physiological characterization of the fatA mutant strain was undertaken. The mutation appeared not to be involved with long-chain fatty acid transport. Introduction of lesions in known fatty acid transport genes abolished trans fatty acid utilization in the fatA mutant strain. Also, growth characteristics of the fat+ and the fatA1 mutant strains on elaidate as the sole carbon source were identical, which indicated comparables rate of fatty acid accumulation. The mutation appeared to be involved with recognition of the trans configuration after uptake into the cell. The levels of trans fatty acid incorporation into the phospholipids of the fat+ and the fatA strains differed considerably, with the mutant incorporating much higher levels. No significant accumulation of elaidate into nonphospholipid cellular components was observed. The fatA mutation did not appear to be involved with the cellular metabolic state, as cyclic AMP had no effect on the ability of the strains to utilize trans fatty acids.  相似文献   

3.
The ever-increasing amount of trans fatty acids in the human diet has been linked to a variety of afflictions, most notably coronary heart disease and arteriosclerosis. The mechanism of why the replacement of cis fatty acids with their trans counterparts can be detrimental to the health of an individual remains a mystery. Here, we compare the differences in membrane physical properties including molecular dynamics, lateral lipid packing, thermotropic phase behavior, "fluidity", lateral mobility, and permeability between model membranes (lipid monolayers and bilayers) composed of cis- and trans-containing phosphatidylcholines (PCs). The PCs tested have a total of zero, one, two, or four cis (oleic or linoleic) or trans (elaidic or linoelaidic) double bonds. These experiments all confirm the basic hypothesis that trans fatty acids produce membrane properties more similar to those of saturated chains than to those of acyl chains containing cis double bonds; i.e., cis double bonds induce much larger membrane perturbations than trans double bonds.  相似文献   

4.
The wild-type Aspergillus niger (V35) does not require fatty acids for growth. Four unsaturated fatty acid auxotrophs designated as UFA1, UFA2, UFA3, and UFA4 have been produced from this organism by treating the conidia of the wild-type strain with a mutagen, N-methyl-N'-nitro-N-nitrosoguanidine, followed by isolation on media containing monounsaturated fatty acids and the nonionic detergent, Brij 58. Optimal growth of the mutants comparable with that of the wild type was achieved with medium supplemented with C16 or C18 unsaturated fatty acids containing at least one cis double bond at the delta 9 position. Some other fatty acids (18:1 delta 11 cis and 16:1 delta 9 trans) support growth to some extent. The mutants do not grow at all in the presence of saturated fatty acids. Fatty acid analyses of the mutant, UFA2, grown in the presence of different fatty acid supplements reveal that it may be defective in a desaturase system. Experiments with unlabeled and [1-14C]palmitoyl-CoA have shown that the microsomes of the mutant (UFA2) contain a partially defective delta 9-desaturase system.  相似文献   

5.
The inhibitory effects of various fatty acids on three hyaluronidases (h-ST, h-SH and h-SD) and four chondroitinases (c-ABC, c-B, c-ACI and c-ACII) were examined, and their structure-activity relationships and mechanism of action were studied. The fatty acids used in this experiment showed various inhibitory activities against the enzymes. None of the fatty acids did not inhibit h-ST and h-SH. The saturated fatty acids (C 10:0 to C 22:0) showed very weak or no inhibition against h-SD, c-ABC, c-B, c-ACI and c-ACII but the unsaturated fatty acids (C 14:1 to C 24:1) with one double bond strongly inhibited the enzymes, and the inhibitory potency increased with increase in carbon chain length of the fatty acids. In contrast, the increase in number of double bonds caused a decrease in inhibitory potency against the enzymes. The position of the double bond and the stereochemistry of the cis - trans form of oleic acid (C 18:1) did not influence the inhibitory potency against the enzymes. Carboxyl and hydroxyl groups in the fatty acid molecule were concerned in the inhibition of c-ACI. Among the fatty acids, eicosatrienoic acid (C 20:3) generally inhibited h-SD, c-ABC, c-B and c-ACI, and nervonic acid (C 24:1) was a potent inhibitor of c-ACII, and the fatty acids inhibited the enzymes in a noncompetitive manner.  相似文献   

6.
It is believed that free fatty acids contribute to the pathogenesis of type 2 diabetes in humans. We have recently shown that lipoapoptosis of human beta-cells is specifically induced by saturated fatty acids while unsaturated had no effect. In the present study we tested the effect of co-incubation of different saturated and unsaturated free fatty acids on lipoapoptosis in beta-cells. RIN1046-38 cells and isolated human beta-cells were incubated with combinations of saturated fatty acids (palmitate, stearate) and mono- or polyunsaturated fatty acids (palmitoleate, oleate, and linoleate). Cells were incubated for 24-72 h with 1mM fatty acids. All unsaturated fatty acids tested completely prevented palmitate- or stearate-induced apoptosis of rat and human beta-cells as assessed by flow cytometric cell cycle analysis and TUNEL assay. This might suggest that apoptosis in vivo is predominantly determined by the content of unsaturated fatty acids in a mixed fatty acid pool.  相似文献   

7.
In a previous publication (Lagrost, L. and Barter, P.J. (1991) Biochim. Biophys. Acta 1085, 209-216), saturated and cis unsaturated non-esterified fatty acids have been shown to modulate the rate at which cholesteryl esters are transferred from high-density lipoproteins (HDL) to low-density lipoproteins (LDL) in the presence of the human cholesteryl ester transfer protein (CETP). In the present report, the effects of cis (oleic acid) and trans (elaidic acid) monounsaturated isomers on the CETP-mediated transfer of cholesteryl esters between HDL and LDL were compared. Mixtures of human LDL and HDL3, containing or not radiolabelled cholesteryl esters, were incubated at 37 degrees C with CETP in the presence or in the absence of either stearic (18:0), oleic (18:1 cis) or elaidic (18:1 trans) acids. It was observed that oleic acid and elaidic acid had different effects on the CETP-mediated redistribution of radiolabelled cholesteryl esters as well as on the net mass transfer of cholesterol from HDL3 to LDL. In particular, at high non-esterified fatty acid/lipoprotein ratio, the transfer of cholesteryl esters was significantly inhibited by the cis isomer and increased by the trans isomer.  相似文献   

8.
The kernels of Trichosanthes kirilowii seeds contain a green oil which makes up for 62% of their dry matter. This oil consists up to 95% of triglycerides, 2% of glycolipids, 1.3% of phospholipids and 1.8% of chlorophylls. As fatty acid components the triglycerides, glycolipids and phospholipids contain the unsaturated fatty acids linoleic and oleic acid and the saturated palmitic acid. In the triglycerides 19% of the C18:3 acid occur with the configuration delta9 cis, delta11 trans, delta13 cis. This acid is called trichosanic acid and is absent in glycolipids and phospholipids which contain instead another C18:3 fatty acid, which has conjugated double bounds and occurs with an amount of 21% and 3%, respectively. Typically, these oil seeds contain in addition up to 30% of their dry matter proteins and up to 2.5% mono- and oligosaccharides. The monosaccharides consist of rhamnose, galactose and glucose and the oligosaccharides represent a mixture of tri- and tetrasaccharides.  相似文献   

9.
Pseudomonas putida S12 was more tolerant to ethanol when preadapted to supersaturating concentrations of toluene. Cellular reactions at the membrane level to the toxicities of both compounds were different. In growing cells of P. putida S12, sublethal concentrations of toluene resulted in an increase in the degree of saturation of the membrane fatty acids, whereas toxically equivalent concentrations of ethanol led to a decrease in this value. Contrary to this, cells also reacted to both substances with a strong increase of the trans unsaturated fatty acids and a corresponding decrease of the cis unsaturated fatty acids under conditions where growth and other cellular membrane reactions were totally inhibited. While the isomerization of cis to trans unsaturated fatty acids compensates for the fluidizing effect caused by ethanol, a decrease in the degree of saturation is antagonistic with respect to the chemo-physical properties of the membrane. Consequently, the results support the hypothesis that the decrease in the degree of saturation induced by ethanol is not an adaptation mechanism but is caused by an inhibitory effect of the compound on the biosynthesis of saturated fatty acids.  相似文献   

10.
Adaptation of Mycoplasma gallisepticum, a sterol-requiring Mycoplasma sp., to growth in a serum-free medium supplemented with cholesterol in decreasing concentrations and with various saturated or unsaturated fatty acids enabled us to control both the cholesterol levels and the membrane fatty acid composition. An estimate of the membrane physical state from fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene indicated that the membrane lipids of native M. gallisepticum were highly ordered. Elongation of the saturated fatty acid chains from 14 to 18 carbon atoms caused only a small increase in the membrane lipid ordering, whereas the introduction of a cis double bond reduced it significantly. Lipid-phase transitions were observed in low-cholesterol-adapted organisms, whose membrane lipids were still highly ordered at the growth temperature.  相似文献   

11.
The physiological significance of trans unsaturated fatty acids, which are constituents of membrane lipids of the phenol-degrading bacterium Pseudomonas putita P8, was studied. The addition of phenol or phenol derivatives to the cells induced the formation of trans unsaturated fatty acids, yielding an overall maximal amount of 41.3% of total fatty acids. The inhibition of de-novo lipid synthesis by cerulenin prevented the change in the degree of saturation in the lipids. However, the cells could still respond to phenols with an amplified conversion of cis into trans unsaturated fatty acids, which is apparently a post-synthesis mechanism of isomerization of the double bond. The cis/trans conversion correlated with growth inhibition induced by toxic concentrations of 4-chlorophenol, whereas only growing cells were able to change the degree of saturation. In cells that were protected against phenol by immobilization in calcium alginate, the conversion of cis into trans fatty acids occurred at higher toxin concentrations compared with free cells. Cells entering the stationary growth phase increased the prodortion of saturated to unsaturated fatty acids but maintained a constant trans/cis ratio.P. putida P8 reacted to an increase or decrease in the growth temperature with an appropriate change in the ratio of saturated to unsaturated fatty acids and in cells inhibited by cerulenin with a change in the trans/cis ratio. This study shows that the physiological role of the cis/trans conversion is probably the regulation of membrane fluidity when the most important mechanism for this, the modification of the degree of saturation, cannot by used by the cells due to inhibition of growth and lipid biosynthesis. Correspondence to: H. Keweloh  相似文献   

12.
The fatty acids oleic, linoleic, and linolenic, each of which has a cis double bond at the delta 9 position, are known to lengthen the circadian period of conidiation (spore formation) of strains of Neurospora crassa carrying the cel mutation. cel confers a partial fatty acid requirement on the organism and has been used to promote incorporation of exogenous fatty acids. To test whether a physical effect imparted by the cis double bonds, such as increased membrane fluidity, is critical for the perturbation of the rhythm, various isomers of these fatty acids were supplemented to the bd csp cel strain. Positional isomers of oleic acid, such as petroselinic (delta 6) and vaccenic (delta 11) acids, and longer-chain isomers, such as eicosenoic (delta 11) and erucic (delta 13) acids, did not lengthen the rhythm. The shorter-chain palmitoleic (delta 9) acid did not give a consistent lengthening of the rhythm; it may be elongated to vaccenic acid. In contrast, gamma-linolenic acid (delta 6,9,12) dramatically lengthened the period. Linoelaidic acid (the trans,trans isomer of linoleic acid) lengthened the period at 22 degrees C, but elaidic acid (the trans isomer of oleic acid) did not. Elaidic acid was shown to exert a lengthening effect, but only at lower temperatures. The data do not support a direct physical action as the source of the fatty acids' "chronobiotic" ability.  相似文献   

13.
The effect of fatty acids on Mycobacterium smegmatis was examined in vitro at pH 5.0 to 7.0 to determine the role of fatty acids in the intracellular killing of mycobacteria. Unsaturated fatty acids showed strong bactericidal activity in low concentrations (0.005 to 0.02 mM), whereas saturated fatty acids, except for lauric and myristic acids, were not very effective even at a concentration of 0.2 mM. Addition of a saturated fatty acid (palmitic or stearic acid) to an unsaturated fatty acid (oleic or linoleic acid) did not strongly interfere with the bactericidal effect of the unsaturated fatty acid at pH 5.0 and 6.0. Ca2+ (3.0 mM), Mg2+ (1.0 mM), and gamma-globulin (0.4%) showed weak reversal effects on the bactericidal activity of unsaturated fatty acids at pH 5.0 and 6.0. Serum albumin and serum showed strong reversal effects. The concentrations of each fatty acid in a mixture (molar ratio, 1:1:1:1) of oleic, linoleic, palmitic, and stearic acids required for the killing of M. smegmatis in the presence of 2% serum (bovine, rabbit, or human) were 0.05 to 0.10 mM at pH 5.0 and 6.0 and 0.05 to 0.20 mM at pH 7.0, depending on the serum used. The susceptibilities of M. kansasii, M. bovis strain BCG, and M. tuberculosis to the mixture of the four fatty acids in the presence of 2% bovine serum were similar to that of M. smegmatis, although M. fortuitum was more resistant.  相似文献   

14.
The primary ligands of human serum albumin (HSA), an abundant plasma protein, are non-esterified fatty acids. In vivo, the majority of fatty acids associated with the protein are unsaturated. We present here the first high-resolution crystal structures of HSA complexed with two important unsaturated fatty acids, the monounsaturated oleic acid (C18:1) and the polyunsaturated arachidonic acid (C20:4). Both compounds are observed to occupy the seven binding sites distributed across the protein that are also bound by medium and long-chain saturated fatty acids. Although C18:1 fatty acid binds each site on HSA in a conformation almost identical with that of the corresponding saturated compound (C18:0), the presence of multiple cis double bonds in C20:4 induces distinct binding configurations at some sites. The observed restriction on binding configurations plausibly accounts for differences in the pattern of binding affinities for the primary sites between polyunsaturated fatty acids and their saturated or monounsaturated counterparts.  相似文献   

15.
Single nucleotide polymorphisms in the coding region of the bovine stearoyl-CoA desaturase 1 gene have been predicted to result in p.293A (alanine at amino acid 293) and p.293V (valine at amino acid 293) alleles at the stearoyl-CoA desaturase1 locus. The objectives of this study were to evaluate the extent to which genotypes at the stearoyl-CoA desaturase 1 locus and stage of lactation influence milk fatty acid composition in Canadian Holstein cows. Cows with the p.293AA genotype had higher C10 index, C12 index and C14 index and higher concentrations of C10:1 (10 carbon fatty acid with one double bond), C12:1 (12 carbon fatty acid with one double bond) and myristoleic acid (C14:1) compared with the p.293AV or p.293VV cows. Cows had higher C18 index and total index, and lower C10 index, C12 index, C14 index and CLA index during early lactation compared with the subsequent lactation stages. Early lactation was also characterized by higher concentrations of oleic acid (C18:1 cis -9), vaccenic acid (C18:1 trans -11), linoleic acid (C18:2), monounsaturated fatty acids and total polyunsaturated fatty acids, and lower concentrations of capric acid (C10:0), C10:1, lauric acid (C12:0), C12:1, myristic acid (C14:0), myristoleic acid (C14:1), palmitic acid (C16:0) and total saturated fatty acids compared with the subsequent lactation stages. Neither the stearoyl-CoA desaturase 1 genotype nor the stage of lactation had an influence on conjugated linoleic acid concentrations in milk.  相似文献   

16.
1. Fatty acids have the capacity for inhibition of nuclear T3 binding (INB). The present studies were undertaken to describe the INB-activity of fatty acids as a function of chain length, unsaturated bonds, cis-trans configuration, and esterification. 2. Isolated rat liver nuclei were incubated with [125I]T3 in the absence or presence of fatty acids in concentrations of 0.011, 0.033, 0.1 and 0.3 mM respectively. 3. INB-activity depended on the chain length, being greatest at 14 carbon atoms. 4. INB by unsaturated fatty acids was greater than that of saturated fatty acids, and increased with increasing number of double bonds. 5. Fatty acids in the cis configuration had greater INB-activity than those in trans configuration. 6. Esterification of fatty acids decreased INB-activity: monoglycerides still had some effect, but di- and triglycerides had no effect.  相似文献   

17.
Effects of fatty acids on lysis of Streptococcus faecalis.   总被引:6,自引:5,他引:1       下载免费PDF全文
Palmitic, stearic, oleic, and linoleic acids at concentrations of 200 nmol/ml all inhibited autolysin activity 80% or more in whole cells or cell-free extracts. This concentration of the saturated fatty acids palmitic acid and stearic acid had little or no effect on the growth of whole cells or protoplasts. However, the unsaturated fatty acids oleic acid and linoleic acid induced lysis in both situations. This lytic effect is apparently not related to any uncoupling activity or inhibition of energy catabolism by unsaturated fatty acids. It is concluded that unsaturated fatty acids induce cell and protoplast lysis by acting as more potent membrane destabilizers than saturated fatty acids.  相似文献   

18.
The multienzyme complex for fatty acid oxidation was purified from Pseudomonas fragi, which was grown on oleic acid as the sole carbon source. This complex exhibited enoyl-CoA hydratase [EC 4.2.1.17], 3-hydroxyacyl-CoA dehydrogenase [EC 1.1.1.35], 3-oxoacyl-CoA thiolase [EC 2.3.1.16], cis-3,trans-2-enoyl-CoA isomerase [EC 5.3.3.3], and 3-hydroxyacyl-CoA epimerase [EC 5.1.2.3] activities. The molecular weight of the native complex was estimated to be 240,000. Two types of subunits, with molecular weights of 73,000 and 42,000, were identified. The complex was composed of two copies each of the 73,000- and 42,000-Da subunits. The beta-oxidation system was reconstituted in vitro using the multienzyme complex, acyl-CoA synthetase and acyl-CoA oxidase. This reconstituted system completely oxidized saturated fatty acids with acyl chains of from 4 to 18 carbon atoms as well as unsaturated fatty acids having cis double bonds extending from odd-numbered carbon atoms. However, unsaturated fatty acids having cis double bonds extending from even-numbered carbon atoms were not completely oxidized to acetyl-CoA: about 5 mol of acetyl-CoA was produced from 1 mol of linoleic or alpha-linolenic acid, and about 2 mol of acetyl-CoA from 1 mol of gamma-linolenic acid. These results suggested that the 3-hydroxyacyl-CoA epimerase in the complex was not operative. When the epimerase was by-passed by the addition of 2,4-dienoyl-CoA reductase to the reconstituted system, unsaturated fatty acids with cis double bonds extending from even-numbered carbon atoms were also completely degraded to acetyl-CoA.  相似文献   

19.
This study explored the capability of Pseudomonas putida NCTC 10936 to maintain homeoviscosity after changing the growth temperature, incubating resting cells at different temperatures or at a constant temperature in the presence of 4-chlorophenol (4-CP). After raising the growth temperature from 20 to either 30 or 35 degrees C, the degree of saturation of the organism's fatty acids increased and the ratio of trans to cis unsaturated fatty acids decreased somewhat. In contrast, after the incubation temperature of resting cells was raised (grown at 30 degrees C) from 20 to 30 or 35 degrees C the degree of saturation of the fatty acids remained nearly constant, while the ratio of trans to cis unsaturated fatty acids increased. Incubating resting cells (grown at 30 degrees C) at 20 degrees C in the presence of 4-CP again caused no major changes in the degree of saturation, but cis to trans conversion of unsaturated fatty acids was induced, with a corresponding increase in the trans/cis ratios. Increases in both the saturation degree of the fatty acids and the trans/cis ratio of the unsaturated fatty acids correlated with increases in the fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene intercalated in the bilayers of liposomes prepared from the cells of P. putida NCTC 10936. Electron transport phosphorylation (ETP) could be stabilized by adaptive adjustments in the fluidity of the cytoplasmic membrane mediated by changes in fatty acid composition such as those observed. Whether changes in the degree of saturation or in the trans/cis ratio are more effective can be decided by studying P. putida NCTC 10936.  相似文献   

20.
Five Lactobacillus strains (2 L. gasseri, 2 L. plantarum and 1 L. reuteri) were cultured in modified MRS medium containing fatty acids (FAs) instead of Tween 80 for 24 h at 37 degrees C, to learn the effect of saturated and unsaturated FAs on the Lactobacillus growth. Free FAs included palmitic (16:0), palmitoleic (c9-16:1), stearic (18:0), oleic (c9-18:1), elaidic (t9-18:1), cis-vaccenic (c11-18:1), vaccenic (t11-18:1), linoleic (c9, c12-18:2), conjugated linoleic (c9, t11- and t10, c12-18:2), alpha-linolenic (c9, c12, c15-18:3), alpha-eleostearic (c9, t11, t13-18:3), eicosapentaenoic (20:5), and docosahexaenoic (22:6) acids. Among free FAs, oleic acid stimulated the growth of all Lactobacillus strains, whereas palmitoleic acid had almost no affect on the Lactobacillus growth. Saturated FAs such as stearic and palmitic acids inhibited or did not affect the Lactobacillus growth. Polyunsaturated FAs such as alpha-linolenic, eicosapentaenoic and docosahexaenoic acids strongly inhibited the Lactobacillus growth at 7.6 x 10(-4) m. Octadecenoic acids such as oleic, elaidic, cis-vaccenic and vaccenic acids remarkably promoted the growth of L. gasseri, regardless of the different double bond positions and configurations. When oleic or cis-vaccenic acid was incubated with L. gasseri, the FAs was transformed to cyclopropane FAs (methyleneoctadecanoic acids) after incorporation into the cells. On the other hand, trans FAs such as elaidic and vaccenic acids incorporated into the cells were not converted to another FAs. Conjugated linoleic and alpha-eleostearic acids having a trans double bond promoted the Lactobacillus growth. The growth of L. gasseri was also stimulated by trans-rich free FAs from hydrogenated canola and fish oils. These results showed that octadecenoic acid and trans FAs had strong promotion activities for the Lactobacillus growth due to their incorporation into membrane lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号