首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Corticotrophin-releasing factor (CRF) is the main regulator of the body's stress axis and its signal is translated through G-protein-coupled CRF receptors (CRF-R1, CRF-R2). Even though CRF receptors are present in the midbrain dopamine neurons, the cellular mechanism of CRF action is not clear yet. Since voltage-dependent Ca(2+) channels are highly expressed and important in dopamine neuronal functions, we tested the effect of CRF on voltage-dependent Ca(2+) channels in MN9D cells, a model of dopamine neurons. The application of CRF-related peptide, urocortin 1, reversibly inhibited T-type Ca(2+) currents, which was a major Ca(2+) channel in the cells. The effect of urocortin was abolished by specific CRF-R1 antagonist and was mimicked by protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate. PKC inhibitors abolished the effect of urocortin. These results suggest that urocortin modulates T-type Ca(2+) channel by interacting with CRF-R1 via the activation of PKC signal pathway in MN9D cells.  相似文献   

2.
Telegdy G  Adamik A 《Peptides》2008,29(11):1937-1942
The actions of individual corticotropin-releasing hormone (CRH) receptor (CRHR1 and CRHR2) were studied on the hyperthermia caused by urocortin 1, urocortin 2 and urocortin 3 in rats. Urocortin 1, urocortin 2 or urocortin 3 was injected into the lateral brain ventricle in conscious rats and the colon temperature was measured at different times following injection, up to 6h. In order to study the possible role of CRH receptors, the animals were treated with a urocortins together with the urocortin receptor inhibitors CRF 9-41, antalarmin and astressin 2B to influence the action of urocortins in initiating hyperthermia. Urocortin 1 at a dose of 2microg caused an increase in colon temperature, maximal action being observed in body temperature at 3h. CRH 9-41 and antalarmin, CRHR1 receptor antagonists, prevented the urocortin-induced increase in colon temperature while astressin 2B (CRHR2 receptor antagonist) was ineffective. Urocortin 2 at a dose of 2microg showed a byphasic action in increase in colon temperature having the first peak between 30 min and 1h and the second peak at 4h following treatment. CRF (9-41) and antalarmin was ineffective while astressin 2B fully blocked the action of urocortin 2. Urocortin 3 in a dose of lmicrog increased colon temperature; the maximal effect was observed at 2h. CRF (9-41) and antalarmin was ineffective while astressin 2B fully blocked the action of urocortin 3. The results demonstrated that urocortin 1, 2 or 3 when injected into the lateral brain ventricle caused increases in body temperature is mediated by urocortin receptors. The action of urocortin 1 is mediated by CRHR1 receptor, while in the action of urocortin 2 and urocortin 3 CRHR2 receptor is involved.  相似文献   

3.
Urocortin is a newly identified member of the CRF neuropeptide family. Urocortin has been found to bind with high affinity to CRF receptors. The present study investigated urocortin and CRF receptor expression in human colonic mucosa. Non-pathologic sections of adult colorectal tissues were obtained from patients with colorectal cancer at surgery. Urocortin expression was examined using immunohistochemistry and messenger (m) RNA in situ hybridization. Isolated lamina propria mononuclear cells (LPMC) and epithelial cells were also analyzed by flow cytometry for the characterization of urocortin-positive cells, and by RT-PCR for detection of urocortin, CRF, and CRF receptor mRNA. Urocortin peptide distribution at various stages of human development (n = 35, from 11 weeks of gestation to 6 years of age) was examined by immunohistochemistry using surgical and autopsy specimens. Immunoreactive urocortin and urocortin mRNA were predominantly detected in lamina propria macrophages. Urocortin peptide expression was detected from as early as three months of age, but not before birth or in neonates. Urocortin, CRF receptor type 1 and type 2 mRNA were detected in LPMC. CRF receptor type 2β mRNA, a minor isoform in human tissues, was also detected in LPMC, but at lower levels. Urocortin is locally synthesized in lamina propria macrophages and may act on lamina propria inflammatory cells as an autocrine/paracrine regulator of the mucosal immune system. The appearance of urocortin after birth indicates that the exposure to dietary intake and/or luminal bacteria after birth may contribute to the initiation of urocortin expression in human gastrointestinal tract mucosa.  相似文献   

4.
In the present study we investigated the form of expression, action, second messenger, and the cellular location of urocortin, a member of the corticotropin-releasing factor (CRF) family, in the heart. Urocortin mRNA, as shown by quantitative RT-PCR analysis, is expressed in the cultured rat cardiac nonmyocytes (NMC) as well as myocytes (MC) in the heart, whereas CRF receptor type 2beta (CRF-R2beta), presumed urocortin receptor mRNA, is predominantly expressed in MC compared with NMC. Urocortin mRNA expression is higher in left ventricular (LV) hypertrophy than in normal LV, whereas CRF-R2beta mRNA expression is markedly depressed in LV hypertrophy compared with normal LV. Urocortin more potently increased the cAMP levels in both MC and NMC than did CRF, and its effect was more potent in MC than in NMC. Urocortin significantly increased protein synthesis by [(14)C]Phe incorporations and atrial natriuretic peptide secretion in MC and collagen and increased DNA synthesis by [(3)H]prolin and [(3)H]Thy incorporations in NMC. An immunohistochemical study revealed that urocortin immunoreactivity was observed in MC in the normal human heart and that it was more intense in the MC of the human failing heart than in MC of the normal heart. These results, together with the recent evidence of urocortin for positive inotropic action, suggest that increased urocortin in the diseased heart may modulate the pathophysiology of cardiac hypertrophy or failing heart, at least in part, via cAMP signaling pathway.  相似文献   

5.
Oki Y  Sasano H 《Peptides》2004,25(10):1745-1749
Urocortin, a 40 amino acid peptide, is a corticotropin-releasing factor (CRF) related peptide, and can bind to all three types of CRF receptors (CRF type 1, type 2a and type 2b receptors) with higher affinities for these receptors than CRF. Immunoreactivity of urocortin is widely distributed in central nervous, digestive, cardiovascular, reproductive, immune and endocrine systems. Urocortin plays important roles in appetite-suppression, immunomodulation, steroidogenesis in the ovary, maintenance of the placental function, labor, and cardioprotection via CRF receptors. Although urocortin has potent adrenocorticotropin (ACTH) releasing activity in vitro, endogenous urocortin does not act on pituitary ACTH secretion in vivo.  相似文献   

6.
Kageyama K  Kimura R  Suga S  Ogawa Y  Suda T  Wakui M 《Peptides》2006,27(7):1814-1819
The actions of the corticotropin-releasing factor (CRF) family of peptides are mediated by the seven transmembrane-domain G-protein-coupled receptors, the CRF receptors type 1 (CRF1 receptor) and type 2 (CRF2 receptor). In a previous study, we reported that CRF, an endogenous ligand for CRF1 receptor, modulated Ca2+ influx in rat pancreatic beta-cells. In addition to CRF, other additional members of the family, urocortins, have been identified in mammals. Urocortin 1 (UCN 1), a peptide of the CRF family, binds both CRF1 receptor and CRF2 receptor with equal affinities. Urocortin 3 (UCN 3), a highly selective ligand for CRF2 receptor with little affinity for CRF1 receptor, has been shown in rat pancreatic beta-cells. The present study focused on the effects of the CRF family peptides on intracellular Ca2+ ([Ca2+]i) concentration via CRF receptors in rat pancreatic beta-cells. Microfluorimetric experiments showed that CRF (0.2 nM) and UCN 1 (0.2 nM) elevated [Ca2+]i levels. Both CRF and UCN 1 effects were attenuated by astressin, a non-selective CRF receptor antagonist. Antisauvagine-30, a selective CRF2 receptor antagonist, appeared to enhance the UCN 1 effect on the elevation of [Ca2+]i. The CRF effect on the elevation of [Ca2+]i was inhibited by the addition of UCN 3. Taken together, the activation of CRF2 receptor antagonizes the CRF1 receptor-stimulated Ca2+ influx.  相似文献   

7.
The relaxant effect of urocortin in rat pulmonary arteries   总被引:1,自引:0,他引:1  
Urocortin is a potent vasodilator, which plays physiological or pathophysiological roles in systemic circulation. However, little is known about its action on pulmonary circulation. The present study was aimed to characterize some cellular mechanisms underlying the relaxant effect of urocortin in isolated rat pulmonary arteries. Changes in isometric tension were measured on small vessel myographs. Urocortin inhibited U46619-induced contraction with reduction of the maximal response. Urocortin-induced relaxation was independent of the presence of endothelium. Inhibitors of nitric oxide (NO)-dependent dilator, NG-nitro-L-arginine methyl ester or 1H-[1,2,4]oxadizolo[4,3-a]quinoxalin-1-one, did not affect the relaxation. Astressin (100-500 nM), a corticotropin-releasing factor (CRF) receptor antagonist and KT5720, a protein kinase A (PKA) inhibitor reduced urocortin-induced relaxation. Urocortin produced less relaxant effect in 30 mM K+- than U46619-contracted arterial rings. Urocortin did not reduce CaCl2-induced contraction in 60 mM K+-containing solution. Ba2+ (100-500 microM) but not other K+ channel blockers reduced the relaxant responses to urocortin. Urocortin also relaxed the rings preconstricted by phorbol 12,13-diacetae in normal Krebs solution while this relaxation was less in a Ca2+-free solution. Our results show that urocortin relaxed rat pulmonary arteries via CRF receptor-mediated and PKA-dependent but endothelium/NO or voltage-gated Ca2+ channel-independent mechanisms. Stimulation of Ba2+-sensitive K+ channel may contribute to urocortin-induced relaxation. Finally, urocortin relaxed pulmonary arteries partly via inhibition of a PKC-dependent contractile mechanism.  相似文献   

8.
Dai R  Ali MK  Lezcano N  Bergson C 《Neuro-Signals》2008,16(2-3):112-123
D1-like dopamine receptors stimulate Ca(2+) transients in neurons but the effector coupling and signaling mechanisms underlying these responses have not been elucidated. Here we investigated potential mechanisms using both HEK 293 cells that stably express D1 receptors (D1HEK293) and hippocampal neurons in culture. In D1HEK293 cells, the full D1 receptor agonist SKF 81297 evoked a robust dose-dependent increase in Ca(2+)(i) following 'priming' of endogenous G(q/11)-coupled muscarinic or purinergic receptors. The effect of SKF81297 could be mimicked by forskolin or 8-Br-cAMP. Further, cholera toxin and the cAMP-dependent protein kinase (PKA) inhibitors, KT5720 and H89, as well as thapsigargin abrogated the D1 receptor evoked Ca(2+) transients. Removal of the priming agonist and treatment with the phospholipase C inhibitor U73122 also blocked the SKF81297-evoked responses. D1R agonist did not stimulate IP(3) production, but pretreatment of cells with the D1R agonist potentiated G(q)-linked receptor agonist mobilization of intracellular Ca(2+) stores. In neurons, SKF81297 and SKF83959, a partial D1 receptor agonist, promoted Ca(2+) oscillations in response to G(q/11)-coupled metabotropic glutamate receptor (mGluR) stimulation. The effects of both D1R agonists on the mGluR-evoked Ca(2+) responses were PKA dependent. Altogether the data suggest that dopamine D1R activation and ensuing cAMP production dynamically regulates the efficiency and timing of IP(3)-mediated intracellular Ca(2+) store mobilization.  相似文献   

9.
10.
There is accumulating evidence that the specificity of the transduction cascades activated by G protein-coupled receptors cannot solely depend on the nature of the coupled G protein. To identify additional structural determinants, we studied two metabotropic glutamate (mGlu) receptors, the mGlu2 and mGlu7 receptors, that are both coupled to G(o) proteins but are known to affect different effectors in neurons. Thus, the mGlu2 receptor selectively blocks N- and L-type Ca(2+) channels via a protein kinase C-independent pathway, whereas the mGlu7 receptor selectively blocks P/Q-type Ca(2+) channels via a protein kinase C-dependent pathway, and both effects are pertussis toxin-sensitive. We examined the role of the C-terminal domain of these receptors in this coupling. Chimeras were constructed by exchanging the C terminus of these receptors and transfected into neurons. Different chimeric receptors bearing the C terminus of mGlu7 receptor blocked selectively P/Q-type Ca(2+) channels, whereas chimeras bearing the C terminus of mGlu2 receptor selectively blocked N- and L-type Ca(2+) channels. These results show that the C terminus of mGlu2 and mGlu7 receptors is a key structural determinant that allows these receptors to select a specific signaling pathway in neurons.  相似文献   

11.
Membrane depolarization triggers Ca(2+) release from the sarcoplasmic reticulum (SR) in skeletal muscles via direct interaction between the voltage-gated L-type Ca(2+) channels (the dihydropyridine receptors; VGCCs) and ryanodine receptors (RyRs), while in cardiac muscles Ca(2+) entry through VGCCs triggers RyR-mediated Ca(2+) release via a Ca(2+)-induced Ca(2+) release (CICR) mechanism. Here we demonstrate that in phasic smooth muscle of the guinea-pig small intestine, excitation evoked by muscarinic receptor activation triggers an abrupt Ca(2+) release from sub-plasmalemmal (sub-PM) SR elements enriched with inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and poor in RyRs. This was followed by a lesser rise, or oscillations in [Ca(2+)](i). The initial abrupt sub-PM [Ca(2+)](i) upstroke was all but abolished by block of VGCCs (by 5 microM nicardipine), depletion of intracellular Ca(2+) stores (with 10 microM cyclopiazonic acid) or inhibition of IP(3)Rs (by 2 microM xestospongin C or 30 microM 2-APB), but was not affected by block of RyRs (by 50-100 microM tetracaine or 100 microM ryanodine). Inhibition of either IP(3)Rs or RyRs attenuated phasic muscarinic contraction by 73%. Thus, in contrast to cardiac muscles, excitation-contraction coupling in this phasic visceral smooth muscle occurs by Ca(2+) entry through VGCCs which evokes an initial IP(3)R-mediated Ca(2+) release activated via a CICR mechanism.  相似文献   

12.
Urotensin II (U‐II) is a cyclic undecapeptide that regulates cardiovascular function at central and peripheral sites. The functional role of U‐II nucleus ambiguus, a key site controlling cardiac tone, has not been established, despite the identification of U‐II and its receptor at this level. We report here that U‐II produces an increase in cytosolic Ca2+ concentration in retrogradely labeled cardiac vagal neurons of nucleus ambiguus via two pathways: (i) Ca2+ release from the endoplasmic reticulum via inositol 1,4,5‐trisphosphate receptor; and (ii) Ca2+ influx through P/Q‐type Ca2+ channels. In addition, U‐II depolarizes cultured cardiac parasympathetic neurons. Microinjection of increasing concentrations of U‐II into nucleus ambiguus elicits dose‐dependent bradycardia in conscious rats, indicating the in vivo activation of the cholinergic pathway controlling the heart rate. Both the in vitro and in vivo effects were abolished by the urotensin receptor antagonist, urantide. Our findings suggest that, in addition, to the previously reported increase in sympathetic outflow, U‐II activates cardiac vagal neurons of nucleus ambiguus, which may contribute to cardioprotection.

  相似文献   


13.
14.
We evaluated whether pericardial injections of the retrograde tracers cholera toxin subunit B (CTb) or Fast Blue (FB) reliably labelled cardiac vagal pre-ganglionic neurons. Injections of CTb into the pericardial space of the rat labelled neurons in both the external and compact formations of the nucleus ambiguus. Most labelled neurons were found in the compact formation of the nucleus ambiguus, and the majority of these, and only these, expressed immunoreactivity for calcitonin gene-related peptide. This distribution of labelled neurons and their immunohistochemical properties is characteristic of oesophageal motoneurons. Examination of the oesophagus following intra-pericardial CTb applications revealed strong labelling of motor end plates within the skeletal muscle of the thoracic but not the abdominal oesophagus. When a second retrograde tracer, FB, was injected into the abdominal oesophagus, labelled somata were found adjacent to CTb-labelled neurons in the compact formation of the nucleus ambiguus. No co-localisation of tracers was found, but identical proportions of calcitonin gene-related peptide (CGRP) immunoreactivity were observed in both groups of neurons. FB injected into the pericardial space labelled intra-cardiac neurons but not brainstem neurons. We conclude that intra-pericardial, and perhaps sub-epicardial, injections of some retrograde tracers are likely to label a subset of oesophageal, as well as cardiac, vagal motor neurons in the brainstem.This work was supported in part by grant No. G 00 M 0670 from the National Heart Foundation of Australia.  相似文献   

15.
Acid-sensing ion channels (ASIC) are widely expressed in several brain regions including medulla; their role in physiology and pathophysiology is incompletely understood. We examined the effect of acidic pH of 6.2 on the medullary neurons involved in parasympathetic cardiac control. Our results indicate that retrogradely labeled cardiac vagal neurons of nucleus ambiguus are depolarized by acidic pH. In addition, acidic saline of pH 6.2 increases cytosolic Ca2+ concentration by promoting Ca2+ influx in nucleus ambiguus neurons. In vivo studies indicate that microinjection of acidic artificial cerebrospinal fluid (pH 6.2) into the nucleus ambiguus decreases the heart rate in conscious rats, whereas it has no effect in anesthetized animals. Pretreatment with either amiloride or benzamil, two widely used ASIC blockers, abolishes both the in vitro and in vivo effects elicited by pH 6.2. Our findings support a critical role for ASIC in modulation of cardiac vagal tone and provide a potential mechanism for acidosis-induced bradycardia, while identifying important differences in the response to acidic pH between anesthetized and conscious rats.  相似文献   

16.
Corticotropin-releasing factor (CRF) is a 41-amino acid peptide with distinct effects on gastrointestinal motility involving both CRF-1 and CRF-2 receptor-mediated mechanisms that are generally claimed to be centrally mediated. Evidence for a direct peripheral effect is rather limited. Electrophysiological studies showed a cAMP-dependent prolonged depolarization of guinea pig myenteric neurons on application of CRF. The current study aimed to test the direct effect of CRF on myenteric neurons and to identify the receptor subtype and the possible mechanisms involved. Longitudinal muscle myenteric plexus preparations and myenteric neuron cultures of guinea pig small intestine were incubated with the calcium indicator Fluo-4. Confocal Ca(2+) imaging was used to visualize activation of neurons on application of CRF. All in situ experiments were performed in the presence of nicardipine 10(-6) M to reduce tissue movement. Images were analyzed using Scion image and a specifically developed macro to correct for residual minimal movements. A 75 mM K(+)-Krebs solution identified 1,076 neurons in 46 myenteric ganglia (16 animals). Administration of CRF 10(-6) M and CRF 10(-7) M during 30 s induced a Ca(2+) response in 22.4% of the myenteric neurons (n = 303). Responses were completely abolished in the presence of the nonselective CRF antagonist astressin (n = 55). The selective CRF-1 receptor antagonist CP 154,526 (n = 187) reduced the response significantly to 2.1%. Stresscopin, a CRF-2 receptor agonist, could not activate neurons at 10(-7) M, and its effect at 10(-6) M (15.3%, n = 59) was completely blocked by CP 154,526. TTX 10(-6) M (n = 70) could not block the CRF-induced Ca(2+) transients but reduced the amplitude of the signals significantly. Removal of extracellular Ca(2+) blocked all responses to CRF (n = 47). L-type channels did not contribute to the CRF-induced Ca(2+) transients. Blocking N- or P/Q-type Ca(2+) channels did not reduce the responses significantly. Combined L- and R-type Ca(2+) channel blocking (SNX-482 10(-8) M, n = 64) abolished nearly all responses in situ. Combined L-, N-, and P/Q-type channel blocking also significantly reduced the response to 8.6%. Immunohistochemical staining for CRF-1 receptors clearly labeled individual cell bodies in the ganglia, whereas the CRF-2 receptor staining was barely above background. CRF induces Ca(2+) transients in myenteric neurons via a CRF-1 receptor-dependent mechanism. These Ca(2+) transients highly depend on somatic calcium influx through voltage-operated Ca(2+) channels, in particular R-type channels. Action potential firing through voltage-sensitive sodium channels increases the amplitude of the Ca(2+) signals. Besides centrally mediated effects, CRF is likely to modulate gastrointestinal motility on the myenteric neuronal level.  相似文献   

17.
Corticotropin-releasing factor (CRF) mediates various aspects of the stress response. To differentiate between the roles of CRF(1) and CRF(2) receptor subtypes in monoaminergic neurotransmission, hypothalamic-pituitary-adrenocortical axis activity and behaviour we compared the effects of CRF and urocortin 1 with those of the selective CRF(2) receptor ligands urocortin 2 and urocortin 3. In vivo microdialysis in the rat hippocampus was used to assess free corticosterone, extracellular levels of serotonin (5-HT) and noradrenaline (NA), and their metabolites 5-hydroxyindoleacetic acid (5-HIAA) and 3-methoxy-4-hydroxyphenylglycol (MHPG), respectively. Intracerebroventricular (i.c.v.) injection of CRF and urocortin 1, 2 and 3 (1.0 microg) increased hippocampal levels of 5-HT and 5-HIAA. CRF and urocortin 1 increased NA and MHPG, whereas urocortin 2 and urocortin 3 elevated MHPG, but not NA levels. CRF and the urocortins induced an immediate increase in behavioural activity. CRF and urocortin 1 mainly caused grooming and exploratory behaviour. In contrast, urocortin 2 and urocortin 3 both induced exploratory behaviour, but not grooming, and increased time spent eating food pellets. All urocortins, but not CRF, suppressed food intake 4-6 h after injection. Hippocampal free corticosterone levels were elevated by CRF, urocortin 1 and 3, but not by urocortin 2. The time courses of the CRF- and urocortin 1-induced responses were significantly prolonged as compared to those of the CRF(2) receptor ligands. The stimulatory changes evoked by CRF and urocortin 1 were present up to 4-6 h after injection, whereas the effects of urocortin 2 and urocortin 3 returned to baseline within 2.5 h after injection. Pre-treatment with the selective antagonist antisauvagine-30 (5.0 microg, i.c.v.) confirmed that the effects of urocortin 3 were CRF(2) receptor-mediated. The differential time course of the monoaminergic, neuroendocrine and behavioural effects of CRF and urocortin 1, as compared to urocortin 2 and urocortin 3, and the specific behavioural pattern induced by the CRF(2) receptor ligands, suggest a distinct role for CRF(2) receptors in the stress response.  相似文献   

18.
It is known that the Na/K-ATPase alpha1 subunit interacts directly with inositol 1,4,5-triphosphate (IP(3)) receptors. In this study we tested whether this interaction is required for extracellular stimuli to efficiently regulate endoplasmic reticulum (ER) Ca(2+) release. Using cultured pig kidney LLC-PK1 cells as a model, we demonstrated that graded knockdown of the cellular Na/K-ATPase alpha1 subunit resulted in a parallel attenuation of ATP-induced ER Ca(2+) release. When the knockdown cells were rescued by knocking in a rat alpha1, the expression of rat alpha1 restored not only the cellular Na/K-ATPase but also ATP-induced ER Ca(2+) release. Mechanistically, this defect in ATP-induced ER Ca(2+) release was neither due to the changes in the amount or the function of cellular IP(3) and P2Y receptors nor the ER Ca(2+) content. However, the alpha1 knockdown did redistribute cellular IP(3) receptors. The pool of IP(3) receptors that resided close to the plasma membrane was abolished. Because changes in the plasma membrane proximity could reduce the efficiency of signal transmission from P2Y receptors to the ER, we further determined the dose-dependent effects of ATP on protein kinase Cepsilon activation and ER Ca(2+) release. The data showed that the alpha1 knockdown de-sensitized the ATP-induced ER Ca(2+) release but not PKCepsilon activation. Moreover, expression of the N terminus of Na/K-ATPase alpha1 subunit not only disrupted the formation of the Na/K-ATPase-IP(3) receptor complex but also abolished the ATP-induced Ca(2+) release. Finally, we observed that the alpha1 knockdown was also effective in attenuating ER Ca(2+) release provoked by angiotensin II and epidermal growth factor.  相似文献   

19.
G protein-coupled receptors mobilize neuronal signaling cascades which until now have not been shown to depend on the state of membrane depolarization. Thus we have previously shown that the metabotropic glutamate receptor type 7 (mGlu7 receptor) blocks P/Q-type Ca(2+) channels via activation of a G(o) protein and PKC, in cerebellar granule cells. We show here that the transient depolarizations used to evoke the studied Ca(2+) current were indeed permissive to activate this pathway by a mGlu7 receptor agonist. Indeed, sustained depolarization to 0 mV was sufficient to inhibit P/Q-type Ca(2+) channels. This effect involved a conformational change in voltage-gated sodium channel independently of Na(+) flux, activation of a pertussis toxin-sensitive G-protein, inositol trisphosphate formation, intracellular Ca(2+) release, and PKC activity. Subliminal sustained membrane depolarization became efficient in inducing inositol trisphosphate formation, release of intracellular Ca(2+) and in blocking Ca(2+) channels, when applied concomitantly with the mGlu7a receptor agonist, d,l-aminophosphonobutyrate. This synergistic effect of membrane depolarization and mGlu7 receptor activation provides a mechanism by which neuronal excitation could control action of the mGlu7 receptor in neurons.  相似文献   

20.
CRF receptor 1 (CRF(1)), a key neuroendocrine mediator of the stress response, has two known agonists corticotropin-releasing factor (CRF) and urocortin 1 (Ucn1). Here we report that endothelin-converting enzyme-1 (ECE-1) differentially degrades CRF and Ucn1; ECE-1 cleaves Ucn1, but not CRF, at critical residue Arginine-34/35', which is essential for ligand-receptor binding. At near K(D) agonist concentration (30 nm), both Ucn1- and CRF-mediated Ca(2+) mobilization are ECE-1 dependent. Interestingly, at high agonist concentration (100 nm), Ucn1-mediated Ca(2+) mobilization remains ECE-1 dependent, whereas CRF-mediated mobilization becomes independent of ECE-1 activity. At high agonist concentration, ECE-1 inhibition disrupted Ucn1-, but not CRF-induced CRF(1) recycling and resensitization, but did not prolong the association of CRF(1) with β-arrestins. RNA interference-mediated knockdown of Rab suggests that both Ucn1- and CRF-induced CRF(1) resensitization is dependent on activity of Rab11, but not of Rab4. CRF(1) behaves like a class A G protein-coupled receptor with respect to transient β-arrestins interaction. We propose that differential degradation by ECE-1 is a novel mechanism by which CRF(1) receptor is protected from overactivation by physiologically relevant high concentrations of higher affinity ligand to mediate distinct resensitization and downstream signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号