首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cellular internalization of PCL(20)-b-PEO(44) block copolymer micelles   总被引:5,自引:0,他引:5  
The cellular internalization of polycaprolactone-b-poly(ethylene oxide) (PCL(20)-b-PEO(44)) copolymer micelles were investigated in PC12 cells cultures. The micelles were found to be internalized into PC12 cells when followed over the 4-h incubation period. Also, the internalization process was found to fulfill the basic criteria for endocytotic uptake in that it was time, temperature, pH and energy dependent. In addition, the use of other pharmacological manipulations (hypertonic treatment, Brefeldin A) provide further evidence that the mode of cellular internalization is in fact endocytotic.  相似文献   

3.
Multi-arm star amphiphilic block copolymers (SABCs) with approximately 32 arms were synthesized and characterized for drug delivery applications. A hyperbranched polyester, boltorn® H40 (H40), was used as the macroinitiator for the ring-opening polymerization of ?-caprolactone (?-CL). The resulting multi-arm H40-poly(?-caprolactone) (H40-PCL-OH) was further reacted with carboxyl terminated methoxy poly(ethylene glycol) (MPEG-COOH) to form H40-PCL-b-MPEG copolymers. The resulting SABCs were characterized by 1H NMR spectroscopy and gel permeation chromatography (GPC). The critical aggregation concentration (CAC) of H40-PCL-b-MPEG was 3.8 mg/L as determined by fluorescence spectrophotometry. Below the CAC, stable unimolecular micelles were formed with an average diameter of 18 nm as measured by TEM. Above the CAC, unimolecular micelles exhibited agglomeration with an average diameter of 98 nm. The hydrodynamic diameter of these agglomerates was found to be 122 nm, as measured by dynamic light scattering (DLS). The drug loading efficacy of the H40-PCL-b-MPEG micelles was 26 wt%. Drug release study showed an initial burst followed by a sustained release of the entrapped hydrophobic model drug, 5-fluorouracil, over a period of 9–140 h. These results indicate that the H40-PCL-b-MPEG micelles have great potential as hydrophobic drug delivery carriers.  相似文献   

4.
We present a facile ionic assembly between fibrillar and spherical colloidal objects toward biomimetic nanocomposites with majority hard and minority soft domains based on anionic reinforcing native cellulose nanofibrils and cationic amphiphilic block copolymer micelles with rubbery core. The concept is based on ionic complexation of carboxymethylated nanofibrillated cellulose (NFC, or also denoted as microfibrillated cellulose, MFC) and micelles formed by aqueous self-assembly of quaternized poly(1,2-butadiene)-block-poly(dimethylaminoethyl methacrylate) with high fraction of the NFC reinforcement. The adsorption of block copolymer micelles onto nanocellulose is shown by quartz crystal microbalance measurements, atomic force microscopy imaging, and fluorescent optical microscopy. The physical properties are elucidated using electron microscopy, thermal analysis, and mechanical testing. The cationic part of the block copolymer serves as a binder to NFC, whereas the hydrophobic rubbery micellar cores are designed to facilitate energy dissipation and nanoscale lubrication between the NFC domains under deformation. We show that the mechanical properties do not follow the rule of mixtures, and synergistic effects are observed with promoted work of fracture in one composition. As the concept allows wide possibilities for tuning, the work suggests pathways for nanocellulose-based biomimetic nanocomposites combining high toughness with stiffness and strength.  相似文献   

5.
Small interfering RNA (siRNA) has great therapeutic potential for the suppression of proteins associated with disease, but delivery methods are needed for improved efficacy. Here, we investigated the properties of micellar siRNA delivery vehicles prepared with poly(ethylene glycol)-block-poly(l-lysine) (PEG-b-PLL) comprising lysine amines modified to contain amidine and thiol functionality. Lysine modification was achieved using 2-iminothiolane (2-IT) [yielding PEG-b-PLL(N2IM-IM)] or dimethyl 3,3'-dithiobispropionimidate (DTBP) [yielding PEG-b-PLL(MPA)], with modifications aimed to impart disulfide cross-linking ability without compromising cationic charge. These two lysine modification reagents resulted in vastly different chemistry contained in the reacted block copolymer, which affected micelle formation behavior and stability along with in vitro and in vivo performance. Amidines formed with 2-IT were unstable and rearranged into a noncharged ring structure lacking free thiol functionality, whereas amidines generated with DTBP were stable. Micelles formed with siRNA and PEG-b-PLL(N2IM-IM) at higher molar ratios of polymer/siRNA, while PEG-b-PLL(MPA) produced micelles only near stoichiometric molar ratios. In vitro gene silencing was highest for PEG-b-PLL(MPA)/siRNA micelles, which were also more sensitive to disruption under disulfide-reducing conditions. Blood circulation was most improved for PEG-b-PLL(N2IM-IM)/siRNA micelles, with a circulation half-life 3× longer than naked siRNA. Both micelle formulations are promising for siRNA delivery applications in vitro and in vivo.  相似文献   

6.
We report the synthesis of a well-defined hyperbranched double hydrophilic block copolymer of poly(ethylene oxide)-hyperbranched-polyglycerol (PEO-hb-PG) to develop an efficient drug delivery system. In specific, we demonstrate the hyperbranched PEO-hb-PG can form a self-assembled micellar structure on conjugation with the hydrophobic anticancer agent doxorubicin, which is linked to the polymer by pH-sensitive hydrazone bonds, resulting in a pH-responsive controlled release of doxorubicin. Dynamic light scattering, atomic force microscopy, and transmission electron microscopy demonstrated successful formation of the spherical core-shell type micelles with an average size of about 200 nm. Moreover, the pH-responsive release of doxorubicin and in vitro cytotoxicity studies revealed the controlled stimuli-responsive drug delivery system desirable for enhanced efficiency. Benefiting from many desirable features of hyperbranched double hydrophilic block copolymers such as enhanced biocompatibility, increased water solubility, and drug loading efficiency as well as improved clearance of the polymer after drug release, we believe that double hydrophilic block copolymer will provide a versatile platform to develop excellent drug delivery systems for effective treatment of cancer.  相似文献   

7.
Targeted molecular imaging with two-photon fluorescence microscopy (2PFM) is a powerful technique for chemical biology and, potentially, for noninvasive diagnosis and treatment of a number of diseases. The synthesis, photophysical studies, and bioimaging are reported for a versatile norbornene-based block copolymer multifunctional scaffold containing biocompatible (PEG), two-photon fluorescent dyes (fluorenyl) and targeting (cyclic-RGD peptide) moieties. The two bioconjugates, containing two different fluorenyl dyes and cRGDfK covalently attached to the polymer probe, formed a spherical micelle and self-assembled structure in water, for which size was analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Cell viability and 2PFM imaging of human epithelial U87MG cell lines that overexpress α(v)β(3) integrin was performed via incubation with the new probes, along with negative control studies using MCF-7 breast cancer cells and blocking experiments. 2PFM microscopy confirmed the high selectivity of the biocompatible probe in the integrin-rich area in the U87MF cells while blocking as well as negative control MCF-7 experiments confirmed the integrin-targeting ability of the new probes.  相似文献   

8.
Shim WS  Kim SW  Lee DS 《Biomacromolecules》2006,7(6):1935-1941
Novel pH- and temperature-sensitive biodegradable poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol) (PCLA-PEG) block copolymers were synthesized with oligomeric sulfamethazine (OSM) end groups (OSM-PCLA-PEG-PCLA-OSM). Aqueous solutions of these block copolymers have shown sol-gel transition behavior upon both temperature and pH changes under physiological conditions (37 degrees C, pH 7.4). The sol-gel transition of these block copolymer solutions was fine-tuned by controlling the PEG length, the hydrophobic to hydrophilic block ratio (PCLA/PEG), and the molecular weight of the sulfamethazine oligomer. Since changes in temperature do not induce gel formation in this pH- and temperature-sensitive block copolymer solution, this hydrogel can be employed as an injectable carrier using a long guide catheter into the body. In addition, the pH of the block copolymer solution showed no change following PCLA degradation over 1 month, and no indication of gel collapse was observed on addition of buffer solution. As such, these properties make the OSM-PCLA-PEG-PCLA-OSM hydrogel an ideal candidate for use as an injectable carrier for certain protein-based drugs known to denature in low-pH environments.  相似文献   

9.
An acetal-poly(ethylene glycol)-poly(2-(dimethylamino)ethyl methacrylate) (acetal-PEG-PAMA) block copolymer spontaneously associated with plasmid DNA (pDNA) to form water-soluble complexes (polyion complex micelle: PIC micelle) in aqueous solution. Physicochemical characteristics and transfection efficiency of the PIC micelles thus prepared were studied here, focusing on the residual molar mixing ratio (N/P ratio) of AMA units in acetal-PEG-PAMA to the phosphate units in pDNA. With the N/P ratio increasing to unity, acetal-PEG-PAMA cooperatively formed complex micelles with pDNA through electrostatic interaction, allowing pDNA to condense effectively. Dynamic light scattering measurements revealed that the PIC micelle at N/P > or = 3 had a constant size of approximately 90-100 nm. Eventually, acetal-PEG-PAMA/pDNA micelles underwent no precipitation even after long-term storage for more than 1 month at all N/P ratios. The PIC micelles were stable even in the presence of excess polyanions, poly(vinyl sulfate), in contrast to polyplexes based on the PAMA homopolymer, yet this stabilization effect was highly dependent on the N/P ratio to reach a plateau at N/P = 3-4. This character may be attributed to the increased hydrophobicity in the vicinity of the complexed pDNA. Furthermore, the pDNA in the micelle was adequately protected from DNase I attack. The transfection ability of the PIC micelles toward 293 cells was remarkably enhanced with an increasing N/P ratio as high as 25. The zeta-potential of the micelles with a high N/P ratio was an appreciably large positive value, suggesting a noncooperative micelle formation. This deviated micellar composition with an excess cationic nature as well as the presence of free acetal-PEG-PAMA may play a substantial role in the enhanced transfection efficiency of the PIC micelle system in the high N/P ratio (approximately 25) region.  相似文献   

10.
Lu C  Chen X  Xie Z  Lu T  Wang X  Ma J  Jing X 《Biomacromolecules》2006,7(6):1806-1810
A novel biodegradable amphiphilic block copolymer PLGG-PEG-PLGG bearing pendant glucose residues is successfully prepared by the coupling reaction of 3-(2-aminoethylthio)propyl-alpha-D-glucopyranoside with the pendant carboxyl groups of PLGG-PEG-PLGG in the presence of N,N'-carbonyldiimidazole. The polymer PLGG-PEG-PLGG, i.e., poly{(lactic acid)-co-[(glycolic acid)-alt-(L-glutamic acid)]}-block-poly(ethylene glycol)-block- poly{(lactic acid)-co-[(glycolic acid)-alt-(L-glutamic acid)]}, is prepared by ring-opening copolymerization of L-lactide (LLA) with (3s)-benzoxylcarbonylethylmorpholine-2,5-dione (BEMD) in the presence of dihydroxyl PEG with molecular weight of 2000 as macroinitiator and Sn(Oct)2 as catalyst, and then by catalytic hydrogenation. The glucose-grafted copolymer shows a lower degree of cytotoxicity to ECV-304 cells and improved specific recognition and binding with Concanavalin A (Con A). Therefore, this kind of glucose-grafted copolymer may find biomedical applications.  相似文献   

11.
Novel injectable pH and temperature sensitive block copolymer hydrogel   总被引:3,自引:0,他引:3  
Shim WS  Yoo JS  Bae YH  Lee DS 《Biomacromolecules》2005,6(6):2930-2934
A novel pH and temperature sensitive block copolymer was prepared by adding pH sensitive moiety to temperature sensitive block copolymer. This block copolymer solution showed a reversible sol-gel transition by a small pH change in the range of pH 7.4-8.0 and also by the temperature change in the region of body temperature. The very precise molecular weight control of block copolymer and the prudential tuning of hydrophilic-hydrophobic balance were needed to control the phase diagram. This block copolymer solution forms a gel at 37 degrees C, pH 7.4 (human body). When the block copolymer solution is at room temperature and pH 8.0 as a sol state, both the temperature and pH change are needed for the gelation. This material can be employed as injectable carriers for hydrophobic drugs and proteins, etc. Gelation inside the needle can be prevented by an increase in the temperature during injection, because it does not change into the gel form with only increasing temperature. This material can be used for even a long guide catheter into the body. The block copolymer hydrogel which shows the sol-gel transition by the small pH change from pH 8.0 to pH 7.4 has merits in the delivery system for protein and cells which show cytotoxicity in acidic (below pH 6.5) or basic (above pH 8.5) conditions. This block copolymer system could be used as a template technology for injectable delivery systems.  相似文献   

12.
Liu J  Pang Y  Huang W  Huang X  Meng L  Zhu X  Zhou Y  Yan D 《Biomacromolecules》2011,12(5):1567-1577
A new type of biodegradable micelles for glutathione-mediated intracellular drug delivery was developed on the basis of an amphiphilic hyperbranched multiarm copolymer (H40-star-PLA-SS-PEP) with disulfide linkages between the hydrophobic polyester core and hydrophilic polyphosphate arms. The resulting copolymers were characterized by nuclear magnetic resonance (NMR), Fourier transformed infrared (FTIR), gel permeation chromatography (GPC), and differential scanning calorimeter (DSC) techniques. Benefiting from amphiphilic structure, H40-star-PLA-SS-PEP was able to self-assemble into micelles in aqueous solution with an average diameter of 70 nm. Moreover, the hydrophilic polyphosphate shell of these micelles could be detached under reduction-stimulus by in vitro evaluation, which resulted in a rapid drug release due to the destruction of micelle structure. The glutathione-mediated intracellular drug delivery was investigated against a Hela human cervical carcinoma cell line. Flow cytometry and confocal laser scanning microscopy (CLSM) measurements demonstrated that H40-star-PLA-SS-PEP micelles exhibited a faster drug release in glutathione monoester (GSH-OEt) pretreated Hela cells than that in the nonpretreated cells. Cytotoxicity assay of the doxorubicin-loaded (DOX-loaded) micelles indicated the higher cellular proliferation inhibition against 10 mM of GSH-OEt pretreated Hela cells than that of the nonpretreated ones. As expected, the DOX-loaded micelles showed lower inhibition against 0.1 mM of buthionine sulfoximine (BSO) pretreated Hela cells. These reduction-responsive and biodegradable micelles show a potential to improve the antitumor efficacy of hydrophobic chemotherapeutic drugs.  相似文献   

13.
Pluronic mimicking poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer having multiple hydroxyl groups in the PPO middle segment (core-functionalized Pluronic: CF-PLU) was synthesized for conjugation of doxorubicin (DOX). DOX was conjugated on the multiple hydroxyl groups of CF-PLU via an acid-labile hydrazone linkage (CF-PLU-DOX). In aqueous solution, CF-PLU-DOX copolymers self-assembled to form a core/shell-type micelle structure consisting of a hydrophobic DOX-conjugated PPO core and a hydrophilic PEO shell layer. The conjugated DOX from CF-PLU-DOX micelles was released out more rapidly at pH 5 than pH 7.4, indicating that the hydrazone linkage was cleaved under acidic condition. CF-PLU-DOX micelles exhibited greatly enhanced cytotoxicity for MCF-7 human breast cancer cells compared to naked DOX, while CF-PLU copolymer itself showed extremely low cytotoxicity. Flow cytometry analysis revealed that the extent of cellular uptake for CF-PLU-DOX micelles was greater than free DOX. Confocal image analysis also showed that CF-PLU-DOX micelles had a quite different intracellular distribution profile from free DOX. CF-PLU-DOX micelles were mainly distributed in the cytoplasm, endosomal/lysosomal vesicles, and nucleus, while free DOX was localized mainly within the nucleus, suggesting that CF-PLU-DOX micellar formulation might be advantageously used for overcoming the multidrug resistance (MDR) effect, which gradually develops in many tumor cells during repeated drug administration.  相似文献   

14.
A novel pH-sensitive amphiphilic copolymer brush poly(methyl methacrylate-co-methacrylic acid)-b-poly(poly(ethylene glycol) methyl ether monomethacrylate) [P(MMA-co-MAA)-b-PPEGMA] was defined and synthesized by atom transfer radical polymerization (ATRP) technique. The molecular structures and characteristics of this copolymer and its precursors were confirmed by (1)H NMR, FT-IR, and GPC. The CMC of P(MMA-co-MAA)-b-PPEGMA in aqueous medium was determined to be 1-4 mg/L. This copolymer could self-assemble into micelles in aqueous solution with an average size of 120-250 nm determined by DLS. The morphologies of the micelles were found to be spherical by SEM and TEM. Ibuprofen (IBU), a poorly water-soluble drug, was selected as the model drug and wrapped into the core of micelles via dialysis method. Drug entrapment efficiency reached to 90%. The in vitro release behavior of IBU from these micelles was pH-dependent. The cumulative release percent of IBU was less than 20% of the initial drug content in simulated gastric fluid (SGF, pH 1.2) over 12 h, but 90% was released in simulated intestinal fluid (SIF, pH 7.4) within 6 h. The release profiles showed that the P(MMA-co-MAA)-b-PPEGMA micelles could inhibit the premature burst drug release under the intestinal conditions. All the results indicate that the P(MMA-co-MAA)-b-PPEGMA micelle may be a potential oral drug delivery carrier for poorly water-soluble drugs.  相似文献   

15.
Polyhydroxyalkanoate (PHA) synthesis genes phaPCJ Ac cloned from Aeromonas caviae were transformed into Pseudomonas putida KTOY06ΔC, a mutant of P. putida KT2442, resulting in the ability of the recombinant P. putida KTOY06ΔC (phaPCJ A.c ) to produce a short-chain-length and medium-chain-length PHA block copolymer consisting of poly-3-hydroxybutyrate (PHB) as one block and random copolymer of 3-hydroxyvalerate (3HV) and 3-hydroxyheptanoate (3HHp) as another block. The novel block polymer was studied by differential scanning calorimetry (DSC), nuclear magnetic resonance, and rheology measurements. DSC studies showed the polymer to possess two glass transition temperatures (T g), one melting temperature (T m) and one cool crystallization temperature (T c). Rheology studies clearly indicated a polymer chain re-arrangement in the copolymer; these studies confirmed the polymer to be a block copolymer, with over 70 mol% homopolymer (PHB) of 3-hydroxybutyrate (3HB) as one block and around 30 mol% random copolymers of 3HV and 3HHp as the second block. The block copolymer was shown to have the highest tensile strength and Young’s modulus compared with a random copolymer with similar ratio and a blend of homopolymers PHB and PHVHHp with similar ratio. Compared with other commercially available PHA including PHB, PHBV, PHBHHx, and P3HB4HB, the short-chain- and medium-chain-length block copolymer PHB-b-PHVHHp showed differences in terms of mechanical properties and should draw more attentions from the PHA research community.  相似文献   

16.
Self-assembly of AB diblock copolymer confined in concentric-cylindrical nanopores was studied using MesoDyn simulation. Our calculation shows that in this confined geometry a zoo of exotic structures can be formed. These structures include bicontinuous phases like carbon nanotube, imperfect single helixes and double helixes. Moreover, the dependence of the chain conformation on the volume fraction, concentration, the interactions between blocks and the diameter of the cylindrical pore are investigated. The results of these simulations can be used to predict the diblock copolymer morphologies confined in concentric-cylindrical nanopores and should be helpful in designing polymeric nanomaterials in the future.  相似文献   

17.
Wang Y  Wang LS  Goh SH  Yang YY 《Biomacromolecules》2007,8(3):1028-1037
We have recently reported biodegradable cationic micelles self-assembled from an amphiphilic copolymer, poly{(N-methyldietheneamine sebacate)-co-[(cholesteryl oxocarbonylamido ethyl)methyl bis(ethylene)ammonium bromide]sebacate} (P(MDS-co-CES)), which were utilized to deliver a drug and nucleic acid simultaneously, and a synergistic effect was achieved. In this paper, synthesis and characterization of the polymer is presented in details, focusing on micelle formation and DNA binding under various conditions, cytotoxicity, in-vitro degradation, and gene transfection in various cell lines. The polymer was degradable and formed micelles at very low concentrations even in an environment with high salt concentration. These micelles fabricated at pH 4.6 had an average size of less than 82 nm and zeta potential of up to 84 +/- 5 mV, displaying strong DNA binding ability. They induced high gene expression efficiency in various cell lines, which was significantly greater than poly(ethylenimine) (PEI) especially in 4T1 mouse and MDA-MB-231 human breast cancer cell lines, but they were less cytotoxic. These cationic micelles may provide a promising nonviral vector for gene delivery.  相似文献   

18.
Hu X  Liu S  Chen X  Mo G  Xie Z  Jing X 《Biomacromolecules》2008,9(2):553-560
A new biodegradable amphiphilic block copolymer, poly(ethylene glycol)-b-poly(L-lactide-co-9-phenyl-2,4,8,10-tetraoxaspiro[5,5]undecan-3-one) [PEG-b-P(LA-co-PTO)], was successfully prepared by ring-opening polymerization (ROP) of L-lactide (LA) and functionalized carbonate monomer 9-phenyl-2,4,8,10-tetraozaspiro[5,5]undecan-3-one (PTO) in the presence of monohydroxyl poly(ethylene glycol) as macroinitiator using Sn(Oct)2 as catalyst. NMR, FT-IR, and GPC studies confirmed the copolymer structure. It could self-assemble into micelles in aqueous solution with critical micelle concentration (CMC) in the magnitude of mg/L, which changed with the composition of the copolymer. After catalytic hydrogenation, copolymers with active hydroxyl groups were obtained. Adhesion and proliferation of Vero cells on the copolymer films showed that the synthesized copolymers were good biocompatible materials. In vitro degradation of the copolymer before and after deprotection was investigated in the presence of proteinase K. The free hydroxyl groups on the copolymers were capable of further modification with biotin. This new amphiphilic block copolymer has great potential for both drug encapsulation and conjugate because of its low CMC and the presence of active hydroxyl groups.  相似文献   

19.
20.
Poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) block copolymers self-assemble into micelles in aqueous solution. We have examined whether these micelles can internalize into P19 cells in vitro. Fluorescently labeled PEO(45)-b-PCL(23) block copolymer was prepared by conjugating a tetramethylrhodamine molecule to the end of the hydrophobic PCL block. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) studies yielded 24 +/- 2 and 25 +/- 2 nm, respectively, for the diameters of the micelles. The studies also showed that chemical labeling did not effect the morphology or size. When the rhodamine-labeled PEO(45)-b-PCL(23) block copolymer micelles were tested in vitro, time-, concentration-, and pH-dependence of the internalization process suggested that internalization proceeded by endocytosis. The results from these studies provide the first direct evidence for the internalization of PEO(45)-b-PCL(23) micelles. Future studies will utilize multiple labeling of these micelles, allowing questions to be addressed related to the fate of internalized micelles as drug carriers, the destination of the incorporated drugs or fluorescent probes released from micelles, and the identification of the subcellular localization of the whole drug-carrier system within cells, both in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号