首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: To analyse the germination and its heterogeneity of individual spores of Clostridium perfringens. Methods and Results: Germination of individual wild‐type Cl. perfringens spores was followed by monitoring Ca‐dipicolinic acid (CaDPA) release and by differential interference contrast (DIC) microscopy. Following the addition of KCl that acts via germinant receptors (GRs), there was a long variable lag period (Tlag) with slow release of c. 25% of CaDPA, then rapid release of remaining CaDPA in c. 2 min (ΔTrelease) and a parallel decrease in DIC image intensity, and a final decrease of c. 25% in DIC image intensity during spore cortex hydrolysis. Spores lacking the essential cortex‐lytic enzyme (CLE) (sleC spores) exhibited the same features during GR‐dependent germination, but with longer average Tlag values, and no decrease in DIC image intensity because of cortex hydrolysis after full CaDPA release. The Tlag of wild‐type spores in KCl germination was increased significantly by lower germinant concentrations and suboptimal heat activation. Wild‐type and sleC spores had identical average Tlag and ΔTrelease values in dodecylamine germination that does not utilize GRs. Conclusions: Most of these results were essentially identical to those reported for the germination of individual spores of Bacillus species. However, individual sleC Cl. perfringens spores germinated inefficiently with either KCl or exogenous CaDPA, in contrast to CLE‐deficient Bacillus spores, indicating that germination of these species’ spores is not completely identical. Significance and Impact of the Study: This work provides information on the kinetic germination and its heterogeneity of individual spores of Cl. perfringens.  相似文献   

2.
Sublethal heating of spores has long been known to stimulate or activate germination; however, the underlying mechanisms are not yet fully understood. In this study, the entire germination‐to‐outgrowth process of spores from Clostridium perfringens, an anaerobic sporeformer, was visualized at single‐cell resolution. Quantitative analysis revealed that sublethal heating significantly reduces the time from completion of germination to the beginning of the first cell division, indicating that sublethal heating of C. perfringens spores not only sensitizes the responsiveness of germinant receptors but also directly or indirectly facilitates multiple steps during the bacterial regrowth process.
  相似文献   

3.
AIMS: To measure rates of release of small molecules during pressure germination of Bacillus subtilis spores, and the role of SpoVA proteins in dipicolinic acid (DPA) release. METHODS AND RESULTS: Rates of DPA release during B. subtilis spore germination with pressures of 150 or 500 megaPascals were much higher in spores with elevated levels of SpoVA proteins, and spores with a temperature-sensitive mutation in the spoVA operon were temperature-sensitive in DPA release during pressure germination. Spores also released arginine and glutamic acid, but not AMP, during pressure germination. CONCLUSIONS: Pressure germination of B. subtilis spores causes release of many small molecules including DPA. SpoVA proteins are involved in the release of DPA, perhaps because SpoVA proteins are a component of a DPA channel in the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the mechanism of pressure germination of spores of Bacillus species, a process that has significant potential for usage in the food industry.  相似文献   

4.
Aims:  To determine the germination and inactivation of Bacillus cereus spores lacking various germination proteins using moderately high pressure (MHP) and heat.
Methods:  The inactivation and germination of wild-type B. cereus spores in buffer by MHP (150 MPa) at various temperatures, as well as the MHP inactivation and germination of B. cereus spores lacking individual germinant receptors and monovalent cation antiporters, was determined.
Results:  Loss of individual germinant receptors had no large effects on spore inactivation or germination, although germination of receptor-deficient spores was generally slightly decreased. Loss of the GerN in particular the GerN and GerT antiporters also decreased spore germination by MHP, especially at 40 and 50°C.
Conclusions:  Both inactivation and germination of B. cereus spores by MHP increased with rise of temperature; however, mutant strains lacking individual germinant receptor had similar levels of germination as compared to wild-type spores. To evaluate the role of germinant receptors in MHP, a strain lacking a large number of germinant receptors is needed.
Significance and Impact of the Study:  The results of this work may lead to a better understanding of how MHP causes germination of spores of B. cereus .  相似文献   

5.
The localization of germination-specific spore-lytic enzymes, an amidase and a muramidase, in Clostridium perfringens S40 spores was examined by immunoelectron microscopy with respective antisera raised against the enzymes and a colloidal gold-immunoglobulin G complex. For both antisera, immunogold particles were visualized on the outside of the cortex of dormant spores, and they were not detected in germinated spores and decoated spores.  相似文献   

6.
7.
Aim: To analyse the dynamic germination of hundreds of individual superdormant (SD) Bacillus subtilis spores. Methods and Results: Germination of hundreds of individual SD B. subtilis spores with various germinants and under different conditions was followed by multifocus Raman microspectroscopy and differential interference contrast microscopy for 12 h and with temporal resolutions of ≤30 s. SD spores germinated poorly with the nutrient germinant used to isolate them and with alternate germinants targeting the germinant receptor (GR) used originally. The mean times following mixing of spores and nutrient germinants to initiate and complete fast release of Ca‐dipicolinic acid (CaDPA) (Tlag and Trelease times, respectively) of SD spores were much longer than those of dormant spores. However, the ΔTrelease times (Trelease?Tlag) of SD spores were essentially identical to those of dormant spores. SD spores germinated almost as well as dormant spores with nutrient germinants targeting GRs different from the one used to isolate the SD spores and with CaDPA that does not trigger spore germination via GRs. Conclusions: Since (i) ΔTrelease times were essentially identical in GR‐dependent germination of SD and dormant spores; (ii) rates of GR‐independent germination of SD and dormant spores were identical; (iii) large increases in Tlag times were the major difference in the GR‐dependent germination of SD as compared with spores; and (iv) higher GR levels are correlated with shorter Tlag times, these results are consistent with the hypothesis that low levels of a GR are the major reason that some spores in a population are SD with germinants targeting this same GR. Significance and Impact of the Study: This study provides information on the dynamic germination of individual SD spores and improves the understanding of spore superdormancy.  相似文献   

8.
Germination-specific enzymes, an amidase and a muramidase, of Clostridium perfringens S40 were synthesized at the time of forespore formation during sporulation. The amidase had a unique precursor structure consisting of four domains: the N-terminal pre-sequence, the N-terminal pro-sequence, mature enzyme and the C-terminal pro-sequence. The N-terminal pre-sequence and the C-terminal pro-sequence were sequentially processed at the time of development of phase-bright spores, and the resulting inactive pro-enzyme was activated by cleavage of the N-terminal pro-sequence with a specific protease during germination. A possible mechanism for the regulation of activity of muramidase, which is produced as a mature form and does not need processing for activation, is presented.  相似文献   

9.
AIMS: To elucidate the factors influencing the sensitivity of Bacillus subtilis spores in killing and disrupting by mechanical abrasion, and the mechanism of stimulation of spore germination by abrasion. METHODS AND RESULTS: Spores of B. subtilis strains were abraded by shaking with glass beads in liquid or the dry state, and spore killing, disruption and germination were determined. Dormant spores were more resistant to killing and disruption by abrasion than were growing cells or germinated spores. However, dormant spores of the wild-type strain with or without most coat proteins removed, spores of strains with mutations causing spore coat defects, spores lacking their large depot of dipicolinic acid (DPA) and spores with defects in the germination process exhibited essentially identical rates of killing and disruption by abrasion. When spores lacking all nutrient germinant receptors were enumerated by plating directly on nutrient medium, abrasion increased the plating efficiency of these spores before killing them. Spores lacking all nutrient receptors and either of the two redundant cortex-lytic enzymes behaved similarly in this regard, but the plating efficiency of spores lacking both cortex-lytic enzymes was not stimulated by abrasion. CONCLUSIONS: Dormant spores are more resistant to killing and disruption by abrasion than are growing cells or germinated spores, and neither the complete coats nor DPA are important in spore resistance to such treatments. Germination is not essential for spore killing by abrasion, although abrasion can trigger spore germination by activation of either of the spore's cortex-lytic enzymes. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the mechanisms of the killing, disruption and germination of spores by abrasion and makes the surprising finding that at least much of the spore coat is not important in spore resistance to abrasion.  相似文献   

10.
Aims: To develop a new type of microbiological Reference Materials (RMs), displaying long‐term stability at room temperature. The purpose was to produce and validate two batches of RMs for the enumeration of Bacillus cereus and Clostridium perfringens. Methods and Results: The RMs were based on spores of B. cereus and Cl. perfringens, adsorbed on calcium carbonate pellets. Two batches of 1000 units were manufactured and validated in compliance with ISO guide 35. After verification of their homogeneity, the stability of the ‘RM‐B. cereus’ and ‘RM‐Cl. perfringens’ batches was proven during at least 36 and 9 months, respectively, at room temperature. The validation study was completed by international collaborative trial involving 12 laboratories, allowing the validation of the assigned values. Conclusions: The methodology developed in this work enabled to produce easy‐to‐handle and cost‐effective RMs, displaying an unprecedented stability at room temperature, a good homogeneity and a precise and validated assigned value. Significance and Impact of the Study: This study revealed new paths for the development of stable microbiological RMs. Overcoming the intrinsic instability of the living cells makes it possible to produce valuable tools for the quality assurance of microbiology laboratories.  相似文献   

11.
12.
13.
Aims: To determine yields, germination and stability of superdormant Bacillus cereus spores. Methods and Results: Superdormant B. cereus spores were isolated by germination with high concentrations of inosine or l ‐alanine in 2–5% yield and did not germinate with high concentrations of either of these germinants, but germinated like starting spores with Ca‐DPA, dodecylamine, l ‐alanine plus inosine or concentrated complete medium. Yields of superdormant spores from germinations with low inosine concentrations were higher, and these spores germinated poorly with low inosine, but relatively normally with high inosine. Yields of superdormant spores were also higher when nonheat‐activated spores were germinated. Superdormant spores stored at 4°C slowly recovered some germination capacity, but recovery was slowed significantly at ?20°C and ?80°C. Conclusions: Factors that influence levels of superdormant B. cereus spores and the properties of such spores are similar to those in B. megaterium and B. subtilis, suggesting there are common mechanisms involved in superdormancy of Bacillus spores. Significance: Superdormant spores are a major concern in the food industry, because the presence of such spores precludes decontamination strategies based on triggering spore germination followed by mild killing treatments. Studies of the properties of superdormant spores may suggest ways to eliminate them.  相似文献   

14.
Aims:  To determine conditions for generation and recovery of Bacillus subtilis spore populations heavily damaged by moist heat treatment.
Methods and Results:  Bacillus subtilis spores were treated with moist heat and spore viability was assessed on different media. A rich medium and several minimal media gave similar spore recoveries after moist heat treatment, but lack of glucose in minimal media greatly decreased spore recovery. High NaCl levels also greatly decreased the recovery of moist heat-treated spores on minimal media, and addition of good osmoprotectants reversed this effect. Moist heat treatment did not decrease spore recovery on minimal media with high salt through DNA damage or by eliminating spore germination, but by affecting spore outgrowth.
Conclusions:  Conditions for generating B. subtilis spore populations with high levels of conditional moist heat damage have been determined. The major conditional damage appears to be in spore outgrowth, perhaps because of damage to one or more important metabolic enzymes.
Significance and Impact of the Study:  This work has provided new insight into the mechanism of B. subtilis spore killing by moist heat.  相似文献   

15.
AIMS: To elucidate the factors that determine the rate of germination of Bacillus subtilis spores with very high pressure (VHP) and the mechanism of VHP germination. METHODS AND RESULTS: Spores of B. subtilis were germinated rapidly with a VHP of 500 MPa at 50 degrees C. This VHP germination did not require the spore's nutrient-germinant receptors, as found previously, and did not require diacylglycerylation of membrane proteins. However, the spore's pool of dipicolinic acid (DPA) was essential. Either of the two redundant enzymes that degrade the spore's peptidoglycan cortex, and thus allow completion of spore germination, was essential for completion of VHP germination. However, neither of these enzymes was needed for DPA release triggered by VHP treatment. Completion of spore germination as well as DPA release with VHP had an optimum temperature of approx. 60 degrees C, in contrast to an optimum temperature of 40 degrees C for germination with the moderately high pressure of 150 MPa. The rate of spore germination by VHP decreased approx. fourfold when the sporulation temperature increased from 23 degrees C to 44 degrees C, and decreased twofold when 1 mol l(-1) salt was present in sporulation. However, large variations in levels of unsaturated fatty acids in the spore's inner membranes did not affect rates of VHP germination. Complete germination of spores by VHP was not inhibited significantly by killing of spores with several oxidizing agents, and was not inhibited by ethanol, octanol or o-chlorophenol at concentrations that abolish nutrient germination. Completion of spore germination by VHP was also inhibited by Hg(2+), but this ion did not inhibit DPA release caused by VHP. In contrast, dodecylamine, a surfactant that can trigger spore germination, strongly inhibited DPA release caused by VHP treatment. CONCLUSIONS: VHP does not cause spore germination by acting upon the spore's nutrient-germinant receptors, but by directly causing DPA release. This DPA release then leads to subsequent completion of germination. VHP likely acts on the spore's inner membrane to cause DPA release, targeting either a membrane protein or the membrane itself. However, the precise identity of this target is not yet clear. SIGNIFICANCE AND IMPACT OF THE STUDY: There is significant interest in the use of VHP to eliminate or reduce levels of bacterial spores in foods. As at least partial spore germination by pressure is almost certainly essential for subsequent spore killing, knowledge of factors involved and the mechanism of VHP germination are crucial to the understanding of spore killing by VHP. This work provides new insight into factors that can affect the rate of B. subtilis spore germination by VHP, and into the mechanism of VHP germination itself.  相似文献   

16.
Aims:  To determine roles of cortex lytic enzymes (CLEs) in Bacillus megaterium spore germination.
Methods and Results:  Genes for B. megaterium CLEs CwlJ and SleB were inactivated and effects of loss of one or both on germination were assessed. Loss of CwlJ or SleB did not prevent completion of germination with agents that activate the spore's germinant receptors, but loss of CwlJ slowed the release of dipicolinic acid (DPA). Loss of both CLEs also did not prevent release of DPA and glutamate during germination with KBr. However, cwlJ sleB spores had decreased viability, and could not complete germination. Loss of CwlJ eliminated spore germination with Ca2+ chelated to DPA (Ca-DPA), but loss of CwlJ and SleB did not affect DPA release in dodecylamine germination.
Conclusions:  CwlJ and SleB play redundant roles in cortex degradation during B. megaterium spore germination, and CwlJ accelerates DPA release and is essential for Ca-DPA germination. The roles of these CLEs are similar in germination of B. megaterium and Bacillus subtilis spores.
Significance and Impact of the Study:  These results indicate that redundant roles of CwlJ and SleB in cortex degradation during germination are similar in spores of Bacillus species; consequently, inhibition of these enzymes will prevent germination of Bacillus spores.  相似文献   

17.
Abstract The hemagglutinating activity of Clostridium perfringens enterotoxin (CPE) was studied after trypsin treatment. Untreated CPE did not show any hemagglutinating activity to human type A, B, and O, sheep, chicken, horse, guinea-pig, or rabbit erythrocytes. Trypsinized CPE resulted in a more than 100-fold increase in hemagglutinating activity with rabbit erythrocytes only. Other erythrocytes and trypsinized rabbit erythrocytes were not agglutinated at all. The hemagglutinating activity of CPE was also found on treatment with a lysine-specific proteinase. On the other hand, trypsinized CPE did not significantly increase the cytotoxic and enterotoxic activities. The binding reaction between trypsinized and rabbit erythrocytes was not inhibited by any mono-, di-, or polysaccharides, glycoproteins or ganglioside mixtures. These results suggest that the hydrolysis of bonds involving lysine residues is mainly required for hemagglutinating activity, and that the receptor for trypsinized CPE on rabbit erythrocytes is probably the protein moiety.  相似文献   

18.
Aim:  The mechanisms of adaptation of Clostridium perfringens to high temperatures are not well understood. In this work, the involvement of extracellular compounds in protection to heat was determined.
Methods and Results:  Cells were grown in fluid thioglycollate medium or chicken broth. When mid-log phase was reached, they were heat-shocked at 50°C for 30 min. Then cultures were centrifuged and supernatants were transferred to nonshocked cells. Heat tolerance of these cells was performed at 55°C. Viable cells were determined. In some cases, supernatants were heated at 65°C or 100°C or treated with trypsin. Supernatants were fractionated and PAGE was made of fractions showing heat-protective activity. When C. perfringens was exposed to a heat shock at 50°C, extracellular factors were found in the culture supernatant that provided protection to cells not exposed to a heat shock. The extracellular factors were sensitive to heat and trypsin treatment suggesting a protein component. SDS-PAGE analysis of supernatant fractions from heat-treated cells revealed two induced proteins (56 and 125 kDa) that could be involved in heat tolerance.
Conclusion:  In this work, the presence and thermoprotective activity of extracellular factors produced by C. perfringens under a heat shock was demonstrated.
Significance and Impact of the Study:  The detection of thermoprotective extracellular factors of C . perfringens will aid in our understanding of the physiology of survival of C. perfringens in foods.  相似文献   

19.
芽孢杆菌孢子萌发机理的研究进展   总被引:1,自引:0,他引:1  
芽孢杆菌休眠孢子的萌发是孢子恢复到营养生长的第一个决定性步骤。孢子被营养性萌发剂和各种非营养信号诱导而萌发恢复到营养细胞状态。芽孢萌发后就丧失了对外界胁迫的抵抗力。该文主要从芽孢萌发信号传导、营养萌发受体、萌发中的离子通道、皮层溶解酶的功能、非营养诱导萌发和萌发途径等方面阐述芽孢杆菌孢子萌发机理的进展,并对其前景作了简要评述。  相似文献   

20.
AIMS: To determine susceptibility of Clostridium perfringens strains CCM 4435(T) and CNCTC 5459 to C(2)-C(18) fatty acids, and evaluate influence of pH in cultures grown on glucose. Straw particles were added to cultures to simulate the presence of solid phase of the digestive tract milieu. METHODS AND RESULTS: Antimicrobial activity of fatty acids was expressed as a concentration at which only 50% of the initial glucose was utilized. Lauric acid showed the highest antimicrobial activity, followed by myristic, capric, oleic and caprylic acid. Only strain CNCTC 5459 was susceptible to linoleic acid. Neither caproic acid and acids with a shorter carbon chain nor palmitic and stearic acid influenced substrate utilization. The antimicrobial activity of myristic, oleic and linoleic acid decreased when clostridia were grown in the presence of straw particles. In cultures of both strains treated with capric and lauric acid at pH 5.0-5.3, the number of viable cells was <10(2) ml(-1). Only lauric acid reduced number of viable cells of both strains below 10(2) ml(-1) at pH > 6. Transmission electron microscopy revealed separation of inner and outer membranes and cytoplasma disorganization in cells treated with lauric acid. CONCLUSIONS: Lauric acid had the highest activity towards C. perfringens among fatty acid tested. Its activity was not influenced by the presence of solid particles and did not cease at pH > 6. SIGNIFICANCE AND IMPACT OF THE STUDY: Lauric acid might be a means for control of clostridial infections in farm animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号