首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Aims

The mdx mouse has proven to be useful in understanding the cardiomyopathy that frequently occurs in muscular dystrophy patients. Here we employed a comprehensive array of clinically relevant in vivo MRI techniques to identify early markers of cardiac dysfunction and follow disease progression in the hearts of mdx mice.

Methods and Results

Serial measurements of cardiac morphology and function were made in the same group of mdx mice and controls (housed in a non-SPF facility) using MRI at 1, 3, 6, 9 and 12 months after birth. Left ventricular (LV) and right ventricular (RV) systolic and diastolic function, response to dobutamine stress and myocardial fibrosis were assessed. RV dysfunction preceded LV dysfunction, with RV end systolic volumes increased and RV ejection fractions reduced at 3 months of age. LV ejection fractions were reduced at 12 months, compared with controls. An abnormal response to dobutamine stress was identified in the RV of mdx mice as early as 1 month. Late-gadolinium-enhanced MRI identified increased levels of myocardial fibrosis in 6, 9 and 12-month-old mdx mice, the extent of fibrosis correlating with the degree of cardiac remodeling and hypertrophy.

Conclusions

MRI could identify cardiac abnormalities in the RV of mdx mice as young as 1 month, and detected myocardial fibrosis at 6 months. We believe these to be the earliest MRI measurements of cardiac function reported for any mice, and the first use of late-gadolinium-enhancement in a mouse model of congenital cardiomyopathy. These techniques offer a sensitive and clinically relevant in vivo method for assessment of cardiomyopathy caused by muscular dystrophy and other diseases.  相似文献   

2.
There is emerging evidence that aldosterone can promote diastolic dysfunction and cardiac fibrosis independent of blood pressure effects, perhaps through increased oxidative stress and inflammation. Accordingly, this investigation was designed to ascertain if mineralocorticoid receptor blockade improves diastolic dysfunction independently of changes in blood pressure through actions on myocardial oxidative stress and fibrosis. We used young transgenic (mRen2)27 [TG(mRen2)27] rats with increases in both tissue ANG II and circulating aldosterone, which manifests age-related increases in hypertension and cardiac dysfunction. Male TG(mRen2)27 and age-matched Sprague-Dawley rats were treated with either a low dose (~1 mg·kg(-1)·day(-1)) or a vasodilatory, conventional dose (~30 mg·kg(-1)·day(-1)) of spironolactone or placebo for 3 wk. TG(mRen2)27 rats displayed increases in systolic blood pressure and plasma aldosterone levels as well as impairments in left ventricular diastolic relaxation without changes in systolic function on cine MRI. TG(mRen2)27 hearts also displayed hypertrophy (left ventricular weight, cardiomyoctye hypertrophy, and septal wall thickness) as well as fibrosis (interstitial and perivascular). There were increases in oxidative stress in TG(mRen2)27 hearts, as evidenced by increases in NADPH oxidase activity and subunits as well as ROS formation. Low-dose spironolactone had no effect on systolic blood pressure but improved diastolic dysfunction comparable to a conventional dose. Both doses of spironolactone caused comparable reductions in ROS/3-nitrotryosine immunostaining and perivascular and interstitial fibrosis. These data support the notion mineralocorticoid receptor blockade improves diastolic dysfunction through improvements in oxidative stress and fibrosis independent of changes in systolic blood pressure.  相似文献   

3.
Poor prognosis in heart failure and the lack of real breakthrough strategies validate targeting myocardial remodelling and the intracellular signalling involved in this process. So far, there are no effective strategies to counteract hypertrophy, an independent predictor of heart failure progression and death. Glucocorticoid-induced leucine zipper (GILZ) is involved in inflammatory signalling, but its role in cardiac biology is unknown. Using GILZ-knockout (KO) mice and an experimental model of hypertrophy and diastolic dysfunction, we addressed the role of GILZ in adverse myocardial remodelling. Infusion of angiotensin II (Ang II) resulted in myocardial dysfunction, inflammation, apoptosis, fibrosis, capillary rarefaction and hypertrophy. Interestingly, GILZ-KO showed more evident diastolic dysfunction and aggravated hypertrophic response compared with WT after Ang II administration. Both cardiomyocyte and left ventricular hypertrophy were more pronounced in GILZ-KO mice. On the other hand, Ang II–induced inflammatory and fibrotic phenomena, cell death and reduction in microvascular density, remained invariant between the WT and KO groups. The analysis of regulators of hypertrophic response, GATA4 and FoxP3, demonstrated an up-regulation in WT mice infused with Ang II; conversely, such an increase did not occur in GILZ-KO hearts. These data on myocardial response to Ang II in mice lacking GILZ indicate that this protein is a new element that can be mechanistically involved in cardiovascular pathology.  相似文献   

4.
To test the hypothesis that the abnormal ventricular geometry in failing hearts may be accounted for by regionally selective remodeling of myocardial laminae or sheets, we investigated remodeling of the transmural architecture in chronic volume overload induced by an aortocaval shunt. We determined three-dimensional finite deformation at apical and basal sites in left ventricular anterior wall of six dogs with the use of biplane cineradiography of implanted markers. Myocardial strains at end diastole were measured at a failing state referred to control to describe remodeling of myofibers and sheet structures over time. After 9 +/- 2 wk (means +/- SE) of volume overload, the myocardial volume within the marker sets increased by >20%. At 2 wk, the basal site had myofiber elongation (0.099 +/- 0.030; P <0.05), whereas the apical site did not [P=not significant (NS)]. Sheet shear at the basal site increased progressively toward the final study (0.040 +/- 0.003 at 2 wk and 0.054 +/- 0.021 at final; both P <0.05), which contributed to a significant increase in wall thickness at the final study (0.181 +/- 0.047; P < 0.05), whereas the apical site did not (P=NS). We conclude that the remodeling of the transmural architecture is regionally heterogeneous in chronic volume overload. The early differences in fiber elongation seem most likely due to a regional gradient in diastolic wall stress, whereas the late differences in wall thickness are most likely related to regional differences in the laminar architecture of the wall. These results suggest that the temporal progression of ventricular remodeling may be anatomically designed at the level of regional laminar architecture.  相似文献   

5.
We developed a minimally invasive method for producing left ventricular (LV) pressure overload in mice. With the use of this technique, we quickly and reproducibly banded the transverse aorta with low surgical morbidity and mortality. Minimally invasive transverse aortic banding (MTAB) acutely and chronically increased LV systolic pressure, increased heart weight-to-body weight ratio, and induced myocardial fibrosis. We used this technique to determine whether reduced insulin signaling in the heart altered the cardiac response to pressure overload. Mice with cardiac myocyte-restricted knockout of the insulin receptor (CIRKO) have smaller hearts than wild-type (WT) controls. Four weeks after MTAB, WT and CIRKO mice had comparably increased LV systolic pressure, increased cardiac mass, and induction of mRNA for beta-myosin heavy chain and atrial natriuretic factor. However, CIRKO hearts were more dilated, had depressed LV systolic function by echocardiography, and had greater interstitial fibrosis than WT mice. Expression of connective tissue growth factor was increased in banded CIRKO hearts compared with WT hearts. Thus lack of insulin signaling in the heart accelerates the transition to a more decompensated state during cardiac pressure overload. The use of the MTAB approach should facilitate the study of the pathophysiology and treatment of pressure-overload hypertrophy.  相似文献   

6.
The creatine kinase (CK) system is involved in the rapid transport of high-energy phosphates from the mitochondria to the sites of maximal energy requirements such as myofibrils and sarcolemmal ion pumps. Hearts of mice with a combined knockout of cytosolic M-CK and mitochondrial CK (M/Mito-CK(-/-)) show unchanged basal left ventricular (LV) performance but reduced myocardial high-energy phosphate concentrations. Moreover, skeletal muscle from M/Mito-CK(-/-) mice demonstrates altered Ca2+ homeostasis. Our hypothesis was that in CK-deficient hearts, a cardiac phenotype can be unmasked during acute stress conditions and that susceptibility to ischemia-reperfusion injury is increased because of altered Ca2+ homeostasis. We simultaneously studied LV performance and myocardial Ca2+ metabolism in isolated, perfused hearts of M/Mito-CK(-/-) (n = 6) and wild-type (WT, n = 8) mice during baseline, 20 min of no-flow ischemia, and recovery. Whereas LV performance was not different during baseline conditions, LV contracture during ischemia developed significantly earlier (408 +/- 72 vs. 678 +/- 54 s) and to a greater extent (50 +/- 2 vs. 36 +/- 3 mmHg) in M/Mito-CK(-/-) mice. During reperfusion, recovery of diastolic function was impaired (LV end-diastolic pressure: 22 +/- 3 vs. 10 +/- 2 mmHg), whereas recovery of systolic performance was delayed, in M/Mito-CK(-/-) mice. In parallel, Ca2+ transients were similar during baseline conditions; however, M/Mito-CK(-/-) mice showed a greater increase in diastolic Ca2+ concentration ([Ca2+]) during ischemia (237 +/- 54% vs. 167 +/- 25% of basal [Ca2+]) compared with WT mice. In conclusion, CK-deficient hearts show an increased susceptibility of LV performance and Ca2+ homeostasis to ischemic injury, associated with a blunted postischemic recovery. This demonstrates a key function of an intact CK system for maintenance of Ca2+ homeostasis and LV mechanics under metabolic stress conditions.  相似文献   

7.
Aging increases the risk for arrhythmias and sudden cardiac death (SCD). We aimed at elucidating aging-related electrical, functional, and structural changes in the heart and vasculature that account for this heightened arrhythmogenic risk. Young (5-9 mo) and old (3.5-6 yr) female New Zealand White (NZW) rabbits were subjected to in vivo hemodynamic, electrophysiological, and echocardiographic studies as well as ex vivo optical mapping, high-field magnetic resonance imaging (MRI), and histochemical experiments. Aging increased aortic stiffness (baseline pulse wave velocity: young, 3.54 ± 0.36 vs. old, 4.35 ± 0.28 m/s, P < 0.002) and diastolic (end diastolic pressure-volume relations: 3.28 ± 0.5 vs. 4.95 ± 1.5 mmHg/ml, P < 0.05) and systolic (end systolic pressure-volume relations: 20.56 ± 4.2 vs. 33.14 ± 8.4 mmHg/ml, P < 0.01) myocardial elastances in old rabbits. Electrophysiological and optical mapping studies revealed age-related slowing of ventricular and His-Purkinje conduction (His-to-ventricle interval: 23 ± 2.5 vs. 31.9 ± 2.9 ms, P < 0.0001), altered conduction anisotropy, and a greater inducibility of ventricular fibrillation (VF, 3/12 vs. 7/9, P < 0.05) in old rabbits. Histochemical studies confirmed an aging-related increased fibrosis in the ventricles. MRI showed a deterioration of the free-running Purkinje fiber network in ventricular and septal walls in old hearts as well as aging-related alterations of the myofibrillar orientation and myocardial sheet structure that may account for this slowed conduction velocity. Aging leads to parallel stiffening of the aorta and the heart, including an increase in systolic stiffness and contractility and diastolic stiffness. Increasingly, anisotropic conduction velocity due to fibrosis and altered myofibrillar orientation and myocardial sheet structure may contribute to the pathogenesis of VF in old hearts. The aging rabbit model represents a useful tool for elucidating age-related changes that predispose the aging heart to arrhythmias and SCD.  相似文献   

8.
Isolated diastolic dysfunction is found in almost half of asymptomatic patients with well-controlled diabetes and may precede diastolic heart failure. However, mechanisms that underlie diastolic dysfunction during diabetes are not well understood. We tested the hypothesis that isolated diastolic dysfunction is associated with impaired myocardial Ca(2+) handling during type 1 diabetes. Streptozotocin-induced diabetic rats were compared with age-matched placebo-treated rats. Global left ventricular myocardial performance and systolic function were preserved in diabetic animals. Diabetes-induced diastolic dysfunction was evident on Doppler flow imaging, based on the altered patterns of mitral inflow and pulmonary venous flows. In isolated ventricular myocytes, diabetes resulted in significant prolongation of action potential duration compared with controls, with afterdepolarizations occurring in diabetic myocytes (P < 0.05). Sustained outward K(+) current and peak outward component of the inward rectifier were reduced in diabetic myocytes, while transient outward current was increased. There was no significant change in L-type Ca(2+) current; however, Ca(2+) transient amplitude was reduced and transient decay was prolonged by 38% in diabetic compared with control myocytes (P < 0.05). Sarcoplasmic reticulum Ca(2+) load (estimated by measuring the integral of caffeine-evoked Na(+)-Ca(2+) exchanger current and Ca(2+) transient amplitudes) was reduced by approximately 50% in diabetic myocytes (P < 0.05). In permeabilized myocytes, Ca(2+) spark amplitude and frequency were reduced by 34 and 20%, respectively, in diabetic compared with control myocytes (P < 0.05). Sarco(endo)plasmic reticulum Ca(2+)-ATPase-2a protein levels were decreased during diabetes. These data suggest that in vitro impairment of Ca(2+) reuptake during myocyte relaxation contributes to in vivo diastolic dysfunction, with preserved global systolic function, during diabetes.  相似文献   

9.
Gene knockout of the KCNJ11-encoded Kir6.2 ATP-sensitive K(+) (K(ATP)) channel implicates this stress-response element in the safeguard of cardiac homeostasis under imposed demand. K(ATP) channels are abundant in ventricular sarcolemma, where subunit expression appears to vary between the sexes. A limitation, however, in establishing the full significance of K(ATP) channels in the intact organism has been the inability to monitor in vivo the contribution of the channel to intracellular calcium handling and the superimposed effect of sex that ultimately defines heart function. Here, in vivo manganese-enhanced cardiac magnetic resonance imaging revealed, under dobutamine stress, a significantly greater accumulation of calcium in both male and female K(ATP) channel knockout (Kir6.2-KO) mice compared with sex- and age-matched wild-type (WT) counterparts, with greatest calcium load in Kir6.2-KO females. This translated, poststress, into a sustained contracture manifested by reduced end-diastolic volumes in K(ATP) channel-deficient mice. In response to ischemia-induced stunning, male and female Kir6.2-KO hearts demonstrated accelerated time to contracture and increased peak contracture compared with WT. The outcome on reperfusion, in both male and female Kir6.2-KO hearts, was a transient reduction in systolic performance, measured as rate-pressure product compared with WT, with protracted increase in left ventricular end-diastolic pressure, exaggerated in female knockout hearts, despite comparable leakage of creatine kinase across groups. Kir6.2-KO hearts were rescued from diastolic dysfunction by agents that target alternative pathways of calcium handling. Thus K(ATP) channel deficit confers a greater susceptibility to calcium overload in vivo, accentuated in female hearts, impairing contractile recovery under various conditions of high metabolic demand.  相似文献   

10.
Cardiac fibrosis is a hallmark of heart disease and plays a vital role in cardiac remodeling during heart diseases, including hypertensive heart disease. Hexarelin is one of a series of synthetic growth hormone secretagogues (GHSs) possessing a variety of cardiovascular effects via action on GHS receptors (GHS-Rs). However, the role of hexarelin in cardiac fibrosis in vivo has not yet been investigated. In the present study, spontaneously hypertensive rats (SHRs) were treated with hexarelin alone or in combination with a GHS-R antagonist for 5 wk from an age of 16 wk. Hexarelin treatment significantly reduced cardiac fibrosis in SHRs by decreasing interstitial and perivascular myocardial collagen deposition and myocardial hydroxyproline content and reducing mRNA and protein expression of collagen I and III in SHR hearts. Hexarelin treatment also increased matrix metalloproteinase (MMP)-2 and MMP-9 activities and decreased myocardial mRNA expression of tissue inhibitor of metalloproteinase (TIMP)-1 in SHRs. In addition, hexarelin treatment significantly attenuated left ventricular (LV) hypertrophy, LV diastolic dysfunction, and high blood pressure in SHRs. The effect of hexarelin on cardiac fibrosis, blood pressure, and cardiac function was mediated by its receptor, GHS-R, since a selective GHS-R antagonist abolished these effects and expression of GHS-Rs was upregulated by hexarelin treatment. In summary, our data demonstrate that hexarelin reduces cardiac fibrosis in SHRs, perhaps by decreasing collagen synthesis and accelerating collagen degradation via regulation of MMPs/TIMP. Hexarelin-reduced systolic blood pressure may also contribute to this reduced cardiac fibrosis in SHRs. The present findings provided novel insights and underscore the therapeutic potential of hexarelin as an antifibrotic agent for the treatment of cardiac fibrosis.  相似文献   

11.
Blood pressure increases with age, and dysfunction of the dopamine D3 receptor has been implicated in the pathogenesis of hypertension. To evaluate the role of the D3 receptor in aging-related hypertension, we assessed cardiac structure and function in differently aged (2 mo, 1 yr, 2 yr) wild type (WT) and young (2 mo) D3 receptor knockout mice (D3KO). In WT, systolic and diastolic blood pressures and rate-pressure product (RPP) significantly increased with age, while heart rate significantly decreased. Blood pressure values, heart rate and RPP of young D3KO were significantly elevated over age-matched WT, but similar to those of the 2 yr old WT. Echocardiography revealed that the functional measurements of ejection fraction and fractional shortening decreased significantly with age in WT and that they were significantly smaller in D3KO compared to young WT. Despite this functional change however, cardiac morphology remained similar between the age-matched WT and D3KO. Additional morphometric analyses confirmed an aging-related increase in left ventricle (LV) and myocyte cross-sectional areas in WT, but found no difference between age-matched young WT and D3KO. In contrast, interstitial fibrosis, which increased with age in WT, was significantly elevated in the D3KO over age-matched WT, and similar to 2 yr old WT. Western analyses of myocardial homogenates revealed significantly increased levels of pro- and mature collagen type I in young D3KO. Column zymography revealed that activities of myocardial MMP-2 and MMP-9 increased with age in WTs, but in D3KO, only MMP-9 activity was significantly increased over age-matched WTs. Our data provide evidence that the dopamine D3 receptor has a critical role in the emergence of aging-related cardiac fibrosis, remodeling, and dysfunction.  相似文献   

12.
Blockade of ANG II type 1A receptor (AT(1A)) is known to attenuate postinfarction [postmyocardial infarction (post-MI)] heart failure, accompanying reduction in fibrosis of the noninfarcted area. In the present study, we investigated the influence of AT(1A) blockade on the infarcted tissue itself. Consistent with earlier reports, AT(1A) knockout (AT(1A)KO) mice showed significantly attenuated left ventricular (LV) remodeling (dilatation) and dysfunction compared with wild-type (WT) mice. Morphometry revealed that the infarcted wall was thicker and had a smaller circumferential length in AT(1A)KO than WT hearts. In addition, significantly greater numbers of cells were present within infarcts in AT(1A)KO hearts 4 wk post-MI; most notably, there was an abundance of vessels and myofibroblasts. One week post-MI, the incidence of apoptosis among granulation tissue cells was fewer (3.3 +/- 0.4 vs. 4.4 +/- 0.5% in WT, P < 0.05), whereas vessel proliferation was higher in AT(1A)KO hearts, which likely explains the later abundance of cells within the scar tissue. Insulin-like growth factor receptor-I was upregulated and its downstream signal protein kinase B (Akt) was significantly activated in infarcted AT(1A)KO hearts compared with WT hearts. Inactivation of Akt with wortmannin partially but significantly prevented the benefits observed in AT(1A)KO. Collectively, in AT(1A)KO hearts, Akt-mediated granulation tissue cell proliferation and preservation resulting from antiapoptosis likely contributed to an abundant cell population that altered the infarct scar structure, thereby reducing wall stress and attenuating LV dilatation and dysfunction at the chronic stage. In conclusion, altered structural dynamics of infarct scar and increasing myocardial fibrosis may be responsible for the deleterious effects of AT(1A) signaling following MI.  相似文献   

13.
Mitochondrial calcium overload has been implicated in the irreversible damage of reperfused heart. Accordingly, we studied the effect of an oxygen-bridged dinuclear ruthenium amine complex (Ru360), which is a selective and potent mitochondrial calcium uniporter blocker, on mitochondrial dysfunction and on the matrix free-calcium concentration in mitochondria isolated from reperfused rat hearts. The perfusion of Ru360 maintained oxidative phosphorylation and prevented opening of the mitochondrial permeability transition pore in mitochondria isolated from reperfused hearts. We found that Ru360 perfusion only partially inhibited the mitochondrial calcium uniporter, maintaining the mitochondrial matrix free-calcium concentration at basal levels, despite high concentrations of cytosolic calcium. Additionally, we observed that perfused Ru360 neither inhibited Ca2+ cycling in the sarcoplasmic reticulum nor blocked ryanodine receptors, implying that the inhibition of ryanodine receptors cannot explain the protective effect of Ru360 in isolated hearts. We conclude that the maintenance of postischemic myocardial function correlates with an incomplete inhibition of the mitochondrial calcium uniporter. Thus, the chemical inhibition by this molecule could be an approach used to prevent heart injury during reperfusion.  相似文献   

14.
Coronary artery disease is a leading cause of death. Hypertension (HT) increases the incidence of cardiac events, but its effect on cardiac adaptation to coexisting coronary artery stenosis (CAS) is unclear. We hypothesized that concurrent HT modulates microvascular function in chronic CAS and aggravates microvascular remodeling and myocardial injury. Four groups of pigs (n=6 each) were studied: normal, CAS, HT, and CAS+HT. CAS and HT were induced by placing local irritant coils in the left circumflex coronary artery and renal artery, respectively. Six weeks later multidetector computerized tomography (CT) was used to assess systolic and diastolic function, microvascular permeability, myocardial perfusion, and responses to adenosine in the "area at risk." Microvascular architecture, inflammation, and fibrosis were then explored in cardiac tissue. Basal myocardial perfusion was similarly decreased in CAS and CAS+HT, but its response to adenosine was significantly more attenuated in CAS. Microvascular permeability in CAS+HT was greater than in CAS and was accompanied by amplified myocardial inflammation, fibrosis, and microvascular remodeling, as well as cardiac systolic and diastolic dysfunction. On the other hand, compared with normal, micro-CT-derived microvascular (20-200 μm) transmural density decreased in CAS but not in HT or CAS+HT. We conclude that the coexistence of early renovascular HT exacerbated myocardial fibrosis and vascular remodeling distal to CAS. These changes were not mediated by loss of myocardial microvessels, which were relatively preserved, but possibly by exacerbated myocardial inflammation and fibrosis. HT modulates cardiac adaptive responses to CAS and bears cardiac functional consequences.  相似文献   

15.
The adenine nucleotide translocator (ANT) is an autoantigen in myocarditis and dilated cardiomyopathy. Carrier-specific antibodies impair myocardial energy metabolism and heart function. They cross-react with a myolemmal calcium channel and alter calcium fluxes in isolated myocytes. To test whether antibodies against the ANT can alter calcium homeostasis in intact hearts, guinea pigs were immunized with the carrier protein and their isolated hearts loaded with the intracellular calcium indicator INDO-1. The diastolic and systolic ratios of fluorescence signals at 410 nm and 510 nm (emission wavelengths of the calcium-bound and calcium-free indicator), 'd-s410/510', were measured by excitation at 364 nm. This index of the transient calcium concentration associated with the contraction cycle correlated with the external heart work (EHW) in non-immunized controls. EHW of immunized animals was lower (76 +/- 62 vs 153 +/- 47 mJ/g/min in controls, p < 0.005) and the amplitude of d-s410/510 was elevated (27.6 +/- 4.1% of the average ratio of the whole heart cycle vs 21.7 +/- 1.2% in controls, p < 0.005) and essentially independent of EHW. Isoproterenol stimulation increased EHW in all hearts but d-s410/510 was hightened in control hearts, only. Thus, a disorder between cytosolic calcium transients and work was recorded in hearts from guinea pigs immunized with the ANT. It may contribute to an immunopathic mechanism of heart failure subsequent to myocarditis.  相似文献   

16.
Left ventricular (LV) diastolic dysfunction, particularly relaxation abnormalities, are known to be associated with the development of LV hypertrophy (LVH). Preliminary human and animal studies suggested that early LV diastolic dysfunction may be revealed independently of LVH. However, whether LV diastolic dysfunction is compromised before the onset of hypertension and LVH remains unknown. We therefore evaluated LV diastolic function in spontaneously hypertensive rats (SHR) at different ages and tested whether LV diastolic dysfunction is associated with abnormal intracellular calcium homeostasis. LV systolic and diastolic functions were evaluated by invasive and echocardiographic methods in 3-week-old (without hypertension) and 5-week-old (with hypertension) SHR and Wistar-Kyoto control rats. Basal intracytoplasmic calcium and sarcoplasmic reticulum (SR) Ca(2+) contents were measured in cardiomyocytes using fura-2 AM. Sarco(endo)plasmic Ca(2+)-ATPase isoform 2a (SERCA 2a) and phospholamban (PLB) expressions were quantified by Western blot and quantitative RT-PCR techniques. LV relaxation dysfunction was observed in 3-week-old SHR rats before onset of hypertension and LVH. An increase in basal intracytoplasmic Ca(2+) and a decrease in SR Ca(2+) release were demonstrated in SHR. Decreased expression of SERCA 2a and Ser16 PLB (p16-PLB) protein levels was also observed in SHR rats, whereas mRNA expression was not decreased. For the first time, we have shown that LV myocardial dysfunction precedes hypertension in 3-week-old SHR rats. This LV myocardial dysfunction was associated with high diastolic [Ca(2+)](i) possibly due to decreased SERCA 2a and p16-PLB protein levels. Diastolic dysfunction may be a potential predictive marker of arterial hypertension in genetic hypertension syndromes.  相似文献   

17.
In this study we investigated the role of Mas on cardiac function during ischemia/reperfusion in isolated perfused mouse heart. Following a stabilization period of 30 min, hearts from WT and Mas KO mice were subjected to global ischemia. After 20 min of ischemia, the flow was restarted and the hearts were reperfused for 30 min. An additional group of WT mice was perfused with solution containing the Ang-(1-7) receptor Mas antagonist A-779. Isolated heart of Mas KO and WT treated with A-779 presented an increase in the perfusion pressure in the baseline period. This difference increased with 5 min of reperfusion reaching similar values to baseline period at the end of the reperfusion. Isolated hearts of Mas KO and WT treated with A-779 also presented a decreased systolic tension, +/-dT/dt, and HR. Upon global ischemia WT hearts showed a significant decrease in systolic tension and an increase in diastolic tension. During reperfusion an increase in systolic and diastolic tension was observed in WT mice. Deletion or blockade of Mas markedly attenuated these changes in isolated hearts. These results indicate that Mas plays an important role in cardiac function during ischemia/reperfusion which is in keeping with the cardiac and coronary effects previously described for Ang-(1-7).  相似文献   

18.
To study the genomic physiology of cardiac myofibril proteins in the heart, we have successfully created a cardiac troponin I (cTnI; a myofibril protein) gene knockout mouse model using gene targeting techniques. The phenotype of the cTnI gene knockout mouse is a cardiomyopathy with diastolic dysfunction resulting in sudden death in neonates. In the present studies, energy metabolism was analyzed in myocardial cells from cTnI-null hearts. Myofibril MgATPase activities were determined in myocardial cells from either wild-type or cTnI mutant mouse hearts. Furthermore, the quantity and quality of the mitochondria in wild-type and cTnI mutant animals were counted and analyzed. Our results demonstrate that damaged relaxation and increased Ca2+-independent force production in cTnI-null hearts is in part related to the increased myofibril MgATPase activities accompanied by an increase in mitochondria quantity and mitochondrial ATPase activities. These data indicate that cardiomyopathies with diastolic dysfunction are different from cardiomyopathies caused by systolic dysfunction. The former involves the damage of cardiac relaxation due to increased MgATPase activities and increased Ca2+-independent force production inside of myofilaments, while the latter involves the damage of systolic contraction due to decreased MgATPase activities and decreased force production.  相似文献   

19.
Obesity is often associated with abnormalities in cardiac morphology and function. This study tested the hypothesis that obesity-related cardiomyopathy is caused by impaired cardiac energetics. In a mouse model of high-fat diet (HFD)-induced obesity, we applied in vivo cardiac 31P magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) to investigate cardiac energy status and function, respectively. The measurements were complemented by ex vivo determination of oxygen consumption in isolated cardiac mitochondria, the expression of proteins involved in energy metabolism, and markers of oxidative stress and calcium homeostasis. We also assessed whether HFD induced myocardial lipid accumulation using in vivo 1H MRS, and if this was associated with apoptosis and fibrosis. Twenty weeks of HFD feeding resulted in early stage cardiomyopathy, as indicated by diastolic dysfunction and increased left ventricular mass, without any effects on systolic function. In vivo cardiac phosphocreatine-to-ATP ratio and ex vivo oxygen consumption in isolated cardiac mitochondria were not reduced after HFD feeding, suggesting that the diastolic dysfunction was not caused by impaired cardiac energetics. HFD feeding promoted mitochondrial adaptations for increased utilization of fatty acids, which was however not sufficient to prevent the accumulation of myocardial lipids and lipid intermediates. Myocardial lipid accumulation was associated with oxidative stress and fibrosis, but not apoptosis. Furthermore, HFD feeding strongly reduced the phosphorylation of phospholamban, a prominent regulator of cardiac calcium homeostasis and contractility. In conclusion, HFD-induced early stage cardiomyopathy in mice is associated with lipotoxicity-associated oxidative stress, fibrosis, and disturbed calcium homeostasis, rather than impaired cardiac energetics.  相似文献   

20.
The study was designed to characterize the relationship between the metabolise content of human cardiac muscle and in vivo cardiac function. ATP, total adenine nucleotides, and NAD were quantified in human myocardial biopsies using high performance liquid chromatography. Right ventricular endomyocardial biopsies were obtained from 43 patients with dilated cardiomyopathy, 6 with restrictive cardiomyopathy, 10 with normal systolic and diastolic function, and from 24 cold preserved human donor hearts. Transmural samples of failing right and left ventricular free walls were obtained during cardiac transplantation surgery in 8 patients. ATP, total adenine nucleotides, and NAD were similar in the cold-preserved donor hearts and in right ventricular endomyocardial biopsies from the 10 individuals with normal systolic and diastolic function. In contrast, these values were significantly depressed in tissue samples from patients with dilated or restrictive cardiomyopathy. There was a significant correlation between ATP and pulmonary capillary wedge pressures but not ejection fractions. Declines in the sizes of myocardial ATP, adenine nucleotide, and pyridine nucleotide pools in the human myocardium are associated primarily with diastolic but not systolic dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号