首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Optimal foraging theory predicts that predators are selective when faced with abundant prey, but become less picky when prey gets sparse. Insectivorous bats in temperate regions are faced with the challenge of building up fat reserves vital for hibernation during a period of decreasing arthropod abundances. According to optimal foraging theory, prehibernating bats should adopt a less selective feeding behaviour – yet empirical studies have revealed many apparently generalized species to be composed of specialist individuals. Targeting the diet of the bat Myotis daubentonii, we used a combination of molecular techniques to test for seasonal changes in prey selectivity and individual‐level variation in prey preferences. DNA metabarcoding was used to characterize both the prey contents of bat droppings and the insect community available as prey. To test for dietary differences among M. daubentonii individuals, we used ten microsatellite loci to assign droppings to individual bats. The comparison between consumed and available prey revealed a preference for certain prey items regardless of availability. Nonbiting midges (Chironomidae) remained the most highly consumed prey at all times, despite a significant increase in the availability of black flies (Simuliidae) towards the end of the season. The bats sampled showed no evidence of individual specialization in dietary preferences. Overall, our approach offers little support for optimal foraging theory. Thus, it shows how novel combinations of genetic markers can be used to test general theory, targeting patterns at both the level of prey communities and individual predators.  相似文献   

2.
3.
4.
It has been proposed that natural selection occurs on a hierarchy of levels, of which the organismic level is neither the top nor the bottom. This hypothesis leads to the following practical problem: in general, how does one tell if a given phenomenon is a result of selection on level X or level Y. How does one tell what the units of selection actually are? It is convenient to assume that a unit of selection may be defined as a type of entity for which there exists, among all entities on the same “level” as that entity, an additive component of variance for some specific component F of fitness which does not appear as an additive component of variance in any decomposition of this F among entities at any lower level. But such a definition implicitly assumes that if f(x, y) depends nonadditively on its arguments, there must be interaction between the quantities which x and y represent. This assumption is incorrect. And one cannot avoid this error by speaking of “transformability to additivity” instead of merely “additivity”. A general mathematical formulation of the concepts of interaction and non-interaction is proposed, followed by a correspondingly modified approach to the definition of a unit of selection. The practical difficulty of verifying the presence of hierarchical selection is discussed.  相似文献   

5.
Fifty-five molecular dynamics runs of two three-stranded antiparallel beta-sheet peptides were performed to investigate the relative importance of amino acid sequence and native topology. The two peptides consist of 20 residues each and have a sequence identity of 15 %. One peptide has Gly-Ser (GS) at both turns, while the other has d-Pro-Gly ((D)PG). The simulations successfully reproduce the NMR solution conformations, irrespective of the starting structure. The large number of folding events sampled along the trajectories at 360 K (total simulation time of about 5 micros) yield a projection of the free-energy landscape onto two significant progress variables. The two peptides have compact denatured states, similar free-energy surfaces, and folding pathways that involve the formation of a beta-hairpin followed by consolidation of the unstructured strand. For the GS peptide, there are 33 folding events that start by the formation of the 2-3 beta-hairpin and 17 with first the 1-2 beta-hairpin. For the (D)PG peptide, the statistical predominance is opposite, 16 and 47 folding events start from the 2-3 beta-hairpin and the 1-2 beta-hairpin, respectively. These simulation results indicate that the overall shape of the free-energy surface is defined primarily by the native-state topology, in agreement with an ever-increasing amount of experimental and theoretical evidence, while the amino acid sequence determines the statistically predominant order of the events.  相似文献   

6.
In Chile, management of natural resources usually starts right before its imminent collapse or after evident declination. In the northern area of the country, the fishery of brown seaweeds has an enormous social, ecological, and economical importance. More than 11,000 people depend directly or indirectly on the collection and harvesting of this resource. Ecologically, kelps constitute areas for food, reproduction, and refuge for hundreds of invertebrates and fish species. Economically, landings up to 300,000 dry tons per year represent close to US $60 million for the industry. Until 2002, the Chilean brown seaweed fishery was mainly sustained by natural mortality, where plants cast ashore were collected by artisanal fishermen. Since then, three brown seaweed species of economic importance (Lessonia nigrescens, Lessonia trabeculata, and Macrocystis pyrifera) have been intensively harvested in coastal areas between 18° and 32° S. To manage kelp populations along the northern Chilean coast, regulations have been based on the principle “how you harvest is more important than how much you harvest”. This exploitation strategy has been adopted in consensus between fishermen, industries, governmental entities, and scientists. Since L. nigrescens represents more than 70% of total brown seaweed landings, this study tests the effects of L. nigrescens harvesting on the following population variables: (1) abundance, (2) distribution, (3) juvenile recruitment, (4) plant morphology, (5) frequency of reproductive plants, and (6) biodiversity of the macroinvertebrate community associated to kelp holdfasts. Our results show that, despite the enormous harvesting pressure on Lessonia density and biomass, the associated macroinvertebrate richness has been maintained, due to normal plant growth and high recruitment all year round.  相似文献   

7.
8.
9.
The origins and meanings of “cladogram” are reviewed. Traditionally, “cladogram” has been defined as a graphical representation of an empirical hypothesis of relationships among taxa, based on evidence from synapomorphies alone. Disturbingly, numerous recent authors treat “cladogram” as synonymous with “dendrogram” and do not appreciate the particular methodological connotations of the former term. This is lamented.  相似文献   

10.
Brelsford A 《Molecular ecology》2011,20(18):3705-3707
Hybrid speciation was once thought to be rare in animals, but over the past decade, improved molecular analysis techniques and increased research attention have allowed scientists to uncover many examples. In this issue, two papers ( Elgvin et al. 2011 ; Hermansen et al. 2011 ) present compelling evidence for the hybrid origin of the Italian sparrow based on nuclear and mitochondrial DNA sequences, microsatellites, and plumage coloration. These studies point to an important role for geographic isolation in the process of hybrid speciation, and provide a starting point for closer examination of the genetic and behavioural mechanisms involved.  相似文献   

11.
12.
13.
Most biologists implicitly define an individual organism as "one genome in one body." This definition is based on physiological and genetic criteria, but it is problematic for colonial organisms. We propose a definition based instead on the evolutionary criteria of alignment of fitness, export of fitness by germ-soma specialization, and adaptive functional organization. We consider how these concepts apply to various putative individual organisms. We conclude that complex multicellular organisms and colonies of eusocial insects satisfy these three criteria, but that, in most cases (with at least one notable exception), colonies of modular organisms and genetic chimeras do not. While species do not meet these criteria, they may meet the criteria for a broader concept--that of an evolutionary individual--and sexual reproduction may be a species-level exaptation for enhancing evolvability. We also review the costs and benefits of internal genetic heterogeneity within putative individuals, demonstrating that high relatedness is neither a necessary nor a sufficient condition for individuality, and that, in some cases, genetic variability may have adaptive benefits at the level of the whole.  相似文献   

14.
Knoblauch A  Palm G 《Bio Systems》2005,79(1-3):83-90
The response of a cortical neuron to a stimulus can show a very large variability when repeatedly stimulated by exactly the same stimulus. This has been quantified in terms of inter-spike-interval (ISI) statistics by several researchers (e.g., [Softky, W., Koch, C., 1993. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13(1), 334-350.]). The common view is that this variability reflects noisy information processing based on redundant representation in large neuron populations. This view has been challenged by the idea that the apparent noise inherent in brain activity that is not strictly related or temporally coupled to the experiment could be functionally significant. In this work we examine the ISI statistics and discuss these views in a recently published model of interacting cortical areas [Knoblauch, A., Palm, G., 2002. Scene segmentation by spike synchronization in reciprocally connected visual areas. I. Local effects of cortical feedback. Biol. Cybernet. 87(3), 151-167.]. From the results of further single neuron simulations we can isolate temporally modulated synaptic input as a main contributor for high ISI variability in our model and possibly in real neurons. In contrast to alternative mechanisms, our model suggests a function of the temporal modulations for short-term binding and segmentation of figures from background. Moreover, we show that temporally modulated inputs lead to ISI statistics which fit better to the neurophysiological data than alternative mechanisms.  相似文献   

15.
16.
Most Recent bryozoan species are encrusting sheets, and many of these colonies have densely packed feeding zooids. In this study, I tested whether tight packing of feeding zooids affects food capture. Colonies of a bryozoan with an encrusting sheet form (Membranipora membranacea) were dissected to produce individuals whose feeding zooids were (1) closely packed, (2) more widely spaced, or (3) isolated. For each type, rates of particle ingestion were measured in still water and in a freestream velocity of 2.7 cm s(-1). Ingestion rate increased when zooids were closest together, probably because of reduced refiltration and increased feeding current strength farther from the lophophores. The mean incurrent velocity within 0.02 cm above the center of the lophophore was 0.28 cm s(-1) regardless of zooid spacing; however, when the incurrent velocity was measured more than 0.1 cm from the lophophores, zooids that were close together or spaced one zooid's width apart had significantly faster incurrent velocities than single zooids. Flow visualization suggests that isolated zooids and those spaced far apart refilter more water than zooids that are close together. These results along with the observed trend of increased zooid integration over evolutionary time suggest that the benefits of increasing coordination outweigh the consequences of intrazooid competition.  相似文献   

17.
18.
Rapid divergence in external genital structures occurs in nearly all animal groups that practice internal insemination; explaining this pattern is a major challenge in evolutionary biology. The hypothesis that species‐specific differences in male genitalia evolved under sexual selection as courtship devices to influence cryptic female choice (CFC) has been slow to be accepted. Doubts may stem from its radical departure from previous ideas, observational difficulties because crucial events occur hidden within the female's body, and alternative hypotheses involving biologically important phenomena such as speciation, sperm competition, and male‐female conflicts of interest. We assess the current status of the CFC hypothesis by reviewing data from two groups in which crucial predictions have been especially well‐tested, Glossina tsetse flies and Roeseliana (formerly Metrioptera) roeselii bushcrickets. Eighteen CFC predictions have been confirmed in Glossina and 19 in Roeseliana. We found data justifying rejection of alternative hypotheses, but none that contradicted CFC predictions. The number and extent of tests confirming predictions of the CFC hypothesis in these species is greater than that for other generally accepted hypotheses regarding the functions of nongenital structures. By this criterion, it is reasonable to conclude that some genital structures in both groups likely involved sexual selection by CFC.  相似文献   

19.
Plants in nutrient poor environments are often characterized by high nutrient resorption resulting in poor litter quality and, consequently, slow decomposition. We used oligotrophic, P-limited herbaceous wetlands of northern Belize as a model system, on which to document and explain how changes in nutrient content along a salinity gradient affect decomposition rates of macrophytes. In 2001 we established a nutrient addition experiment (P, N, and N&P) in 15 marshes of a wide range of water conductivities (200–6000 μS), dominated by Eleocharis spp. To determine what is more important for decomposition, the initial litter quality, or site differences, we used reciprocal litter placement and cellulose decomposition assay in a combined “site quality” and “litter quality” experiment. Our prediction of the positive effects of P-enrichment on decomposition rate due to both the quality of litter and the site was confirmed. The site effect was stronger than the litter quality although both were highly significant. Strong site quality effect was apparently the result of more active decomposer community in P-enriched plots as supported by finding of higher microbial biomass in litter decomposing there. The strong effect of site quality on decomposition was further confirmed by the cellulose assay. The cellulose decomposition was significantly slower at high salinity sites indicating lower decomposer microbial activity. Litter nutrient N and P content and nutrient ratios were well correlated with decomposition with the best fit found for log C/P. At C/P mass ratio of >4000 decomposition processes were extremely slow. We hypothesize that in a long run, the increased decomposition will compensate the increase in primary production resulting from increased nutrient loading and there will be no differences in accumulation of organic material between the controls and nutrient enriched plots.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号