共查询到20条相似文献,搜索用时 0 毫秒
1.
Transmitter release in neurons is thought to be mediated exclusively by high-voltage-activated (HVA) Ca(2+) channels. However, we now report that, in retinal bipolar cells, low-voltage-activated (LVA) Ca(2+) channels also mediate neurotransmitter release. Bipolar cells are specialized neurons that release neurotransmitter in response to graded depolarizations. Here we show that these cells express T-type Ca(2+) channel subunits and functional LVA Ca(2+) currents sensitive to mibefradil. Activation of these currents results in Ca(2+) influx into presynaptic terminals and exocytosis, which we detected as a capacitance increase in isolated terminals and the appearance of reciprocal currents in retinal slices. The involvement of T-type Ca(2+) channels in bipolar cell transmitter release may contribute to retinal information processing. 相似文献
2.
Morgans CW 《Immunology and cell biology》2000,78(4):442-446
The synapses of photoreceptors and bipolar cells in the retina are easily identified ultrastructurally by the presence of synaptic ribbons, electron-dense bars perpendicular to the plasma membrane at the active zones, extending about 0.5 microm into the cytoplasm. The neurotransmitter, glutamate, is released continuously (tonically) from these 'ribbon synapses' and the rate of release is modulated in response to graded changes in the membrane potential. This contrasts with action potential-driven bursts of release at conventional synapses. Similar to other synapses, neurotransmitter is released at ribbon synapses by the calcium-dependent exocytosis of synaptic vesicles. Most components of the molecular machinery governing transmitter release are conserved between ribbon and conventional synapses, but a few differences have been identified that may be important determinants of tonic transmitter release. For example, the presynaptic calcium channels of bipolar cells and photoreceptors are different from those elsewhere in the brain. Differences have also been found in the proteins involved in synaptic vesicle recruitment to the active zone and in synaptic vesicle fusion. These differences and others are discussed in terms of their implications for neurotransmitter release from photoreceptors and bipolar cells in the retina. 相似文献
3.
Repetitive Ca(2+) release from the endoplasmic reticulum (ER) is necessary for activation of mammalian eggs. Influx and release of Mn(2+) and Ca(2+) during Ca(2+) oscillations induced by injection of sperm extract (SE) into mouse eggs were investigated by Mn(2+)-quenching of intracellular Fura-2 after adding Mn(2+) to external medium. Mn(2+)/Ca(2+) influx was detected at the resting state. A marked Mn(2+)/Ca(2+) influx occurred during the first Ca(2+) release upon SE injection, and persistently facilitated Mn(2+)/Ca(2+) influx was observed during steady Ca(2+) oscillations. As intracellular Mn(2+) concentration ([Mn(2+)](i)) increased progressively, periodic [Mn(2+)](i) rises appeared, corresponding to each Ca(2+)transient but taking a slower time course. A numerical simulation based on continuous Mn(2+)/Ca(2+) influx-extrusion across the plasma membrane and release-uptake across the ER membrane in a competitive manner mimicked well the Mn(2+) oscillations calculated from experimental data, strongly suggesting that repetitive Mn(2+) release develops after Mn(2+) entry and uptake into the ER. In other experiments, a marked Mn(2+) influx occurred upon Mn(2+) addition to Ca(2+)-free medium after depletion of the ER using an ER Ca(2+) pump inhibitor plus repeated injection of inositol 1,4,5-trisphosphate (InsP(3)). No significant increase in Mn(2+) influx was induced by injection of SE, InsP(3), or Ca(2+), when Ca(2+) release was prevented by pre-injection of an antibody against the InsP(3) receptor. We concluded that Ca(2+) influx is activated during the initial large Ca(2+)release possibly by a capacitative mechanism and kept facilitated during steady Ca(2+) oscillations. The finding that repetitive Mn(2+) release is caused by continuous Mn(2+) entry suggests that continuous Ca(2+) influx may play a critical role in refilling the ER and, thereby, maintaining Ca(2+)oscillations in mammalian fertilization. 相似文献
4.
5.
Montero M Alonso MT Albillos A García-Sancho J Alvarez J 《Molecular biology of the cell》2001,12(1):63-71
We have reported that a population of chromaffin cell mitochondria takes up large amounts of Ca(2+) during cell stimulation. The present study focuses on the pathways for mitochondrial Ca(2+) efflux. Treatment with protonophores before cell stimulation abolished mitochondrial Ca(2+) uptake and increased the cytosolic [Ca(2+)] ([Ca(2+)](c)) peak induced by the stimulus. Instead, when protonophores were added after cell stimulation, they did not modify [Ca(2+)](c) kinetics and inhibited Ca(2+) release from Ca(2+)-loaded mitochondria. This effect was due to inhibition of mitochondrial Na(+)/Ca(2+) exchange, because blocking this system with CGP37157 produced no further effect. Increasing extramitochondrial [Ca(2+)](c) triggered fast Ca(2+) release from these depolarized Ca(2+)-loaded mitochondria, both in intact or permeabilized cells. These effects of protonophores were mimicked by valinomycin, but not by nigericin. The observed mitochondrial Ca(2+)-induced Ca(2+) release response was insensitive to cyclosporin A and CGP37157 but fully blocked by ruthenium red, suggesting that it may be mediated by reversal of the Ca(2+) uniporter. This novel kind of mitochondrial Ca(2+)-induced Ca(2+) release might contribute to Ca(2+) clearance from mitochondria that become depolarized during Ca(2+) overload. 相似文献
6.
Farnesylthiosalicylic acid (FTS), a synthetic analog of the terminal prenylcysteine present in signaling proteins induces generation of superoxide ions, phospholipase C-driven hydrolysis of inositol lipids and calcium elevation in human neutrophils and DMSO-differentiated HL60 cells. These effects were ascribed to an interaction of the analog with elements responsible for recognition of specific prenylated proteins. The present study demonstrated that in addition to the release of intracellular calcium stores, FTS enhanced entry of Ca(2+) and Mn(2+) from the medium. The biphasic dependence of the influx on the concentration of FTS, as well as its insensitivity to inhibition by PMA and La(3+) suggest that the influx pathway activated by FTS is distinct from the previously described store-operated calcium channels of neutrophils. Consistent with the participation of a cellular membrane component in the interaction, FTS enhanced (45)Ca uptake in neutrophils and neutrophil cell membranes, but not in multilamellar vesicles. To establish specificity of the farnesyl moiety of FTS (C(15)), effects of three other analogs, geranylthiosalicylate, GTS (C(10)), geranylgeranylthiosalicylate, GGTS (C(20)), as well as the carboxymethyl ester FTS-Me on calcium homeostasis and superoxide production were investigated. GGTS dose-dependently elevated [Ca(2+)](i), induced quenching of the 360 nm Fura-2-calcium fluorescence by Mn(2+) and stimulated superoxide release, while GTS and FTS-Me were inactive. These results defined specific structural requirements for the functional interaction of prenylcysteine analogs with myeloid cells. 相似文献
7.
Andrade-Talavera Y Duque-Feria P Negrete-Díaz JV Sihra TS Flores G Rodríguez-Moreno A 《Journal of neurochemistry》2012,122(5):891-899
J. Neurochem. (2012) 122, 891-899. ABSTRACT: Presynaptic kainate receptors (KARs) modulate the release of glutamate at synapses established between mossy fibers (MF) and CA3 pyramidal cells in the hippocampus. The activation of KAR by low, nanomolar, kainate concentrations facilitates glutamate release. KAR-mediated facilitation of glutamate release involves the activation of an adenylate cyclase/cyclic adenosine monophosphate/protein kinase A cascade at MF-CA3 synapses. Here, we studied the mechanisms by which KAR activation produces this facilitation of glutamate release in slices and synaptosomes. We find that the facilitation of glutamate release mediated by KAR activation requires an increase in Ca(2+) levels in the cytosol and the formation of a Ca(2+) -calmodulin complex to activate adenylate cyclase. The increase in cytosolic Ca(2+) underpinning this modulation is achieved, both, by Ca(2+) entering via Ca(2+) -permeable KARs and, by the mobilization of intraterminal Ca(2+) stores. Finally, we find that, congruent with the Ca(2+) -calmodulin support of KAR-mediated facilitation of glutamate release, induction of long-term potentiation at MF-CA3 synapses has an obligate requirement for Ca(2+) -calmodulin activity. 相似文献
8.
Depolymerization of actin by latrunculin A transiently promotes neurotransmitter release. The mean rate of mEPSCs increases by a Ca2+-independent process, without a concomitant change in the mean amplitude. The readily releasable vesicle pool size and the rate of refilling of the readily releasable pool remain unaltered by latrunculin treatment. Evoked neurotransmitter release also increases in a manner consistent with an increase in vesicle release probability. The observed enhancement of neurotransmitter release is specific to actin depolymerization mediated by latrunculin A and is not caused by cytochalasin D. Our findings indicate that actin participates in a regulatory mechanism that restrains fusion of synaptic vesicles at the active zone. 相似文献
9.
2-aminoethoxydiphenyl borate reveals heterogeneity in receptor-activated Ca(2+) discharge and store-operated Ca(2+) influx. 总被引:2,自引:0,他引:2
We have investigated Ca(2+) release and receptor- and store-operated Ca(2+) influxes in Chinese hamster ovary-K1 (CHO) cells, SH-SY5Y human neuroblastoma cells and RBL-1 rat basophilic leukemia cells using Fura-2 and patch-clamp measurements. Ca(2+) release and subsequent Ni(2+)-sensitive, store-operated influx were induced by thapsigargin and stimulation of G protein-coupled receptors. The alleged noncompetitive IP3 receptor inhibitor,2-aminoethoxydiphenyl borate (2-APB) rapidly blocked a major part of the secondary influx response in CHO cells in a reversible manner. It also reduced Mn(2+) influx in response to thapsigargin. Inhibition of Ca(2+) release was also seen but this was less complete, slower in onset, less reversible, and required higher concentration of 2-APB. In RBL-1 cells, I(CRAC) activity was rapidly blocked by extracellular 2-APB whereas intracellular 2-APB was less effective. Store-operated Ca(2+) influxes were only partially blocked by 2-APB. In SH-SY5Y cells, Ca(2+) influxes were insensitive to 2-APB. Ca(2+) release in RBL-1 cells was partially sensitive but in SH-SY5Y cells the release was totally resistant to 2-APB. The results suggest, that 2-APB (1) may inhibit distinct subtypes of IP3 receptors with different sensitivity, and (2) that independently of this, it also inhibits some store-operated Ca(2+) channels via a direct, extracellular action. 相似文献
10.
Intracellular Ca(2+) and Ca(2+)/calmodulin-dependent kinase II mediate acute potentiation of neurotransmitter release by neurotrophin-3 下载免费PDF全文
Neurotrophins have been shown to acutely modulate synaptic transmission in a variety of systems, but the underlying signaling mechanisms remain unclear. Here we provide evidence for an unusual mechanism that mediates synaptic potentiation at the neuromuscular junction (NMJ) induced by neurotrophin-3 (NT3), using Xenopus nerve-muscle co-culture. Unlike brain-derived neurotrophic factor (BDNF), which requires Ca(2+) influx for its acute effect, NT3 rapidly enhances spontaneous transmitter release at the developing NMJ even when Ca(2+) influx is completely blocked, suggesting that the NT3 effect is independent of extracellular Ca(2+). Depletion of intracellular Ca(2+) stores, or blockade of inositol 1, 4, 5-trisphosphate (IP3) or ryanodine receptors, prevents the NT3-induced synaptic potentiation. Blockade of IP3 receptors can not prevent BDNF-induced potentiation, suggesting that BDNF and NT3 use different mechanisms to potentiate transmitter release. Inhibition of Ca(2+)/calmodulin-dependent kinase II (CaMKII) completely blocks the acute effect of NT3. Furthermore, the NT3-induced potentiation requires a continuous activation of CaMKII, because application of the CaMKII inhibitor KN62 reverses the previously established NT3 effect. Thus, NT3 potentiates neurotransmitter secretion by stimulating Ca(2+) release from intracellular stores through IP3 and/or ryanodine receptors, leading to an activation of CaMKII. 相似文献
11.
Schoch S Mittelstaedt T Kaeser PS Padgett D Feldmann N Chevaleyre V Castillo PE Hammer RE Han W Schmitz F Lin W Südhof TC 《The EMBO journal》2006,25(24):5852-5863
Alpha-RIMs (RIM1alpha and RIM2alpha) are multidomain active zone proteins of presynaptic terminals. Alpha-RIMs bind to Rab3 on synaptic vesicles and to Munc13 on the active zone via their N-terminal region, and interact with other synaptic proteins via their central and C-terminal regions. Although RIM1alpha has been well characterized, nothing is known about the function of RIM2alpha. We now show that RIM1alpha and RIM2alpha are expressed in overlapping but distinct patterns throughout the brain. To examine and compare their functions, we generated knockout mice lacking RIM2alpha, and crossed them with previously produced RIM1alpha knockout mice. We found that deletion of either RIM1alpha or RIM2alpha is not lethal, but ablation of both alpha-RIMs causes postnatal death. This lethality is not due to a loss of synapse structure or a developmental change, but to a defect in neurotransmitter release. Synapses without alpha-RIMs still contain active zones and release neurotransmitters, but are unable to mediate normal Ca(2+)-triggered release. Our data thus demonstrate that alpha-RIMs are not essential for synapse formation or synaptic exocytosis, but are required for normal Ca(2+)-triggering of exocytosis. 相似文献
12.
ATP-elicited oscillations of the concentration of free intracellular Ca(2+) ([Ca(2+)](i)) in rat brain astrocytes were abolished by simultaneous arachidonic acid (AA) addition, whereas the tetraenoic analogue 5,8,11,14-eicosatetraynoic acid (ETYA) was ineffective. Inhibition of oscillations is due to suppression by AA of intracellular Ca(2+) store refilling. Short-term application of AA, but not ETYA, blocked Ca(2+) influx, which was evoked by depletion of stores with cyclopiazonic acid (CPA) or thapsigargin (Tg). Addition of AA after ATP blocked ongoing [Ca(2+)](i) oscillations. Prolonged AA application without or with agonist could evoke a delayed [Ca(2+)](i) increase. This AA-induced [Ca(2+)](i) rise developed slowly, reached a plateau after 5 min, could be reversed by addition of bovine serum albumin (BSA), that scavenges AA, and was blocked by 1 microM Gd(3+), indicative for the influx of extracellular Ca(2+). Specificity for AA as active agent was demonstrated by ineffectiveness of C16:0, C18:0, C20:0, C18:2, and ETYA. Moreover, the action of AA was not affected by inhibitors of oxidative metabolism of AA (ibuprofen, MK886, SKF525A). Thus, AA exerted a dual effect on astrocytic [Ca(2+)](i), firstly, a rapid reduction of capacitative Ca(2+) entry thereby suppressing [Ca(2+)](i) oscillations, and secondly inducing a delayed activation of Ca(2+) entry, also sensitive to low Gd(3+) concentration. 相似文献
13.
Ca(2+)-dependent transmitter release is the most important signaling mechanism for fast information transfer between neurons. Transmitter release takes places at highly specialized active zones with sub-micrometer dimension, which contain the molecular machinery for vesicle docking and -fusion, as well as a high density of voltage-gated Ca(2+) channels. In the absence of direct evidence for the ultrastructural localization of Ca(2+) channels at CNS synapses, important insights into Ca(2+) channel-vesicle coupling has come from functional experiments relating presynaptic Ca(2+) current and transmitter release, at large and accessible synapses like the calyx of Held. First, high slope values in log-log plots of transmitter release versus presynaptic Ca(2+) current indicate that multiple Ca(2+) channels are involved in release control of a single vesicle. Second, release kinetics in response to step-like depolarizations revealed fast- and slowly releasable sub-pools of vesicles, FRP and SRP, which, according to the "positional" model, are distinguished by a differential proximity to Ca(2+) channels. Considering recent evidence for a rapid conversion of SRP- to FRP vesicles, however, we highlight that multivesicular release events and clearance of vesicle membrane from the active zone must be taken into account when interpreting kinetic release data. We conclude that the careful kinetic analysis of transmitter release at presynaptically accessible and molecularly targeted synapses has the potential to yield important insights into the molecular physiology of transmitter release. 相似文献
14.
Endocytosis at ribbon synapses 总被引:1,自引:0,他引:1
Unlike conventional synaptic terminals that release neurotransmitter episodically in response to action potentials, neurons of the visual, auditory and vestibular systems encode sensory information in graded signals that are transmitted at their synapses by modulating the rate of continuous release. The synaptic ribbon, a specialized structure found at the active zones of these neurons, is necessary to sustain the high rates of exocytosis required for continuous release. To maintain the fidelity of synaptic transmission, exocytosis must be balanced by high-capacity endocytosis, to retrieve excess membrane inserted during vesicle fusion. Capacitance measurements following vesicle release in ribbon-type neurons indicate two kinetically distinct phases of compensatory endocytosis, whose relative contributions vary with stimulus intensity. The two phases can be independently regulated and may reflect different underlying mechanisms operating on separate pools of recycling vesicles. Electron microscopy shows diversity among ribbon-type synapses in the relative importance of clathrin-mediated endocytosis versus bulk membrane retrieval as mechanisms of compensatory endocytosis. Ribbon synapses, like conventional synapses, make use of multiple endocytosis pathways to replenish synaptic vesicle pools, depending on the physiological needs of the particular cell type. 相似文献
15.
Reduced loading of intracellular Ca(2+) stores and downregulation of capacitative Ca(2+) influx in Bcl-2-overexpressing cells 总被引:11,自引:0,他引:11 下载免费PDF全文
Pinton P Ferrari D Magalhães P Schulze-Osthoff K Di Virgilio F Pozzan T Rizzuto R 《The Journal of cell biology》2000,148(5):857-862
The mechanism of action of the oncogene bcl-2, a key regulator of the apoptotic process, is still debated. We have employed organelle-targeted chimeras of the Ca(2+)-sensitive photoprotein, aequorin, to investigate in detail the effect of Bcl-2 overexpression on intracellular Ca(2+) homeostasis. In the ER and the Golgi apparatus, Bcl-2 overexpression increases the Ca(2+) leak (while leaving Ca(2+) accumulation unaffected), hence reducing the steady-state [Ca(2+)] levels. As a direct consequence, the [Ca(2+)] increases caused by inositol 1,4,5 trisphosphate (IP3)-generating agonists were reduced in amplitude in both the cytosol and the mitochondria. Bcl-2 overexpression also reduced the rate of Ca(2+) influx activated by Ca(2+) store depletion, possibly by an adaptive downregulation of this pathway. By interfering with Ca(2+)-dependent events at multiple intracellular sites, these effects of Bcl-2 on intracellular Ca(2+) homeostasis may contribute to the protective role of this oncogene against programmed cell death. 相似文献
16.
Peroxisome proliferator-activated receptor gamma (PPAR gamma) belongs to a nuclear receptor super family that functions as a master regulator of adipocyte differentiation. PPAR gamma binds its DNA response element together with a partner, retinoid X receptor (RXR), in fat cells. Five RXR ligands (HX600, HX630, DA022, DA124, LGD1069, referred to as retinoid synergists) by themselves exhibit weak transactivation activity on the PPAR gamma response element. However, addition of PPAR gamma-specific ligand in this assay gave rise to a 5- to 13-fold increase, indicating a strong synergy between these ligands. LGD1069 was the most effective activator of the RXR/PPAR gamma heterodimer on the transactivation of the reporter gene. But, in contrast to the other four RXR ligands, LGD1069 did not show synergistic induction of ST 13 preadipocytes to adipocytes. This apparent contradiction may result from the ligand-binding property of LGD1069. In this article we discuss the fact that retinoid synergists also act as PPAR gamma synergists. 相似文献
17.
Xestospongin C (XeC) is known to bind to the inositol 1,4, 5-trisphosphate (IP(3))-sensitive store in mammalian cells and to inhibit IP(3)- and thapsigargin-induced Ca(2+) release. In this study we show that this is also true for Dictyostelium. In addition, XeC inhibited Ca(2+) uptake into purified vesicle fractions and induced Ca(2+) release. This suggests that, in the case of Dictyostelium, XeC opens rather than plugs the IP(3) receptor channel as was proposed for mammalian cells (Gafni, J., Munsch, J. A. , Lam, T. H., Catlin, M. C., Costa, L. G., Molinski, T. F., and Pessah, I. N. (1997) Neuron 19, 723-733). In order to elucidate the function of the XeC-sensitive Ca(2+) store in Dictyostelium during differentiation, we applied XeC to the cells and found that it caused a time-dependent increase of basal [Ca(2+)](i) and inhibited cAMP-induced Ca(2+) influx in single cells as well as in cell suspensions. Moreover, XeC blocked light scattering spikes and pulsatile cAMP signaling. 相似文献
18.
Various mechanicalstimuli increase the intracellular Ca2+ concentration([Ca2+]i) in vascular smooth muscle cells(VSMC). A part of the increase in [Ca2+]i isdue to the release of Ca2+ from intracellular stores. Wehave investigated the effect of mechanical stimulation produced bycyclical stretch on the release of Ca2+ from theintracellular stores. Permeabilized VSMC loaded with 45Ca2+ were subjected to 7.5% average (15%maximal) cyclical stretch. This resulted in an increase in45Ca2+ rate constant by 0.126 ± 0.0035. Inhibition of inositol 1,4,5-trisphosphate (IP3),ryanodine, and nicotinic acid adenine dinucleotide phosphate channels(NAADP) with 50 µg/ml heparin, 50 µM ruthenium red, and 25 µMthio-NADP, respectively, did not block the increase in45Ca2+ efflux in response to cyclical stretch.However, 10 µM lanthanum, 10 µM gadolinium, and 10 µMcytochalasin D but not 10 µM nocodazole inhibited the increase in45Ca2+ efflux. This supports the existence of anovel stretch-sensitive intracellular Ca2+ store in VSMCthat is distinct from the IP3-, ryanodine-, and NAADP-sensitive stores. 相似文献
19.
Recent studies have begun to scrutinize the presynaptic machinery and vesicle populations that give rise to action potential evoked and spontaneous forms of neurotransmitter release. In several cases this work produced unexpected results which lend support to the notion that regulation, mechanisms, postsynaptic targets and possibly presynaptic origins of evoked and spontaneous neurotransmitter release differ. Furthermore, the list of regulatory pathways that impact spontaneous and evoked release in a divergent manner is rapidly growing. These findings challenge our classical views on the relationship between evoked and spontaneous neurotransmission. In contrast to the well-characterized neuromodulatory pathways that equally suppress or augment all forms of neurotransmitter release, molecular substrates specifically controlling spontaneous release remain unclear. In this review, we outline possible mechanisms that may underlie the differential regulation of distinct forms of neurotransmission and help demultiplex complex neuronal signals and generate parallel signaling events at their postsynaptic targets. 相似文献
20.
Aguilar-Maldonado B Gómez-Viquez L García L Del Angel RM Arias-Montaño JA Guerrero-Hernández A 《Cellular signalling》2003,15(7):689-697
We have studied the histamine-induced potentiation of inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release in HeLa cells. Intracellular IP(3) levels were increased by IP(3) dialysis with the whole-cell configuration of the patch-clamp technique (cell dialysis of IP(3)). Low concentrations of extracellular histamine (1 microM) accelerated the rate of IP(3)-mediated Ca(2+) release, an effect that required the coincidence of both histamine signalling and the increase in IP(3) levels. Our data suggest that the potentiation effect of histamine cannot be explained simply by agonist-induced increase in IP(3) levels. Disordering microfilaments with cytochalasin D and microtubules with colchicine caused a decrease in the histamine-induced Ca(2+) response. Furthermore, both cytochalasin D and colchicine diminished the rate of IP(3)-mediated Ca(2+) release, while only the former reduced slightly the histamine-induced potentiation effect. Remarkably, rapid inhibition of SERCA pumps with thapsigargin to avoid the depletion of internal Ca(2+) stores diminished the histamine-induced potentiation of IP(3)-mediated Ca(2+) release, without affecting the rate of IP(3)-mediated Ca(2+) release. These data indicate that histamine-induced potentiation of Ca(2+) release in HeLa cells requires active SERCA pumps and suggest that SERCA pumps are an important factor in determining the efficiency of agonist-induced Ca(2+) release. 相似文献