首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Huang QQ  Chen A  Jin JP 《Gene》1999,229(1-2):1-10
Three muscle type-specific troponin T (TnT) genes are present in vertebrate to encode a number of protein isoforms via alternative mRNA splicing. While the genomic structures of cardiac and fast skeletal muscle TnT genes have been documented, this study cloned and characterized the slow skeletal muscle TnT (sTnT) gene. Complete nucleotide sequence and genomic organization revealed that the mouse sTnT gene spans 11.1kb and contains 14 exons, which is smaller and simpler than the fast skeletal muscle and cardiac TnT genes. Potentially representing a prototype of the TnT gene family, the 5'-region of the sTnT gene contains fewer unsplit large exons, among which two alternatively spliced exons are responsible for the NH2-terminal variation of three sTnT isoforms. The sTnT gene structure shows that the alternatively spliced central segment found in human sTnT cDNAs may be a result from splicing using an alternative acceptor site at the intron 11-exon 12 boundary. Together with the well-conserved protein structure, the highly specific expression of sTnT in slow skeletal muscles indicates a differentiated function of this member of the TnT gene family. The determination of genomic structure and alternative splicing pathways of sTnT gene lays a foundation to further understand the TnT structure-function evolution as well as contractile characteristics of different types of muscle fiber.  相似文献   

2.
The conserved central and COOH-terminal regions of troponin T (TnT) interact with troponin C, troponin I, and tropomyosin to regulate striated muscle contraction. Phylogenic data show that the NH2-terminal region has evolved as an addition to the conserved core structure of TnT. This NH2-terminal region does not bind other thin filament proteins, and its sequence is hypervariable between fiber type and developmental isoforms. Previous studies have demonstrated that NH2-terminal modifications alter the COOH-terminal conformation of TnT and thin filament Ca2+-activation, yet the functional core structure of TnT and the mechanism of NH2-terminal modulation are not well understood. To define the TnT core structure and investigate the regulatory role of the NH2-terminal variable region, we investigated two classes of model TnT molecules: (1) NH2-terminal truncated cardiac TnT and (2) chimera proteins consisting of an acidic or basic skeletal muscle TnT NH2-terminus spliced to the cardiac TnT core. Deletion of the TnT hypervariable NH2-terminus preserved binding to troponin I and tropomyosin and sustained cardiac muscle contraction in the heart of transgenic mice. Further deletion of the conserved central region diminished binding to tropomyosin. The reintroduction of differently charged NH2-terminal domains in the chimeric molecules produced long-range conformational changes in the central and COOH-terminal regions to alter troponin I and tropomyosin binding. Similar NH2-terminal charge effects are demonstrated in naturally occurring cardiac TnT isoforms, indicating a physiological significance. These results suggest that the hypervariable NH2-terminal region modulates the conformation and function of the TnT core structure to fine-tune muscle contractility.  相似文献   

3.
The Mexican axolotl, Ambystoma mexicanum, is an excellent animal model for studying heart development because it carries a naturally occurring recessive genetic mutation, designated gene c, for cardiac nonfunction. The double recessive mutants (c/c) fail to form organized myofibrils in the cardiac myoblasts resulting in hearts that fail to beat. Tropomyosin expression patterns have been studied in detail and show dramatically decreased expression in the hearts of homozygous mutant embryos. Because of the direct interaction between tropomyosin and troponin T (TnT), and the crucial functions of TnT in the regulation of striated muscle contraction, we have expanded our studies on this animal model to characterize the expression of the TnT gene in cardiac muscle throughout normal axolotl development as well as in mutant axolotls. In addition, we have succeeded in cloning the full-length cardiac troponin T (cTnT) cDNA from axolotl hearts. Confocal microscopy has shown a substantial, but reduced, expression of TnT protein in the mutant hearts when compared to normal during embryonic development.  相似文献   

4.
5.
In contrast to skeletal muscles that simultaneously express multiple troponin T (TnT) isoforms, normal adult human cardiac muscle contains a single isoform of cardiac TnT. To understand the significance of myocardial TnT homogeneity, we examined the effect of TnT heterogeneity on heart function. Transgenic mouse hearts overexpressing a fast skeletal muscle TnT together with the endogenous cardiac TnT was investigated in vivo and ex vivo as an experimental system of concurrent presence of two classes of TnT in the adult cardiac muscle. This model of myocardial TnT heterogeneity produced pathogenic phenotypes: echocardiograph imaging detected age-progressive reductions of cardiac function; in vivo left ventricular pressure analysis showed decreased myocardial contractility; ex vivo analysis of isolated working heart preparations confirmed an intrinsic decrease of cardiac function in the absence of neurohumoral influence. The transgenic mice also showed chronic myocardial hypertrophy and degeneration. The dominantly negative effects of introducing a fast TnT into the cardiac thin filaments to produce two classes of Ca(2+) regulatory units in the adult myocardium suggest that TnT heterogeneity decreases contractile function by disrupting the synchronized action during ventricular contraction that is normally activated as an electrophysiological syncytium.  相似文献   

6.
7.
Fetal rat skeletal muscles express a troponin T (TnT) isoform similar to the TnT isoform expressed in the embryonic heart with respect to electrophoretic mobility and immunoreactivity with cardiac TnT-specific monoclonal antibodies. Immunoblotting analyses reveal that both the embryonic and the adult isoforms of cardiac TnT are transiently expressed during the neonatal stages. In addition, other TnT species, different from both cardiac TnTs and from the TnT isoforms expressed in adult muscles, are present in skeletal muscles during the first two postnatal weeks. By immunocytochemistry, cardiac TnT is detectable at the somitic stage and throughout embryonic and fetal development, and disappears during the first weeks after birth, persisting exclusively in the bag fibers of the muscle spindles. Cardiac TnT is re-expressed in regenerating muscle fibers following a cold injury and in mature muscle fibers after denervation. Developmental regulation of this TnT variant is not coordinated with that of the embryonic myosin heavy chain with respect to timing of disappearance and cellular distribution. No obligatory correlation between the two proteins is likewise found in regenerating and denervated muscles.  相似文献   

8.
Troponin T (TnT) and troponin I (TnI) are two evolutionarily and functionally linked subunits of the troponin complex that regulates striated muscle contraction. We previously reported a single amino acid substitution in the highly conserved TnT-binding helix of cardiac TnI (cTnI) in wild turkey hearts in concurrence with an abnormally spliced myopathic cardiac TnT (cTnT) (Biesiadecki, B. J., Schneider, K. L., Yu, Z. B., Chong, S. M., and Jin, J. P. (2004) J. Biol. Chem. 279, 13825–13832). To investigate the functional effect of this cTnI mutation and its potential value in compensating for the cTnT abnormality, we developed transgenic mice expressing the mutant cTnI (K118C) in the heart with or without the deletion of the endogenous cTnI gene to mimic the homozygote and heterozygote of wild turkeys. Double and triple transgenic mice were created by crossing the cTnI-K118C lines with transgenic mice overexpressing the myopathic cTnT (exon 7 deletion). Functional studies of ex vivo working hearts found that cTnI-K118C alone had a dominantly negative effect on diastolic function and blunted the inotropic responses of cardiac muscle to β-adrenergic stimuli without abolishing the protein kinase A-dependent phosphorylation of cTnI. When co-expressed with the cTnT mutation, cTnI-K118C corrected the significant depression of systolic function caused by cTnT exon 7 deletion, and the co-existence of exon 7-deleted cTnT minimized the diastolic abnormality of cTnI-K118C. Characterization of this naturally selected pair of mutually rescuing mutations demonstrated that TnI-TnT interaction is a critical link in the Ca2+ signaling and β-adrenergic regulation in cardiac muscle, suggesting a potential target for the treatment of troponin cardiomyopathies and heart failure.  相似文献   

9.
10.
Molecular cloning of human cardiac troponin I using polymerase chain reaction   总被引:17,自引:0,他引:17  
We have used the polymerase chain reaction (PCR) to synthesise a cDNA encoding part of human cardiac troponin I. Amplification was achieved using fully degenerate sets of oligonucleotides corresponding to conserved regions of amino acid sequence identified in other troponin I isoforms. The cloned PCR fragment was subsequently used to isolate full-length cDNAs from a cardiac cDNA library. We describe the approach, as a general cloning strategy starting from limited amino-acid sequence data and report the cloning, and complete amino acid sequence of human cardiac troponin I. Analysis of human development using these clones demonstrates early expression of this gene in the heart.  相似文献   

11.
Alternative splicing of troponin T (TnT) in striated muscle during development results in expression of different isoforms, with the splicing of a 5(') exon of TnT resulting in the expression of low-molecular-weight basic adult TnT isoforms and high-molecular-weight acidic embryonic TnT isoforms. Although other differences exist, the main differences between cardiac TnT (cTnT) and fast skeletal muscle TnT (fTnT) are in the NH(2) terminus, with fTnT being less acidic than cTnT. A transgenic mouse line expressing chicken fTnT in the heart was used to investigate the functional significance of TnT NH(2)-terminal charge differences on cardiac muscle contractility. The rates of force redevelopment (k(tr)) at four levels of Ca(2+) activation were recorded for skinned left ventricular trabeculae from control and transgenic mice. The k(tr) vs Ca(2+) relationship was different in control mice and transgenic mice, suggesting that the structure of TnT, and possibly the NH(2)-terminal region, is involved in determining the kinetics of cross-bridge cycle. These results suggest that isoform shifts in TnT may be an important molecular mechanism for determining the Ca(2+) dependence of cardiac muscle contractility.  相似文献   

12.
《Gene》1997,193(1):105-114
Large samples of original cDNAs encoding neonatal and adult mouse fast skeletal muscle troponin T (fTnT) have been isolated and characterized. The results demonstrate expression relationships of 8 alternatively spliced exons of the fTnT gene and reveal the primary structure of as many as 13 fTnT isoforms that diverge into acidic and basic classes due to differential mRNA splicing in the N-terminal variable region. In the C-terminal variable region encoded by the mutually exclusive exons 16 and 17, the splicing pathway and structure of exon 16 appears to be adult fTnT-specific, suggesting an adaptation to the functional demands of mature fast skeletal muscle. The cloned cDNAs were expressed in E. coli as standards to identify a high Mr to low Mr, acidic to basic fTnT isoform transition in postnatal developing skeletal muscles. Different from the developmental cardiac TnT switch generated by alternative splicing of a single exon, the fTnT isoform transition is an additive effect of alternative splicing of multiple N-terminal-coding exons, especially exons 4, 8 and fetal that are expressed at higher frequencies in the neonatal than in the adult muscle. The developmental fTnT isoform primary structure transition in both N- and C-terminal variable regions suggest a physiological importance of the apparently complex TnT isoform expression.  相似文献   

13.
In mammalian fast skeletal muscle, constitutive and alternative splicing from a single troponin T (TnT) gene produce multiple developmentally regulated and tissue specific TnT isoforms. Two exons, alpha (exon 16) and beta (exon 17), located near the 3' end of the gene and coding for two different 14 amino acid residue peptides are spliced in a mutually exclusive manner giving rise to the adult TnTalpha and the fetal TnTbeta isoforms. In addition, an acidic peptide coded by a fetal (f) exon located between exons 8 and 9 near the 5' end of the gene, is specifically present in TnTbeta and absent in the adult isoforms. To define the functional role of the f and alpha/beta exons, we constructed combinations of TnT cDNAs from a single human fetal fast skeletal TnTbeta cDNA clone in order to circumvent the problem of N-terminal sequence heterogeneity present in wild-type TnT isoforms, irrespective of the stage of development. Nucleotide sequences of these constructs, viz. TnTalpha, TnTalpha + f, TnTbeta - f and TnTbeta are identical, except for the presence or absence of the alpha or beta and f exons. Our results, using the recombinant TnT isoforms in different functional in vitro assays, show that the presence of the f peptide in the N-terminal T1 region of TnT, has a strong inhibitory effect on binary interactions between TnT and other thin filament proteins, TnI, TnC and Tm. The presence of the f peptide led to reduced Ca2+-dependent ATPase activity in a reconstituted thin filament, whereas the contribution of the alpha and beta peptides in the biological activity of TnT was primarily modulatory. These results indicate that the f peptide confers an inhibitory effect on the biological function of fast skeletal TnT and this can be correlated with changes in the Ca2+ regulation associated with development in fast skeletal muscle.  相似文献   

14.
15.
At least four isoforms of troponin T (TnT) exist in the human heart, and they are expressed in a developmentally regulated manner. To determine whether the different N-terminal isoforms are functionally distinct with respect to structure, Ca(2+) sensitivity, and inhibition of force development, the four known human cardiac troponin T isoforms, TnT1 (all exons present), TnT2 (missing exon 4), TnT3 (missing exon 5), and TnT4 (missing exons 4 and 5), were expressed, purified, and utilized in skinned fiber studies and in reconstituted actomyosin ATPase assays. TnT3, the adult isoform, had a slightly higher alpha-helical content than the other three isoforms. The variable region in the N terminus of cardiac TnT was found to contribute to the determination of the Ca(2+) sensitivity of force development in a charge-dependent manner; the greater the charge the higher the Ca(2+) sensitivity, and this was primarily because of exon 5. These studies also demonstrated that removal of either exon 4 or exon 5 from TnT increased the cooperativity of the pCa force relationship. Troponin complexes reconstituted with the four TnT isoforms all yielded the same maximal actin-tropomyosin-activated myosin ATPase activity. However, troponin complexes containing either TnT1 or TnT2 (both containing exon 5) had a reduced ability to inhibit this ATPase activity when compared with wild type troponin (which contains TnT3). Interestingly, fibers containing these isoforms also showed less relaxation suggesting that exon 5 of cardiac TnT affects the ability of Tn to inhibit force development and ATPase activity. These results suggest that the different N-terminal TnT isoforms would produce different functional properties in the heart that would directly affect myocardial contraction.  相似文献   

16.
In order to show the tissue-specific distribution of troponin T (TnT) isoforms in avian skeletal muscles, their expression was examined by electrophoresis of the breast and leg muscles of seven avian species and immunoblotting with the antiserum against fast skeletal muscle TnT. It has been reported in the chicken that breast-muscle-type (B-type) and leg-muscle-type (L-type) TnT isoforms are expressed specifically in the adult breast and leg muscles, respectively. Their differential expression patterns were confirmed in all birds examined in this study. The expression of a segment encoded by the exon x series of TnT was also examined by immunoblotting with the antiserum against a synthetic peptide derived from the exon x3 sequence, because the segment has been shown to be included exclusively in the B-type, but not in the L-type TnT. The expression of the segment was found only in the breast muscle, but not in the leg muscle of all birds examined. TnT cDNA sequences from the duck breast and leg muscles were determined and showed that only B-type TnT had an exon x-related sequence, suggesting that the expression of B-type TnT containing the exon x-derived segment is conserved consistently in the birds.  相似文献   

17.
18.
Cardiac muscle contraction is regulated by Ca(2+) through the troponin complex consisting of three subunits: troponin C (TnC), troponin T (TnT), and troponin I (TnI). We reported previously that the abnormal splicing of cardiac TnT in turkeys with dilated cardiomyopathy resulted in a greater binding affinity to TnI. In the present study, we characterized a polymorphism of cardiac TnI in the heart of wild turkeys. cDNA cloning and sequencing of the novel turkey cardiac TnI revealed a single amino acid substitution, R111C. Arg(111) in avian cardiac TnI corresponds to a Lys in mammals. This residue is conserved in cardiac and skeletal muscle TnIs across the vertebrate phylum, implying a functional importance. In the partial crystal structure of cardiac troponin, this amino acid resides in an alpha-helix that directly contacts with TnT. Structural modeling indicates that the substitution of Cys for Arg or Lys at this position would not disrupt the global structure of troponin. To evaluate the functional significance of the different size and charge between the Arg and Cys side chains, protein-binding assays using purified turkey cardiac TnI expressed in Escherichia coli were performed. The results show that the R111C substitution lowered binding affinity to TnT, which is potentially compensatory to the increased TnI-binding affinity of the cardiomyopathy-related cardiac TnT splicing variant. Therefore, the fixation of the cardiac TnI Cys(111) allele in the wild turkey population and the corresponding functional effect reflect an increased fitness value, suggesting a novel target for the treatment of TnT myopathies.  相似文献   

19.
A cardiac troponin T epitope conserved across phyla.   总被引:9,自引:0,他引:9  
Troponin T is a thin filament protein that is important in regulating striated muscle contraction. We have raised a monoclonal antibody against rabbit cardiac troponin T, monoclonal (mAb) 13-11, that recognizes its epitope in cardiac troponin T isoforms from fish, bird, and mammal but not from frog. The number of these isoforms expressed in cardiac muscle varies among species and during development. Cardiac troponin T isoforms were not found in adult skeletal muscle, while they were expressed transiently in immature skeletal muscle. We have mapped the epitope recognized by mAb 13-11 using rabbit cardiac troponin T isoforms. Analysis of stepwise cyanogen bromide digestion, which allowed association of the epitope to regions spanning methionine residues, coupled with immunoactivity of synthetic peptides, corresponding to sequences containing methionine residues, indicated that mAb 13-11 recognized its epitope in a 17-residue sequence containing the methionine at position 68, SKPKPRPFMPNLVPPKI. Comparison of skeletal and cardiac troponin T sequences suggested that the epitope was contained within the sequence FMPNLVPPKI. Synthetic peptides PFMPNLVPPKI and FMPNLVPPKI were recognized by mAb 13-11 on slot-blots. Enzyme-linked immunosorbent assay demonstrated mAb 13-11 recognized, in order of descending affinity, the 17-, 11-, and 10-residue sequence. Preabsorption of mAb 13-11 with each of these sequences blocked the recognition of the 17-residue peptide by mAb 13-11. The domain, PFMPNLVPPKI is encoded by the 5' region of the cardiac gene exon 10 and is present in hearts across a broad range of phyla. These findings suggest that this cardiac troponin T-specific sequence confers onto myofilaments structural and functional properties unique to the heart.  相似文献   

20.
cDNAs containing the complete coding sequences of four isoforms of troponin T derived from 1-week-old chick skeletal muscle have been isolated and sequenced. While the 5' and 3' untranslated regions and most of the coding sequence were identical for each, dramatic differences were observed in the NH2-terminal region corresponding to amino acid residues 10-37 of rabbit skeletal troponin T. These sequence differences correspond to the alternatively spliced but not mutually exclusive exons 4 to 8 of the rat skeletal muscle troponin T gene. In addition, we observe a sequence corresponding to an extra exon or exons (between 5 and 6) present in the chicken skeletal muscle gene and not previously detected in the rat skeletal or chicken cardiac genes. This sequence of 63 nucleotides consists of an almost perfect repeat of 30 and 33 nucleotides and has previously been shown to be represented as a protein variant in chicken skeletal muscle. A difference is also present in one cDNA clone corresponding to the alternatively spliced (mutually exclusive) exons 16 and 17 of the rat gene. In the protein, this corresponds to a region implicated in the interaction of troponin T with troponin C, tropomyosin, and perhaps troponin I and F-actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号