首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Elixirs of death     
Substandard and fake drugs are increasingly threatening lives in both the developed and developing world, but governments and industry are struggling to improve the situation.When people take medicine, they assume that it will make them better. However many patients cannot trust their drugs to be effective or even safe. Fake or substandard medicine is a major public health problem and it seems to be growing. More than 200 heart patients died in Pakistan in 2012 after taking a contaminated drug against hypertension [1]. In 2006, cough syrup that contained diethylene glycol as a cheap substitute for pharmaceutical-grade glycerin was distributed in Panama, causing the death of at least 219 people [2,3]. However, the problem is not restricted to developing countries. In 2012, more than 500 patients came down with fungal meningitis and several dozens died after receiving contaminated steroid injections from a compounding pharmacy in Massachusetts [4]. The same year, a fake version of the anti-cancer drug Avastin, which contained no active ingredient, was sold in the USA. The drug seemed to have entered the country through Turkey, Switzerland, Denmark and the UK [5].…many patients cannot trust their drugs to be effective or even safeThe extent of the problem is not really known, as companies and governments do not always report incidents [6]. However, the information that is available is alarming enough, especially in developing countries. One study found that 20% of antihypertensive drugs collected from pharmacies in Rwanda were substandard [7]. Similarly, in a survey of anti-malaria drugs in Southeast Asia and sub-Saharan Africa, 20–42% were found to be either of poor quality or outright fake [8], whilst 56% of amoxicillin capsules sampled in different Arab countries did not meet the US Pharmacopeia requirements [9].Developing countries are particularly susceptible to substandard and fake medicine. Regulatory authorities do not have the means or human resources to oversee drug manufacturing and distribution. A country plagued by civil war or famine might have more pressing problems—including shortages of medicine in the first place. The drug supply chain is confusingly complex with medicines passing through many different hands before they reach the patient, which creates many possible entry points for illegitimate products. Many people in developing countries live in rural areas with no local pharmacy, and anyway have little money and no health insurance. Instead, they buy cheap medicine from street vendors at the market or on the bus (Fig 1; [2,10,11]). “People do not have the money to buy medicine at a reasonable price. But quality comes at a price. A reasonable margin is required to pay for a quality control system,” explained Hans Hogerzeil, Professor of Global Health at Groningen University in the Netherlands. In some countries, falsifying medicine has developed into a major business. The low risk of being detected combined with relatively low penalties has turned falsifying medicine into the “perfect crime” [2].Open in a separate windowFigure 1Women sell smuggled, counterfeit medicine on the Adjame market in Abidjan, Ivory Coast, in 2007. Fraudulent street medecine sales rose by 15–25% in the past two years in Ivory Coast.Issouf Sanogo/AFP Photo/Getty Images.There are two main categories of illegitimate drugs. ‘Substandard'' medicines might result from poor-quality ingredients, production errors and incorrect storage. ‘Falsified'' medicine is made with clear criminal intent. It might be manufactured outside the regulatory system, perhaps in an illegitimate production shack that blends chalk with other ingredients and presses it into pills [10]. Whilst falsified medicines do not typically contain any active ingredients, substandard medicine might contain subtherapeutic amounts. This is particularly problematic when it comes to anti-infectious drugs, as it facilitates the emergence and spread of drug resistance [12]. A sad example is the emergence of artemisinin-resistant Plasmodium strains at the Thai–Cambodia border [8] and the Thai–Myanmar border [13], and increasing multidrug-resistant tuberculosis might also be attributed to substandard medication [11].Many people in developing countries live in rural areas with no local pharmacy, and anyway have little money and no health insuranceEven if a country effectively prosecutes falsified and substandard medicine within its borders, it is still vulnerable to fakes and low-quality drugs produced elsewhere where regulations are more lax. To address this problem, international initiatives are urgently required [10,14,15], but there is no internationally binding law to combat counterfeit and substandard medicine. Although drug companies, governments and NGOs are interested in good-quality medicines, the different parties seem to have difficulties coming to terms with how to proceed. What has held up progress is a conflation of health issues and economic interests: innovator companies and high-income countries have been accused of pushing for the enforcement of intellectual property regulations under the guise of protecting quality of medicine [14,16].The concern that intellectual property (IP) interests threaten public health dates back to the ‘Trade-Related Aspects of Intellectual Property Rights (TRIPS) Agreement'' of the World Trade Organization (WTO), adopted in 1994, to establish global protection of intellectual property rights, including patents for pharmaceuticals. The TRIPS Agreement had devastating consequences during the acquired immunodeficiency syndrome epidemic, as it blocked patients in developing countries from access to affordable medicine. Although it includes flexibility, such as the possibility for governments to grant compulsory licenses to manufacture or import a generic version of a patented drug, it has not always been clear how these can be used by countries [14,16,17].In response to public concerns over the public health consequences of TRIPS, the Doha Declaration on the TRIPS Agreement and Public Health was adopted at the WTO''s Ministerial Conference in 2001. It reaffirmed the right of countries to use TRIPS flexibilities and confirmed the primacy of public health over the enforcement of IP rights. Although things have changed for the better, the Doha Declaration did not solve all the problems associated with IP protection and public health. For example, anti-counterfeit legislation, encouraged by multi-national pharmaceutical industries and the EU, threatened to impede the availability of generic medicines in East Africa [14,16,18]. In 2008–2009, European customs authorities seized shipments of legitimate generic medicines in transit from India to other developing countries because they infringed European IP laws [14,16,17]. “We''re left with decisions being taken based on patents and trademarks that should be taken based on health,” commented Roger Bate, a global health expert and resident scholar at the American Enterprise Institute in Washington, USA. “The health community is shooting themselves in the foot.”Conflating health care and IP issues are reflected in the unclear use of the term ‘counterfeit'' [2,14]. “Since the 1990s the World Health Organization (WHO) has used the term ‘counterfeit'' in the sense we now use ‘falsified'',” explained Hogerzeil. “The confusion started in 1995 with the TRIPS agreement, through which the term ‘counterfeit'' got the very narrow meaning of trademark infringement.” As a consequence, an Indian generic, for example, which is legal in some countries but not in others, could be labelled as ‘counterfeit''—and thus acquire the negative connotation of bad quality. “The counterfeit discussion was very much used as a way to block the market of generics and to put them in a bad light,” Hogerzeil concluded.The rifts between the stakeholders have become so deep during the course of these discussions that progress is difficult to achieve. “India is not at all interested in any international regulation. And, unfortunately, it wouldn''t make much sense to do anything without them,” Hogerzeil explained. Indeed, India is a core player: not only does it have a large generics industry, but also the country seems to be, together with China, the biggest source of fake medical products [19,20]. The fact that India is so reluctant to react is tragically ironic, as this stance hampers the growth of its own generic companies like Ranbaxy, Cipla or Piramal. “I certainly don''t believe that Indian generics would lose market share if there was stronger action on public health,” Bate said. Indeed, stricter regulations and control systems would be advantageous, because they would keep fakers at bay. The Indian generic industry is a common target for fakers, because their products are broadly distributed. “The most likely example of a counterfeit product I have come across in emerging markets is a counterfeit Indian generic,” Bate said. Such fakes can damage a company''s reputation and have a negative impact on its revenues when customers stop buying the product.The WHO has had a key role in attempting to draft international regulations that would contain the spread of falsified and substandard medicine. It took a lead in 2006 with the launch of the International Medical Products Anti-Counterfeiting Taskforce (IMPACT). But IMPACT was not a success. Concerns were raised over the influence of multi-national drug companies and the possibility that issues on quality of medicines were conflated with the attempts to enforce stronger IP measures [17]. The WHO distanced itself from IMPACT after 2010. For example, it no longer hosts IMPACT''s secretariat at its headquarters in Geneva [2].‘Substandard'' medicines might result from poor quality ingredients, production errors and incorrect storage. ‘Falsified'' medicine is made with clear criminal intentIn 2010, the WHO''s member states established a working group to further investigate how to proceed, which led to the establishment of a new “Member State mechanism on substandard/spurious/falsely labelled/falsified/counterfeit medical products” (http://www.who.int/medicines/services/counterfeit/en/index.html). However, according to a publication by Amir Attaran from the University of Ottawa, Canada, and international colleagues, the working group “still cannot agree how to define the various poor-quality medicines, much less settle on any concrete actions” [14]. The paper''s authors demand more action and propose a binding legal framework: a treaty. “Until we have stronger public health law, I don''t think that we are going to resolve this problem,” Bate, who is one of the authors of the paper, said.Similarly, the US Food and Drug Administration (FDA) commissioned the Institute of Medicine (IOM) to convene a consensus committee on understanding the global public health implications of falsified and substandard pharmaceuticals [2]. Whilst others have called for a treaty, the IOM report calls on the World Health Assembly—the governing body of the WHO—to develop a code of practice such as a “voluntary soft law” that countries can sign to express their will to do better. “At the moment, there is not yet enough political interest in a treaty. A code of conduct may be more realistic,” Hogerzeil, who is also on the IOM committee, commented. Efforts to work towards a treaty should nonetheless be pursued, Bate insisted: “The IOM is right in that we are not ready to sign a treaty yet, but that does not mean you don''t start negotiating one.”Whilst a treaty might take some time, there are several ideas from the IOM report and elsewhere that could already be put into action to deal with this global health threat [10,12,14,15,19]. Any attempts to safeguard medicines need to address both falsified and substandard medicines, but the counter-measures are different [14]. Falsifying medicine is, by definition, a criminal act. To counteract fakers, action needs to be taken to ensure that the appropriate legal authorities deal with criminals. Substandard medicine, on the other hand, arises when mistakes are made in genuine manufacturing companies. Such mistakes can be reduced by helping companies do better and by improving quality control of drug regulatory authorities.Manufacturing pharmaceuticals is a difficult and costly business that requires clean water, high-quality chemicals, expensive equipment, technical expertise and distribution networks. Large and multi-national companies benefit from economies of scale to cope with these problems. But smaller companies often struggle and compromise in quality [2,21]. “India has 20–40 big companies and perhaps nearly 20,000 small ones. To me, it seems impossible for them to produce at good quality, if they remain so small,” Hogerzeil explained. “And only by being strict, can you force them to combine and to become bigger industries that can afford good-quality assurance systems.” Clamping down on drug quality will therefore lead to a consolidation of the industry, which is an essential step. “If you look at Europe and the US, there were hundreds of drug companies—now there are dozens. And if you look at the situation in India and China today, there are thousands and that will have to come down to dozens as well,” Bate explained.…innovator companies and high-income countries have been accused of pushing for the enforcement of intellectual property regulations under the guise of protecting […] medicineIn addition to consolidating the market by applying stricter rules, the IOM has also suggested measures for supporting companies that observe best practices [2]. For example, the IOM proposes that the International Finance Corporation and the Overseas Private Investment Corporation, which promote private-sector development to reduce poverty, should create separate investment vehicles for pharmaceutical manufacturers who want to upgrade to international standards. Another suggestion is to harmonize market registration of pharmaceutical products, which would ease the regulatory burden for generic producers in developing countries and improve the efficiency of regulatory agencies.Once the medicine leaves the manufacturer, controlling distribution systems becomes another major challenge in combatting falsified and substandard medicine. Global drug supply chains have grown increasingly complicated; drugs cross borders, are sold back and forth between wholesalers and distributers, and are often repackaged. Still, there is a main difference between developing and developed countries. In the latter case, relatively few companies dominate the market, whereas in poorer nations, the distribution system is often fragmented and uncontrolled with parallel schemes, too few pharmacies, even fewer pharmacists and many unlicensed medical vendors. Every transaction creates an opportunity for falsified or substandard medicine to enter the market [2,10,19]. More streamlined and transparent supply chains and stricter licensing requirements would be crucial to improve drug quality. “And we can start in the US,” Hogerzeil commented.…India is a core player: not only does it have a large generics industry, but the country also seems to be, together with China, the biggest source of fake medical productsDistribution could be improved at different levels, starting with the import of medicine. “There are states in the USA where the regulation for medicine importation is very lax. Anyone can import; private clinics can buy medicine from Lebanon or elsewhere and fly them in,” Hogerzeil explained. The next level would be better control over the distribution system within the country. The IOM suggests that state boards should license wholesalers and distributors that meet the National Association of Boards of Pharmacy accreditation standards. “Everybody dealing with medicine has to be licensed,” Hogerzeil said. “And there should be a paper trail of who buys what from whom. That way you close the entry points for illegal drugs and prevent that falsified medicines enter the legal supply chain.” The last level would be a track-and-trace system to identify authentic drugs [2]. Every single package of medicine should be identifiable through an individual marker, such as a 3D bar code. Once it is sold, it is ticked off in a central database, so the marker cannot be reused.According to Hogerzeil, equivalent measures at these different levels should be established in every country. “I don''t believe in double standards”, he said. “Don''t say to Uganda: ‘you can''t do that''. Rather, indicate to them what a cost-effective system in the West looks like and help them, and give them the time, to create something in that direction that is feasible in their situation.”Nigeria, for instance, has demonstrated that with enough political will, it is possible to reduce the proliferation of falsified and substandard medicine. Nigeria had been a major source for falsified products, but things changed in 2001, when Dora Akunyili was appointed Director General of the National Agency for Food and Drug Administration and Control. Akunyili has a personal motivation for fighting falsified drugs: her sister Vivian, a diabetic patient, lost her life to fake insulin in 1988. Akunyili strengthened import controls, campaigned for public awareness, clamped down on counterfeit operations and pushed for harsher punishments [10,19]. Paul Orhii, Akunyili''s successor, is committed to continuing her work [10]. Although there are no exact figures, various surveys indicate that the rate of bad-quality medicine has dropped considerably in Nigeria [10].China is also addressing its drug-quality problems. In a highly publicized event, the former head of China''s State Food and Drug Administration, Zheng Xiaoyu, was executed in 2007 after he was found guilty of accepting bribes to approve untested medicine. Since then, China''s fight against falsified medicine has continued. As a result of heightened enforcement, the number of drug companies in China dwindled from 5,000 in 2004 to about 3,500 this year [2]. Moreover, in July 2012, more than 1,900 suspects were arrested for the sale of fake or counterfeit drugs.Quality comes at a price, however. It is expensive to produce high-quality medicine, and it is expensive to control the production and distribution of drugs. Many low- and middle-income countries might not have the resources to tackle the problem and might not see quality of medicine as a priority. But they should, and affluent countries should help. Not only because health is a human right, but also for economic reasons. A great deal of time and money is invested into testing the safety and efficacy of medicine during drug development, and these resources are wasted when drugs do not reach patients. Falsified and substandard medicines are a financial burden to health systems and the emergence of drug-resistant pathogens might make invaluable medications useless. Investing in the safety of medicine is therefore a humane and an economic imperative.  相似文献   

2.
3.
4.
5.
Elucidating the temporal order of silencing   总被引:1,自引:0,他引:1  
Izaurralde E 《EMBO reports》2012,13(8):662-663
  相似文献   

6.
The public view of life-extension technologies is more nuanced than expected and researchers must engage in discussions if they hope to promote awareness and acceptanceThere is increasing research and commercial interest in the development of novel interventions that might be able to extend human life expectancy by decelerating the ageing process. In this context, there is unabated interest in the life-extending effects of caloric restriction in mammals, and there are great hopes for drugs that could slow human ageing by mimicking its effects (Fontana et al, 2010). The multinational pharmaceutical company GlaxoSmithKline, for example, acquired Sirtris Pharmaceuticals in 2008, ostensibly for their portfolio of drugs targeting ‘diseases of ageing''. More recently, the immunosuppressant drug rapamycin has been shown to extend maximum lifespan in mice (Harrison et al, 2009). Such findings have stoked the kind of enthusiasm that has become common in media reports of life-extension and anti-ageing research, with claims that rapamycin might be “the cure for all that ails” (Hasty, 2009), or that it is an “anti-aging drug [that] could be used today” (Blagosklonny, 2007).Given the academic, commercial and media interest in prolonging human lifespan—a centuries-old dream of humanity—it is interesting to gauge what the public thinks about the possibility of living longer, healthier lives, and to ask whether they would be willing to buy and use drugs that slow the ageing process. Surveys that have addressed these questions, have given some rather surprising results, contrary to the expectations of many researchers in the field. They have also highlighted that although human life extension (HLE) and ageing are topics with enormous implications for society and individuals, scientists have not communicated efficiently with the public about their research and its possible applications.Given the academic, commercial and media interest in prolonging human lifespan […] it is interesting to gauge what the public thinks about the possibility of living longer, healthier lives…Proponents and opponents of HLE often assume that public attitudes towards ageing interventions will be strongly for or against, but until now, there has been little empirical evidence with which to test these assumptions (Lucke & Hall, 2005). We recently surveyed members of the public in Australia and found a variety of opinions, including some ambivalence towards the development and use of drugs that could slow ageing and increase lifespan. Our findings suggest that many members of the public anticipate both positive and negative outcomes from this work (Partridge 2009a, b, 2010; Underwood et al, 2009).In a community survey of public attitudes towards HLE we found that around two-thirds of a sample of 605 Australian adults supported research with the potential to increase the maximum human lifespan by slowing ageing (Partridge et al, 2010). However, only one-third expressed an interest in using an anti-ageing pill if it were developed. Half of the respondents were not interested in personally using such a pill and around one in ten were undecided.Some proponents of HLE anticipate their research being impeded by strong public antipathy (Miller, 2002, 2009). Richard Miller has claimed that opposition to the development of anti-ageing interventions often exists because of an “irrational public predisposition” to think that increased lifespans will only lead to elongation of infirmity. He has called this “gerontologiphobia”—a shared feeling among laypeople that while research to cure age-related diseases such as dementia is laudable, research that aims to intervene in ageing is a “public menace” (Miller, 2002).We found broad support for the amelioration of age-related diseases and for technologies that might preserve quality of life, but scepticism about a major promise of HLE—that it will delay the onset of age-related diseases and extend an individual''s healthy lifespan. From the people we interviewed, the most commonly cited potential negative personal outcome of HLE was that it would extend the number of years a person spent with chronic illnesses and poor quality of life (Partridge et al, 2009a). Although some members of the public envisioned more years spent in good health, almost 40% of participants were concerned that a drug to slow ageing would do more harm than good to them personally; another 13% were unsure about the benefits and costs (Partridge et al, 2010).…it might be that advocates of HLE have failed to persuade the public on this issueIt would be unwise to label such concerns as irrational, when it might be that advocates of HLE have failed to persuade the public on this issue. Have HLE researchers explained what they have discovered about ageing and what it means? Perhaps the public see the claims that have been made about HLE as ‘too good to be true‘.Results of surveys of biogerontologists suggest that they are either unaware or dismissive of public concerns about HLE. They often ignore them, dismiss them as “far-fetched”, or feel no responsibility “to respond” (Settersten Jr et al, 2008). Given this attitude, it is perhaps not surprising that the public are sceptical of their claims.Scientists are not always clear about the outcomes of their work, biogerontologists included. Although the life-extending effects of interventions in animal models are invoked as arguments for supporting anti-ageing research, it is not certain that these interventions will also extend healthy lifespans in humans. Miller (2009) reassuringly claims that the available evidence consistently suggests that quality of life is maintained in laboratory animals with extended lifespans, but he acknowledges that the evidence is “sparse” and urges more research on the topic (Miller, 2009). In the light of such ambiguity, researchers need to respond to public concerns in ways that reflect the available evidence and the potential of their work, without becoming apostles for technologies that have not yet been developed. An anti-ageing drug that extends lifespan without maintaining quality of life is clearly undesirable, but the public needs to be persuaded that such an outcome can be avoided.The public is also concerned about the possible adverse side effects of anti-ageing drugs. Many people were bemused when they discovered that members of the Caloric Restriction Society experienced a loss of libido and loss of muscle mass as a result of adhering to a low-calorie diet to extend their longevity—for many people, such side effects would not be worth the promise of some extra years of life. Adverse side effects are acknowledged as a considerable potential challenge to the development of an effective life-extending drug in humans (Fontana et al, 2010). If researchers do not discuss these possible effects, then a curious public might draw their own conclusions.Adverse side effects are acknowledged as a considerable potential challenge to the development of an effective life-extending drug in humansSome HLE advocates seem eager to tout potential anti-ageing drugs as being free from adverse side effects. For example, Blagosklonny (2007) has argued that rapamycin could be used to prevent age-related diseases in humans because it is “a non-toxic, well tolerated drug that is suitable for everyday oral administration” with its major “side-effects” being anti-tumour, bone-protecting, and mimicking caloric restriction effects. By contrast, Kaeberlein & Kennedy (2009) have advised the public against using the drug because of its immunosuppressive effects.Aubrey de Grey has called for scientists to provide more optimistic timescales for HLE on several occasions. He claims that public opposition to interventions in ageing is based on “extraordinarily transparently flawed opinions” that HLE would be unethical and unsustainable (de Grey, 2004). In his view, public opposition is driven by scepticism about whether HLE will be possible, and that concerns about extending infirmity, injustice or social harms are simply excuses to justify people''s belief that ageing is ‘not so bad'' (de Grey, 2007). He argues that this “pro-ageing trance” can only be broken by persuading the public that HLE technologies are just around the corner.Contrary to de Grey''s expectations of public pessimism, 75% of our survey participants thought that HLE technologies were likely to be developed in the near future. Furthermore, concerns about the personal, social and ethical implications of ageing interventions and HLE were not confined to those who believed that HLE is not feasible (Partridge et al, 2010).Juengst et al (2003) have rightly pointed out that any interventions that slow ageing and substantially increase human longevity might generate more social, economic, political, legal, ethical and public health issues than any other technological advance in biomedicine. Our survey supports this idea; the major ethical concerns raised by members of the public reflect the many and diverse issues that are discussed in the bioethics literature (Partridge et al, 2009b; Partridge & Hall, 2007).When pressed, even enthusiasts admit that a drastic extension of human life might be a mixed blessing. A recent review by researchers at the US National Institute on Aging pointed to several economic and social challenges that arise from longevity extension (Sierra et al, 2009). Perry (2004) suggests that the ability to slow ageing will cause “profound changes” and a “firestorm of controversy”. Even de Grey (2005) concedes that the development of an effective way to slow ageing will cause “mayhem” and “absolute pandemonium”. If even the advocates of anti-ageing and HLE anticipate widespread societal disruption, the public is right to express concerns about the prospect of these things becoming reality. It is accordingly unfair to dismiss public concerns about the social and ethical implications as “irrational”, “inane” or “breathtakingly stupid” (de Grey, 2004).The breadth of the possible implications of HLE reinforces the need for more discussion about the funding of such research and management of its outcomes ( Juengst et al, 2003). Biogerontologists need to take public concerns more seriously if they hope to foster support for their work. If there are misperceptions about the likely outcomes of intervention in ageing, then biogerontologists need to better explain their research to the public and discuss how their concerns will be addressed. It is not enough to hope that a breakthrough in human ageing research will automatically assuage public concerns about the effects of HLE on quality of life, overpopulation, economic sustainability, the environment and inequities in access to such technologies. The trajectories of other controversial research areas—such as human embryonic stem cell research and assisted reproductive technologies (Deech & Smajdor, 2007)—have shown that “listening to public concerns on research and responding appropriately” is a more effective way of fostering support than arrogant dismissal of public concerns (Anon, 2009).Biogerontologists need to take public concerns more seriously if they hope to foster support for their work? Open in a separate windowBrad PartridgeOpen in a separate windowJayne LuckeOpen in a separate windowWayne Hall  相似文献   

7.
The authors of “The anglerfish deception” respond to the criticism of their article.EMBO reports (2012) advanced online publication; doi: 10.1038/embor.2012.70EMBO reports (2012) 13 2, 100–105; doi: 10.1038/embor.2011.254Our respondents, eight current or former members of the EFSA GMO panel, focus on defending the EFSA''s environmental risk assessment (ERA) procedures. In our article for EMBO reports, we actually focused on the proposed EU GMO legislative reform, especially the European Commission (EC) proposal''s false political inflation of science, which denies the normative commitments inevitable in risk assessment (RA). Unfortunately the respondents do not address this problem. Indeed, by insisting that Member States enjoy freedom over risk management (RM) decisions despite the EFSA''s central control over RA, they entirely miss the relevant point. This is the unacknowledged policy—normative commitments being made before, and during, not only after, scientific ERA. They therefore only highlight, and extend, the problem we identified.The respondents complain that we misunderstood the distinction between RA and RM. We did not. We challenged it as misconceived and fundamentally misleading—as though only objective science defined RA, with normative choices cleanly confined to RM. Our point was that (i) the processes of scientific RA are inevitably shaped by normative commitments, which (ii) as a matter of institutional, policy and scientific integrity must be acknowledged and inclusively deliberated. They seem unaware that many authorities [1,2,3,4] have recognized such normative choices as prior matters, of RA policy, which should be established in a broadly deliberative manner “in advance of risk assessment to ensure that [RA] is systematic, complete, unbiased and transparent” [1]. This was neither recognized nor permitted in the proposed EC reform—a central point that our respondents fail to recognize.In dismissing our criticism that comparative safety assessment appears as a ‘first step'' in defining ERA, according to the new EFSA ERA guidelines, which we correctly referred to in our text but incorrectly referenced in the bibliography [5], our respondents again ignore this widely accepted ‘framing'' or ‘problem formulation'' point for science. The choice of comparator has normative implications as it immediately commits to a definition of what is normal and, implicitly, acceptable. Therefore the specific form and purpose of the comparison(s) is part of the validity question. Their claim that we are against comparison as a scientific step is incorrect—of course comparison is necessary. This simply acts as a shield behind which to avoid our and others'' [6] challenge to their self-appointed discretion to define—or worse, allow applicants to define—what counts in the comparative frame. Denying these realities and their difficult but inevitable implications, our respondents instead try to justify their own particular choices as ‘science''. First, they deny the first-step status of comparative safety assessment, despite its clear appearance in their own ERA Guidance Document [5]—in both the representational figure (p.11) and the text “the outcome of the comparative safety assessment allows the determination of those ‘identified'' characteristics that need to be assessed [...] and will further structure the ERA” (p.13). Second, despite their claims to the contrary, ‘comparative safety assessment'', effectively a resurrection of substantial equivalence, is a concept taken from consumer health RA, controversially applied to the more open-ended processes of ERA, and one that has in fact been long-discredited if used as a bottleneck or endpoint for rigorous RA processes [7,8,9,10]. The key point is that normative commitments are being embodied, yet not acknowledged, in RA science. This occurs through a range of similar unaccountable RA steps introduced into the ERA Guidance, such as judgement of ‘biological relevance'', ‘ecological relevance'', or ‘familiarity''. We cannot address these here, but our basic point is that such endless ‘methodological'' elaborations of the kind that our EFSA colleagues perform, only obscure the institutional changes needed to properly address the normative questions for policy-engaged science.Our respondents deny our claim concerning the singular form of science the EC is attempting to impose on GM policy and debate, by citing formal EFSA procedures for consultations with Member States and non-governmental organizations. However, they directly refute themselves by emphasizing that all Member State GM cultivation bans, permitted only on scientific grounds, have been deemed invalid by EFSA. They cannot have it both ways. We have addressed the importance of unacknowledged normativity in quality assessments of science for policy in Europe elsewhere [11]. However, it is the ‘one door, one key'' policy framework for science, deriving from the Single Market logic, which forces such singularity. While this might be legitimate policy, it is not scientific. It is political economy.Our respondents conclude by saying that the paramount concern of the EFSA GMO panel is the quality of its science. We share this concern. However, they avoid our main point that the EC-proposed legislative reform would only exacerbate their problem. Ignoring the normative dimensions of regulatory science and siphoning-off scientific debate and its normative issues to a select expert panel—which despite claiming independence faces an EU Ombudsman challenge [12] and European Parliament refusal to discharge their 2010 budget, because of continuing questions over conflicts of interests [13,14]—will not achieve quality science. What is required are effective institutional mechanisms and cultural norms that identify, and deliberatively address, otherwise unnoticed normative choices shaping risk science and its interpretive judgements. It is not the EFSA''s sole responsibility to achieve this, but it does need to recognize and press the point, against resistance, to develop better EU science and policy.  相似文献   

8.
Geoffrey Miller 《EMBO reports》2012,13(10):880-884
Runaway consumerism imposes social and ecological costs on humans in much the same way that runaway sexual ornamentation imposes survival costs and extinction risks on other animals.Sex and marketing have been coupled for a very long time. At the cultural level, their relationship has been appreciated since the 1960s ‘Mad Men'' era, when the sexual revolution coincided with the golden age of advertising, and marketers realized that ‘sex sells''. At the biological level, their interplay goes much further back to the Cambrian explosion around 530 million years ago. During this period of rapid evolutionary expansion, multicellular organisms began to evolve elaborate sexual ornaments to advertise their genetic quality to the most important consumers of all in the great mating market of life: the opposite sex.Maintaining the genetic quality of one''s offspring had already been a problem for billions of years. Ever since life originated around 3.7 billion years ago, RNA and DNA have been under selection to copy themselves as accurately as possible [1]. Yet perfect self-replication is biochemically impossible, and almost all replication errors are harmful rather than helpful [2]. Thus, mutations have been eroding the genomic stability of single-celled organisms for trillions of generations, and countless lineages of asexual organisms have suffered extinction through mutational meltdown—the runaway accumulation of copying errors [3]. Only through wildly profligate self-cloning could such organisms have any hope of leaving at least a few offspring with no new harmful mutations, so they could best survive and reproduce.Around 1.5 billion years ago, bacteria evolved the most basic form of sex to minimize mutation load: bacterial conjugation [4]. By swapping bits of DNA across the pilus (a tiny intercellular bridge) a bacterium can replace DNA sequences compromised by copying errors with intact sequences from its peers. Bacteria finally had some defence against mutational meltdown, and they thrived and diversified.Then, with the evolution of genuine sexual reproduction through meiosis, perhaps around 1.2 billion years ago, eukaryotes made a great advance in their ability to purge mutations. By combining their genes with a mate''s genes, they could produce progeny with huge genetic variety—and crucially with a wider range of mutation loads [5]. The unlucky offspring who happened to inherit an above-average number of harmful mutations from both parents would die young without reproducing, taking many mutations into oblivion with them. The lucky offspring who happened to inherit a below-average number of mutations from both parents would live long, prosper and produce offspring of higher genetic quality. Sexual recombination also made it easier to spread and combine the rare mutations that happened to be useful, opening the way for much faster evolutionary advances [6]. Sex became the foundation of almost all complex life because it was so good at both short-term damage limitation (purging bad mutations) and long-term innovation (spreading good mutations).Sex became the foundation of almost all complex life because it was so good at both short-term damage limitation […] and long-term innovation…Yet, single-celled organisms always had a problem with sex: they were not very good at choosing sexual partners with the best genes, that is, the lowest mutation loads. Given bacterial capabilities for chemical communication such as quorum-sensing [7], perhaps some prokaryotes and eukaryotes paid attention to short-range chemical cues of genetic quality before swapping genes. However, mating was mainly random before the evolution of longer-range senses and nervous systems.All of this changed profoundly with the Cambrian explosion, which saw organisms undergoing a genetic revolution that increased the complexity of gene regulatory networks, and a morphological revolution that increased the diversity of multicellular body plans. It was also a neurological and psychological revolution. As organisms became increasingly mobile, they evolved senses such as vision [8] and more complex nervous systems [9] to find food and evade predators. However, these new senses also empowered a sexual revolution, as they gave animals new tools for choosing sexual partners. Rather than hooking up randomly with the nearest mate, animals could now select mates based on visible cues of genetic quality such as body size, energy level, bright coloration and behavioural competence. By choosing the highest quality mates, they could produce higher quality offspring with lower mutation loads [10]. Such mate choice imposed selection on all of those quality cues to become larger, brighter and more conspicuous, amplifying them into true sexual ornaments: biological luxury goods such as the guppy''s tail and the peacock''s train that function mainly to impress and attract females [11]. These sexual ornaments evolved to have a complex genetic architecture, to capture a larger share of the genetic variation across individuals and to reveal mutation load more accurately [12].Ever since the Cambrian, the mating market for sexually reproducing animal species has been transformed to some degree into a consumerist fantasy world of conspicuous quality, status, fashion, beauty and romance. Individuals advertise their genetic quality and phenotypic condition through reliable, hard-to-fake signals or ‘fitness indicators'' such as pheromones, songs, ornaments and foreplay. Mates are chosen on the basis of who displays the largest, costliest, most precise, most popular and most salient fitness indicators. Mate choice for fitness indicators is not restricted to females choosing males, but often occurs in both sexes [13], especially in socially monogamous species with mutual mate choice such as humans [14].Thus, for 500 million years, animals have had to straddle two worlds in perpetual tension: natural selection and sexual selection. Each type of selection works through different evolutionary principles and dynamics, and each yields different types of adaptation and biodiversity. Neither fully dominates the other, because sexual attractiveness without survival is a short-lived vanity, whereas ecological competence without reproduction is a long-lived sterility. Natural selection shapes species to fit their geographical habitats and ecological niches, and favours efficiency in growth, foraging, parasite resistance, predator evasion and social competition. Sexual selection shapes each sex to fit the needs, desires and whims of the other sex, and favours conspicuous extravagance in all sorts of fitness indicators. Animal life walks a fine line between efficiency and opulence. More than 130,000 plant species also play the sexual ornamentation game, having evolved flowers to attract pollinators [15].The sexual selection world challenges the popular misconception that evolution is blind and dumb. In fact, as Darwin emphasized, sexual selection is often perceptive and clever, because animal senses and brains mediate mate choice. This makes sexual selection closer in spirit to artificial selection, which is governed by the senses and brains of human breeders. In so far as sexual selection shaped human bodies, minds and morals, we were also shaped by intelligent designers—who just happened to be romantic hominids rather than fictional gods [16].Thus, mate choice for genetic quality is analogous in many ways to consumer choice for brand quality [17]. Mate choice and consumer choice are both semi-conscious—partly instinctive, partly learned through trial and error and partly influenced by observing the choices made by others. Both are partly focused on the objective qualities and useful features of the available options, and partly focused on their arbitrary, aesthetic and fashionable aspects. Both create the demand that suppliers try to understand and fulfil, with each sex striving to learn the mating preferences of the other, and marketers striving to understand consumer preferences through surveys, focus groups and social media data mining.…single-celled organisms always had a problem with sex: they were not very good at choosing the sexual partners with the best genes…Mate choice and consumer choice can both yield absurdly wasteful outcomes: a huge diversity of useless, superficial variations in the biodiversity of species and the economic diversity of brands, products and packaging. Most biodiversity seems to be driven by sexual selection favouring whimsical differences across populations in the arbitrary details of fitness indicators, not just by naturally selected adaptation to different ecological niches [18]. The result is that within each genus, a species can be most easily identified by its distinct mating calls, sexual ornaments, courtship behaviours and genital morphologies [19], not by different foraging tactics or anti-predator defences. Similarly, much of the diversity in consumer products—such as shirts, cars, colleges or mutual funds—is at the level of arbitrary design details, branding, packaging and advertising, not at the level of objective product features and functionality.These analogies between sex and marketing run deep, because both depend on reliable signals of quality. Until recently, two traditions of signalling theory developed independently in the biological and social sciences. The first landmark in biological signalling theory was Charles Darwin''s analysis of mate choice for sexual ornaments as cues of good fitness and fertility in his book, The Descent of Man, and Selection in Relation to Sex (1871). Ronald Fisher analysed the evolution of mate preferences for fitness indicators in 1915 [20]. Amotz Zahavi proposed the ‘handicap principle'', arguing that only costly signals could be reliable, hard-to-fake indicators of genetic quality or phenotypic condition in 1975 [21]. Richard Dawkins and John Krebs applied game theory to analyse the reliability of animal signals, and the co-evolution of signallers and receivers in 1978 [22]. In 1990, Alan Grafen eventually proposed a formal model of the ‘handicap principle'' [23], and Richard Michod and Oren Hasson analysed ‘reliable indicators of fitness'' [24]. Since then, biological signalling theory has flourished and has informed research on sexual selection, animal communication and social behaviour.…new senses also empowered a sexual revolution […] Rather than hooking up randomly with the nearest mate, animals could now select mates based on visible cues of genetic quality…The parallel tradition of signalling theory in the social sciences and philosophy goes back to Aristotle, who argued that ethical and rational acts are reliable signals of underlying moral and cognitive virtues (ca 350–322 BC). Friedrich Nietzsche analysed beauty, creativity, morality and even cognition as expressions of biological vigour by using signalling logic (1872–1888). Thorstein Veblen proposed that conspicuous luxuries, quality workmanship and educational credentials act as reliable signals of wealth, effort and taste in The Theory of the Leisure Class (1899), The Instinct of Workmanship (1914) and The Higher Learning in America (1922). Vance Packard used signalling logic to analyse social class, runaway consumerism and corporate careerism in The Status Seekers (1959), The Waste Makers (1960) and The Pyramid Climbers (1962), and Ernst Gombrich analysed beauty in art as a reliable signal of the artist''s skill and effort in Art and Illusion (1977) and A Sense of Order (1979). Michael Spence developed formal models of educational credentials as reliable signals of capability and conscientiousness in Market Signalling (1974). Robert Frank used signalling logic to analyse job titles, emotions, career ambitions and consumer luxuries in Choosing the Right Pond (1985), Passions within Reason (1988), The Winner-Take-All-Society (1995) and Luxury Fever (2000).Evolutionary psychology and evolutionary anthropology have been integrating these two traditions to better understand many puzzles in human evolution that defy explanation in terms of natural selection for survival. For example, signalling theory has illuminated the origins and functions of facial beauty, female breasts and buttocks, body ornamentation, clothing, big game hunting, hand-axes, art, music, humour, poetry, story-telling, courtship gifts, charity, moral virtues, leadership, status-seeking, risk-taking, sports, religion, political ideologies, personality traits, adaptive self-deception and consumer behaviour [16,17,25,26,27,28,29].Building on signalling theory and sexual selection theory, the new science of evolutionary consumer psychology [30] has been making big advances in understanding consumer goods as reliable signals—not just signals of monetary wealth and elite taste, but signals of deeper traits such as intelligence, moral virtues, mating strategies and the ‘Big Five'' personality traits: openness, conscientiousness, agreeableness, extraversion and emotional stability [17]. These individual traits are deeper than wealth and taste in several ways: they are found in the other great apes, are heritable across generations, are stable across life, are important in all cultures and are naturally salient when interacting with mates, friends and kin [17,27,31]. For example, consumers seek elite university degrees as signals of intelligence; they buy organic fair-trade foods as signals of agreeableness; and they value foreign travel and avant-garde culture as signals of openness [17]. New molecular genetics research suggests that mutation load accounts for much of the heritable variation in human intelligence [32] and personality [33], so consumerist signals of these traits might be revealing genetic quality indirectly. If so, conspicuous consumption can be seen as just another ‘good-genes indicator'' favoured by mate choice.…sexual attractiveness without survival is a short-lived vanity, whereas ecological competence without reproduction is a long-lived sterilityIndeed, studies suggest that much conspicuous consumption, especially by young single people, functions as some form of mating effort. After men and women think about potential dates with attractive mates, men say they would spend more money on conspicuous luxury goods such as prestige watches, whereas women say they would spend more time doing conspicuous charity activities such as volunteering at a children''s hospital [34]. Conspicuous consumption by males reveals that they are pursuing a short-term mating strategy [35], and this activity is most attractive to women at peak fertility near ovulation [36]. Men give much higher tips to lap dancers who are ovulating [37]. Ovulating women choose sexier and more revealing clothes, shoes and fashion accessories [38]. Men living in towns with a scarcity of women compete harder to acquire luxuries and accumulate more consumer debt [39]. Romantic gift-giving is an important tactic in human courtship and mate retention, especially for men who might be signalling commitment [40]. Green consumerism—preferring eco-friendly products—is an effective form of conspicuous conservation, signalling both status and altruism [41].Findings such as these challenge traditional assumptions in economics. For example, ever since the Marginal Revolution—the development of economic theory during the 1870s—mainstream economics has made the ‘Rational Man'' assumption that consumers maximize their expected utility from their product choices, without reference to what other consumers are doing or desiring. This assumption was convenient both analytically—as it allowed easier mathematical modelling of markets and price equilibria—and ideologically in legitimizing free markets and luxury goods. However, new research from evolutionary consumer psychology and behavioural economics shows that consumers often desire ‘positional goods'' such as prestige-branded luxuries that signal social position and status through their relative cost, exclusivity and rarity. Positional goods create ‘positional externalities''—the harmful social side-effects of runaway status-seeking and consumption arms races [42].…biodiversity seems driven by sexual selection favouring whimsical differences […] Similarly […] diversity in consumer products […] is at the level of arbitrary design…These positional externalities are important because they undermine the most important theoretical justification for free markets—the first fundamental theorem of welfare economics, a formalization of Adam Smith''s ‘invisible hand'' argument, which says that competitive markets always lead to efficient distributions of resources. In the 1930s, the British Marxist biologists Julian Huxley and J.B.S. Haldane were already wary of such rationales for capitalism, and understood that runaway consumerism imposes social and ecological costs on humans in much the same way that runaway sexual ornamentation imposes survival costs and extinction risks on other animals [16]. Evidence shows that consumerist status-seeking leads to economic inefficiencies and costs to human welfare [42]. Runaway consumerism might be one predictable result of a human nature shaped by sexual selection, but we can display desirable traits in many other ways, such as green consumerism, conspicuous charity, ethical investment and through social media such as Facebook [17,43].Future work in evolutionary consumer psychology should give further insights into the links between sex, mutations, evolution and marketing. These links have been important for at least 500 million years and probably sparked the evolution of human intelligence, language, creativity, beauty, morality and ideology. A better understanding of these links could help us nudge global consumerist capitalism into a more sustainable form that imposes lower costs on the biosphere and yields higher benefits for future generations.? Open in a separate windowGeoffrey Miller  相似文献   

9.
10.
Martinson BC 《EMBO reports》2011,12(8):758-762
Universities have been churning out PhD students to reap financial and other rewards for training biomedical scientists. This deluge of cheap labour has created unhealthy competition, which encourages scientific misconduct.Most developed nations invest a considerable amount of public money in scientific research for a variety of reasons: most importantly because research is regarded as a motor for economic progress and development, and to train a research workforce for both academia and industry. Not surprisingly, governments are occasionally confronted with questions about whether the money invested in research is appropriate and whether taxpayers are getting the maximum value for their investments.…questions about the size and composition of the research workforce have historically been driven by concerns that the system produces an insufficient number of scientistsThe training and maintenance of the research workforce is a large component of these investments. Yet discussions in the USA about the appropriate size of this workforce have typically been contentious, owing to an apparent lack of reliable data to tell us whether the system yields academic ‘reproduction rates'' that are above, below or at replacement levels. In the USA, questions about the size and composition of the research workforce have historically been driven by concerns that the system produces an insufficient number of scientists. As Donald Kennedy, then Editor-in-Chief of Science, noted several years ago, leaders in prestigious academic institutions have repeatedly rung alarm bells about shortages in the science workforce. Less often does one see questions raised about whether too many scientists are being produced or concerns about unintended consequences that may result from such overproduction. Yet recognizing that resources are finite, it seems reasonable to ask what level of competition for resources is productive, and at what level does competition become counter-productive.Finding a proper balance between the size of the research workforce and the resources available to sustain it has other important implications. Unhealthy competition—too many people clamouring for too little money and too few desirable positions—creates its own problems, most notably research misconduct and lower-quality, less innovative research. If an increasing number of scientists are scrambling for jobs and resources, some might begin to cut corners in order to gain a competitive edge. Moreover, many in the science community worry that every publicized case of research misconduct could jeopardize those resources, if politicians and taxpayers become unwilling to invest in a research system that seems to be riddled with fraud and misconduct.The biomedical research enterprise in the USA provides a useful context in which to examine the level of competition for resources among academic scientists. My thesis is that the system of publicly funded research in the USA as it is currently configured supports a feedback system of institutional incentives that generate excessive competition for resources in biomedical research. These institutional incentives encourage universities to overproduce graduate students and postdoctoral scientists, who are both trainees and a cheap source of skilled labour for research while in training. However, once they have completed their training, they become competitors for money and positions, thereby exacerbating competitive pressures.Questions raised about whether too many scientists are being produced or concerns about the unintended consequences of such overproduction are less commonThe resulting scarcity of resources, partly through its effect on peer review, leads to a shunting of resources away from both younger researchers and the most innovative ideas, which undermines the effectiveness of the research enterprise as a whole. Faced with an increasing number of grant applications and the consequent decrease in the percentage of projects that can be funded, reviewers tend to ‘play it safe'' and favour projects that have a higher likelihood of yielding results, even if the research is conservative in the sense that it does not explore new questions. Resource scarcity can also introduce unwanted randomness to the process of determining which research gets funded. A large group of scientists, led by a cancer biologist, has recently mounted a campaign against a change in a policy of the National Institutes of Health (NIH) to allow only one resubmission of an unfunded grant proposal (Wadman, 2011). The core of their argument is that peer reviewers are likely able to distinguish the top 20% of research applications from the rest, but that within that top 20%, distinguishing the top 5% or 10% means asking peer reviewers for a level of precision that is simply not possible. With funding levels in many NIH institutes now within that 5–10% range, the argument is that reviewers are being forced to choose at random which excellent applications do and do not get funding. In addition to the inefficiency of overproduction and excessive competition in terms of their costs to society and opportunity costs to individuals, these institutional incentives might undermine the integrity and quality of science, and reduce the likelihood of breakthroughs.My colleagues and I have expressed such concerns about workforce dynamics and related issues in several publications (Martinson, 2007; Martinson et al, 2005, 2006, 2009, 2010). Early on, we observed that, “missing from current analyses of scientific integrity is a consideration of the wider research environment, including institutional and systemic structures” (Martinson et al, 2005). Our more recent publications have been more specific about the institutional and systemic structures concerned. It seems that at least a few important leaders in science share these concerns.In April 2009, the NIH, through the National Institute of General Medical Sciences (NIGMS), issued a request for applications (RFA) calling for proposals to develop computational models of the research workforce (http://grants.nih.gov/grants/guide/rfa-files/RFA-GM-10-003.html). Although such an initiative might be premature given the current level of knowledge, the rationale behind the RFA seems irrefutable: “there is a need to […] pursue a systems-based approach to the study of scientific workforce dynamics.” Roughly four decades after the NIH appeared on the scene, this is, to my knowledge, the first official, public recognition that the biomedical workforce tends not to conform nicely to market forces of supply and demand, despite the fact that others have previously made such arguments.Early last year, Francis Collins, Director of the NIH, published a PolicyForum article in Science, voicing many of the concerns I have expressed about specific influences that have led to growth rates in the science workforce that are undermining the effectiveness of research in general, and biomedical research in particular. He notes the increasing stress in the biomedical research community after the end of the NIH “budget doubling” between 1998 and 2003, and the likelihood of further disruptions when the American Recovery and Reinvestment Act of 2009 (ARRA) funding ends in 2011. Arguing that innovation is crucial to the future success of biomedical research, he notes the tendency towards conservatism of the NIH peer-review process, and how this worsens in fiscally tight times. Collins further highlights the ageing of the NIH workforce—as grants increasingly go to older scientists—and the increasing time that researchers are spending in itinerant and low-paid postdoctoral positions as they stack up in a holding pattern, waiting for faculty positions that may or may not materialize. Having noted these challenging trends, and echoing the central concerns of a 2007 Nature commentary (Martinson, 2007), he concludes that “…it is time for NIH to develop better models to guide decisions about the optimum size and nature of the US workforce for biomedical research. A related issue that needs attention, though it will be controversial, is whether institutional incentives in the current system that encourage faculty to obtain up to 100% of their salary from grants are the best way to encourage productivity.”Similarly, Bruce Alberts, Editor-in-Chief of Science, writing about incentives for innovation, notes that the US biomedical research enterprise includes more than 100,000 graduate students and postdoctoral fellows. He observes that “only a select few will go on to become independent research scientists in academia”, and argues that “assuming that the system supporting this career path works well, these will be the individuals with the most talent and interest in such an endeavor” (Alberts, 2009).His editorial is not concerned with what happens to the remaining majority, but argues that even among the select few who manage to succeed, the funding process for biomedical research “forces them to avoid risk-taking and innovation”. The primary culprit, in his estimation, is the conservatism of the traditional peer-review system for federal grants, which values “research projects that are almost certain to ‘work''”. He continues, “the innovation that is essential for keeping science exciting and productive is replaced by […] research that has little chance of producing the breakthroughs needed to improve human health.”If an increasing number of scientists are scrambling for jobs and resources, some might begin to cut corners in order to gain a competitive edgeAlthough I believe his assessment of the symptoms is correct, I think he has misdiagnosed the cause, in part because he has failed to identify which influence he is concerned with from the network of influences in biomedical research. To contextualize the influences of concern to Alberts, we must consider the remaining majority of doctorally trained individuals so easily dismissed in his editorial, and further examine what drives the dynamics of the biomedical research workforce.Labour economists might argue that market forces will always balance the number of individuals with doctorates with the number of appropriate jobs for them in the long term. Such arguments would ignore, however, the typical information asymmetry between incoming graduate students, whose knowledge about their eventual job opportunities and career options is by definition far more limited than that of those who run the training programmes. They would also ignore the fact that universities are generally not confronted with the externalities resulting from overproduction of PhDs, and have positive financial incentives that encourage overproduction. During the past 40 years, NIH ‘extramural'' funding has become crucial for graduate student training, faculty salaries and university overheads. For their part, universities have embraced NIH extramural funding as a primary revenue source that, for a time, allowed them to implement a business model based on the interconnected assumptions that, as one of the primary ‘outputs'' or ‘products'' of the university, more doctorally trained individuals are always better than fewer, and because these individuals are an excellent source of cheap, skilled labour during their training, they help to contain the real costs of faculty research.“…the current system has succeeded in maximizing the amount of research […] it has also degraded the quality of graduate training and led to an overproduction of PhDs…”However, it has also made universities increasingly dependent on NIH funding. As recently documented by the economist Paula Stephan, most faculty growth in graduate school programmes during the past decade has occurred in medical colleges, with the majority—more than 70%—in non-tenure-track positions. Arguably, this represents a shift of risk away from universities and onto their faculty. Despite perennial cries of concern about shortages in the research workforce (Butz et al, 2003; Kennedy et al, 2004; National Academy of Sciences et al, 2005) a number of commentators have recently expressed concerns that the current system of academic research might be overbuilt (Cech, 2005; Heinig et al, 2007; Martinson, 2007; Stephan, 2007). Some explicitly connect this to structural arrangements between the universities and NIH funding (Cech, 2005; Collins, 2007; Martinson, 2007; Stephan, 2007).In 1995, David Korn pointed out what he saw as some problematic aspects of the business model employed by Academic Medical Centers (AMCs) in the USA during the past few decades (Korn, 1995). He noted the reliance of AMCs on the relatively low-cost, but highly skilled labour represented by postdoctoral fellows, graduate students and others—who quickly start to compete with their own professors and mentors for resources. Having identified the economic dependence of the AMCs on these inexpensive labour pools, he noted additional problems with the graduate training programmes themselves. “These programs are […] imbued with a value system that clearly indicates to all participants that true success is only marked by the attainment of a faculty position in a high-profile research institution and the coveted status of principal investigator on NIH grants.” Pointing to “more than 10 years of severe supply/demand imbalance in NIH funds”, Korn concluded that, “considering the generative nature of each faculty mentor, this enterprise could only sustain itself in an inflationary environment, in which the society''s investment in biomedical research and clinical care was continuously and sharply expanding.” From 1994 to 2003, total funding for biomedical research in the USA increased at an annual rate of 7.8%, after adjustment for inflation. The comparable rate of growth between 2003 and 2007 was 3.4% (Dorsey et al, 2010). These observations resonate with the now classic observation by Derek J. de Solla Price, from more than 30 years before, that growth in science frequently follows an exponential pattern that cannot continue indefinitely; the enterprise must eventually come to a plateau (de Solla Price, 1963).In May 2009, echoing some of Korn''s observations, Nobel laureate Roald Hoffmann caused a stir in the US science community when he argued for a “de-coupling” of the dual roles of graduate students as trainees and cheap labour (Hoffmann, 2009). His suggestion was to cease supporting graduate students with faculty research grants, and to use the money instead to create competitive awards for which graduate students could apply, making them more similar to free agents. During the ensuing discussion, Shirley Tilghman, president of Princeton University, argued that “although the current system has succeeded in maximizing the amount of research performed […] it has also degraded the quality of graduate training and led to an overproduction of PhDs in some areas. Unhitching training from research grants would be a much-needed form of professional ‘birth control''” (Mervis, 2009).The greying of the NIH research workforce is another important driver of workforce dynamics, and it is integrally linked to the fate of young scientistsAlthough the issue of what I will call the ‘academic birth rate'' is the central concern of this analysis, the ‘academic end-of-life'' also warrants some attention. The greying of the NIH research workforce is another important driver of workforce dynamics, and it is integrally linked to the fate of young scientists. A 2008 news item in Science quoted then 70-year-old Robert Wells, a molecular geneticist at Texas A&M University, “‘if I and other old birds continue to land the grants, the [young scientists] are not going to get them.” He worries that the budget will not be able to support “the 100 people ‘I''ve trained […] to replace me''” (Kaiser, 2008). While his claim of 100 trainees might be astonishing, it might be more astonishing that his was the outlying perspective. The majority of senior scientists interviewed for that article voiced intentions to keep doing science—and going after NIH grants—until someone forced them to stop or they died.Some have looked at the current situation with concern, primarily because of the threats it poses to the financial and academic viability of universities (Korn, 1995; Heinig et al, 2007; Korn & Heinig, 2007), although most of those who express such concerns have been distinctly reticent to acknowledge the role of universities in creating and maintaining the situation. Others have expressed concerns about the differential impact of extreme competition and meagre job prospects on the recruitment, development and career survival of young and aspiring scientists (Freeman et al, 2001; Kennedy et al, 2004; Martinson et al, 2006; Anderson et al, 2007a; Martinson, 2007; Stephan, 2007). There seems to be little disagreement, however, that the system has generated excessively high competition for federal research funding, and that this threatens to undermine the very innovation and production of knowledge that is its raison d''etre.The production of knowledge in science, particularly of the ‘revolutionary'' variety, is generally not a linear input–output process with predictable returns on investment, clear timelines and high levels of certainty (Lane, 2009). On the contrary, it is arguable that “revolutionary science is a high risk and long-term endeavour which usually fails” (Charlton & Andras, 2008). Predicting where, when and by whom breakthroughs in understanding will be produced has proven to be an extremely difficult task. In the face of such uncertainty, and denying the realities of finite resources, some have argued that the best bet is to maximize the number of scientists, using that logic to justify a steady-state production of new PhDs, regardless of whether the labour market is sending signals of increasing or decreasing demand for that supply. Only recently have we begun to explore the effects of the current arrangement on the process of knowledge production, and on innovation in particular (Charlton & Andras, 2008; Kolata, 2009).…most of those who express such concerns have been reticent to acknowledge the role of universities themselves in creating and maintaining the situationBruce Alberts, in the above-mentioned editorial, points to several initiatives launched by the NIH that aim to get a larger share of NIH funding into the hands of young scientists with particularly innovative ideas. These include the “New Innovator Award,” the “Pioneer Award” and the “Transformational R01 Awards”. The proportion of NIH funding dedicated to these awards, however, amounts to “only 0.27% of the NIH budget” (Alberts, 2009). Such a small proportion of the NIH budget does not seem likely to generate a large amount of more innovative science. Moreover, to the extent that such initiatives actually succeed in enticing more young investigators to become dependent on NIH funds, any benefit these efforts have in terms of innovation may be offset by further increases in competition for resources that will come when these new ‘innovators'' reach the end of this specialty funding and add to the rank and file of those scrapping for funds through the standard mechanisms.Our studies on research integrity have been mostly oriented towards understanding how the influences within which academic scientists work might affect their behaviour, and thus the quality of the science they produce (Anderson et al, 2007a, 2007b; Martinson et al, 2009, 2010). My colleagues and I have focused on whether biomedical researchers perceive fairness in the various exchange relationships within their work systems. I am persuaded by the argument that expectations of fairness in exchange relationships have been hard-wired into us through evolution (Crockett et al, 2008; Hsu et al, 2008; Izuma et al, 2008; Pennisi, 2009), with the advent of modern markets being a primary manifestation of this. Thus, violations of these expectations strike me as potentially corrupting influences. Such violations might be prime motivators for ill will, possibly engendering bad-faith behaviour among those who perceive themselves to have been slighted, and therefore increasing the risk of research misconduct. They might also corrupt the enterprise by signalling to talented young people that biomedical research is an inhospitable environment in which to develop a career, possibly chasing away some of the most talented individuals, and encouraging a selection of characteristics that might not lead to optimal effectiveness, in terms of scientific innovation and productivity (Charlton, 2009).To the extent that we have an ecology with steep competition that is fraught with high risks of career failure for young scientists after they incur large costs of time, effort and sometimes financial resources to obtain a doctoral degree, why would we expect them to take on the additional, substantial risks involved in doing truly innovative science and asking risky research questions? And why, in such a cut-throat setting, would we not anticipate an increase in corner-cutting, and a corrosion of good scientific practice, collegiality, mentoring and sociability? Would we not also expect a reduction in high-risk, innovative science, and a reversion to a more career-safe type of ‘normal'' science? Would this not reduce the effectiveness of the institution of biomedical research? I do not claim to know the conditions needed to maximize the production of research that is novel, innovative and conducted with integrity. I am fairly certain, however, that putting scientists in tenuous positions in which their careers and livelihoods would be put at risk by pursuing truly revolutionary research is one way to insure against it.  相似文献   

11.
12.
13.
The temptation to silence dissenters whose non-mainstream views negatively affect public policies is powerful. However, silencing dissent, no matter how scientifically unsound it might be, can cause the public to mistrust science in general.Dissent is crucial for the advancement of science. Disagreement is at the heart of peer review and is important for uncovering unjustified assumptions, flawed methodologies and problematic reasoning. Enabling and encouraging dissent also helps to generate alternative hypotheses, models and explanations. Yet, despite the importance of dissent in science, there is growing concern that dissenting voices have a negative effect on the public perception of science, on policy-making and public health. In some cases, dissenting views are deliberately used to derail certain policies. For example, dissenting positions on climate change, environmental toxins or the hazards of tobacco smoke [1,2] seem to laypeople as equally valid conflicting opinions and thereby create or increase uncertainty. Critics often use legitimate scientific disagreements about narrow claims to reinforce the impression of uncertainty about general and widely accepted truths; for instance, that a given substance is harmful [3,4]. This impression of uncertainty about the evidence is then used to question particular policies [1,2,5,6].The negative effects of dissent on establishing public polices are present in cases in which the disagreements are scientifically well-grounded, but the significance of the dissent is misunderstood or blown out of proportion. A study showing that many factors affect the size of reef islands, to the effect that they will not necessarily be reduced in size as sea levels rise [7], was simplistically interpreted by the media as evidence that climate change will not have a negative impact on reef islands [8].In other instances, dissenting voices affect the public perception of and motivation to follow public-health policies or recommendations. For example, the publication of a now debunked link between the measles, mumps and rubella vaccine and autism [9], as well as the claim that the mercury preservative thimerosal, which was used in childhood vaccines, was a possible risk factor for autism [10,11], created public doubts about the safety of vaccinating children. Although later studies showed no evidence for these claims, doubts led many parents to reject vaccinations for their children, risking the herd immunity for diseases that had been largely eradicated from the industrialized world [12,13,14,15]. Many scientists have therefore come to regard dissent as problematic if it has the potential to affect public behaviour and policy-making. However, we argue that such concerns about dissent as an obstacle to public policy are both dangerous and misguided.Whether dissent is based on genuine scientific evidence or is unfounded, interested parties can use it to sow doubt, thwart public policies, promote problematic alternatives and lead the public to ignore sound advice. In response, scientists have adopted several strategies to limit these negative effects of dissent—masking dissent, silencing dissent and discrediting dissenters. The first strategy aims to present a united front to the public. Scientists mask existing disagreements among themselves by presenting only those claims or pieces of evidence about which they agree [16]. Although there is nearly universal agreement among scientists that average global temperatures are increasing, there are also legitimate disagreements about how much warming will occur, how quickly it will occur and the impact it might have [7,17,18,19]. As presenting these disagreements to the public probably creates more doubt and uncertainty than is warranted, scientists react by presenting only general claims [20].A second strategy is to silence dissenting views that might have negative consequences. This can take the form of self-censorship when scientists are reluctant to publish or publicly discuss research that might—incorrectly—be used to question existing scientific knowledge. For example, there are genuine disagreements about how best to model cloud formation, water vapour feedback and aerosols in general circulation paradigms, all of which have significant effects on the magnitude of global climate change predictions [17,19]. Yet, some scientists are hesitant to make these disagreements public, for fear that they will be accused of being denialists, faulted for confusing the public and policy-makers, censured for abating climate-change deniers, or criticized for undermining public policy [21,22,23,24].…there is growing concern that dissenting voices can have a negative effect on the public perception of science, on policy-making and public healthAnother strategy is to discredit dissenters, especially in cases in which the dissent seems to be ideologically motivated. This could involve publicizing the financial or political ties of the dissenters [2,6,25], which would call attention to their probable bias. In other cases, scientists might discredit the expertise of the dissenter. One such example concerns a 2007 study published in the Proceedings of the National Academy of Sciences USA, which claimed that cadis fly larvae consuming Bt maize pollen die at twice the rate of flies feeding on non-Bt maize pollen [26]. Immediately after publication, both the authors and the study itself became the target of relentless and sometimes scathing attacks from a group of scientists who were concerned that anti-GMO (genetically modified organism) interest groups would seize on the study to advance their agenda [27]. The article was criticized for its methodology and its conclusions, the Proceedings of the National Academy of Sciences USA was criticized for publishing the article and the US National Science Foundation was criticized for funding the study in the first place.Public policies, health advice and regulatory decisions should be based on the best available evidence and knowledge. As the public often lack the expertise to assess the quality of dissenting views, disagreements have the potential to cast doubt over the reliability of scientific knowledge and lead the public to question relevant policies. Strategies to block dissent therefore seem reasonable as a means to protect much needed or effective health policies, advice and regulations. However, even if the public were unable to evaluate the science appropriately, targeting dissent is not the most appropriate strategy to prevent negative side effects for several reasons. Chiefly, it contributes to the problems that the critics of dissent seek to address, namely increasing the cacophony of dissenting voices that only aim to create doubt. Focusing on dissent as a problematic activity sends the message to policy-makers and the public that any dissent undermines scientific knowledge. Reinforcing this false assumption further incentivizes those who seek merely to create doubt to thwart particular policies. Not surprisingly, think-tanks, industry and other organizations are willing to manufacture dissent simply to derail policies that they find economically or ideologically undesirable.Another danger of targeting dissent is that it probably stifles legitimate crucial voices that are needed for both advancing science and informing sound policy decisions. Attacking dissent makes scientists reluctant to voice genuine doubts, especially if they believe that doing so might harm their reputations, damage their careers and undermine prevailing theories or policies needed. For instance, a panel of scientists for the US National Academy of Sciences, when presenting a risk assessment of radiation in 1956, omitted wildly different predictions about the potential genetic harm of radiation [16]. They did not include this wide range of predictions in their final report precisely because they thought the differences would undermine confidence in their recommendations. Yet, this information could have been relevant to policy-makers. As such, targeting dissent as an obstacle to public policy might simply reinforce self-censorship and stifle legitimate and scientifically informed debate. If this happens, scientific progress is hindered.Second, even if the public has mistaken beliefs about science or the state of the knowledge of the science in question, focusing on dissent is not an effective way to protect public policy from false claims. It fails to address the presumed cause of the problem—the apparent lack of understanding of the science by the public. A better alternative would be to promote the public''s scientific literacy. If the public were educated to better assess the quality of the dissent and thus disregard instances of ideological, unsupported or unsound dissent, dissenting voices would not have such a negative effect. Of course, one might argue that educating the public would be costly and difficult, and that therefore, the public should simply listen to scientists about which dissent to ignore and which to consider. This is, however, a paternalistic attitude that requires the public to remain ignorant ‘for their own good''; a position that seems unjustified on many levels as there are better alternatives for addressing the problem.Moreover, silencing dissent, rather than promoting scientific literacy, risks undermining public trust in science even if the dissent is invalid. This was exemplified by the 2009 case of hacked e-mails from a computer server at the University of East Anglia''s Climate Research Unit (CRU). After the selective leaking of the e-mails, climate scientists at the CRU came under fire because some of the quotes, which were taken out of context, seemed to suggest that they were fudging data or suppressing dissenting views [28,29,30,31]. The stolen e-mails gave further ammunition to those opposing policies to reduce greenhouse emissions as they could use accusations of data ‘cover up'' as proof that climate scientists were not being honest with the public [29,30,31]. It also allowed critics to present climate scientists as conspirators who were trying to push a political agenda [32]. As a result, although there was nothing scientifically inappropriate revealed in the ‘climategate'' e-mails, it had the consequence of undermining the public''s trust in climate science [33,34,35,36].A significant amount of evidence shows that the ‘deficit model'' of public understanding of science, as described above, is too simplistic to account correctly for the public''s reluctance to accept particular policy decisions [37,38,39,40]. It ignores other important factors such as people''s attitudes towards science and technology, their social, political and ethical values, their past experiences and the public''s trust in governmental institutions [41,42,43,44]. The development of sound public policy depends not only on good science, but also on value judgements. One can agree with the scientific evidence for the safety of GMOs, for instance, but still disagree with the widespread use of GMOs because of social justice concerns about the developing world''s dependence on the interests of the global market. Similarly, one need not reject the scientific evidence about the harmful health effects of sugar to reject regulations on sugary drinks. One could rationally challenge such regulations on the grounds that informed citizens ought to be able to make free decisions about what they consume. Whether or not these value judgements are justified is an open question, but the focus on dissent hinders our ability to have that debate.Focusing on dissent as a problematic activity sends the message to policy-makers and the public that any dissent undermines scientific knowledgeAs such, targeting dissent completely fails to address the real issues. The focus on dissent, and the threat that it seems to pose to public policy, misdiagnoses the problem as one of the public misunderstanding science, its quality and its authority. It assumes that scientific or technological knowledge is the only relevant factor in the development of policy and it ignores the role of other factors, such as value judgements about social benefits and harms, and institutional trust and reliability [45,46]. The emphasis on dissent, and thus on scientific knowledge, as the only or main factor in public policy decisions does not give due attention to these legitimate considerations.Furthermore, by misdiagnosing the problem, targeting dissent also impedes more effective solutions and prevents an informed debate about the values that should guide public policy. By framing policy debates solely as debates over scientific facts, the normative aspects of public policy are hidden and neglected. Relevant ethical, social and political values fail to be publicly acknowledged and openly discussed.Controversies over GMOs and climate policies have called attention to the negative effects of dissent in the scientific community. Based on the assumption that the public''s reluctance to support particular policies is the result of their inability to properly understand scientific evidence, scientists have tried to limit dissenting views that create doubt. However, as outlined above, targeting dissent as an obstacle to public policy probably does more harm than good. It fails to focus on the real problem at stake—that science is not the only relevant factor in sound policy-making. Of course, we do not deny that scientific evidence is important to the develop.ment of public policy and behavioural decisions. Rather, our claim is that this role is misunderstood and often oversimplified in ways that actually contribute to problems in developing sound science-based policies.? Open in a separate windowInmaculada de Melo-MartínOpen in a separate windowKristen Intemann  相似文献   

14.
15.
The French government has ambitious goals to make France a leading nation for synthetic biology research, but it still needs to put its money where its mouth is and provide the field with dedicated funding and other support.Synthetic biology is one of the most rapidly growing fields in the biological sciences and is attracting an increasing amount of public and private funding. France has also seen a slow but steady development of this field: the establishment of a national network of synthetic biologists in 2005, the first participation of a French team at the International Genetically Engineered Machine competition in 2007, the creation of a Master''s curriculum, an institute dedicated to synthetic and systems biology at the University of Évry-Val-d''Essonne-CNRS-Genopole in 2009–2010, and an increasing number of conferences and debates. However, scientists have driven the field with little dedicated financial support from the government.Yet the French government has a strong self-perception of its strengths and has set ambitious goals for synthetic biology. The public are told about a “new generation of products, industries and markets” that will derive from synthetic biology, and that research in the field will result in “a substantial jump for biotechnology” and an “industrial revolution”[1,2]. Indeed, France wants to compete with the USA, the UK, Germany and the rest of Europe and aims “for a world position of second or third”[1]. However, in contrast with the activities of its competitors, the French government has no specific scheme for funding or otherwise supporting synthetic biology[3]. Although we read that “France disposes of strong competences” and “all the assets needed”[2], one wonders how France will achieve its ambitious goals without dedicated budgets or detailed roadmaps to set up such institutions.In fact, France has been a straggler: whereas the UK and the USA have published several reports on synthetic biology since 2007, and have set up dedicated governing networks and research institutions, the governance of synthetic biology in France has only recently become an official matter. The National Research and Innovation Strategy (SNRI) only defined synthetic biology as a “priority” challenge in 2009 and created a working group in 2010 to assess the field''s developments, potentialities and challenges; the report was published in 2011[1].At the same time, the French Parliamentary Office for the Evaluation of Scientific and Technological Choices (OPECST) began a review of the field “to establish a worldwide state of the art and the position of our country in terms of training, research and technology transfer”. Its 2012 report entitled The Challenges of Synthetic Biology[2] assessed the main ethical, legal, economic and social challenges of the field. It made several recommendations for a “controlled” and “transparent” development of synthetic biology. This is not a surprise given that the development of genetically modified organisms and nuclear power in France has been heavily criticized for lack of transparency, and that the government prefers to avoid similar future controversies. Indeed, the French government seems more cautious today: making efforts to assess potential dangers and public opinion before actually supporting the science itself.Both reports stress the necessity of a “real” and “transparent” dialogue between science and society and call for “serene […] peaceful and constructive” public discussion. The proposed strategy has three aims: to establish an observatory, to create a permanent forum for discussion and to broaden the debate to include citizens[4]. An Observatory for Synthetic Biology was set up in January 2012 to collect information, mobilize actors, follow debates, analyse the various positions and organize a public forum. Let us hope that this observatory—unlike so many other structures—will have a tangible and durable influence on policy-making, public opinion and scientific practice.Many structural and organizational challenges persist, as neither the National Agency for Research nor the National Centre for Scientific Research have defined the field as a funding priority and public–private partnerships are rare in France. Moreover, strict boundaries between academic disciplines impede interdisciplinary work, and synthetic biology is often included in larger research programmes rather than supported as a research field in itself. Although both the SNRI and the OPECST reports make recommendations for future developments—including setting up funding policies and platforms—it is not clear whether these will materialize, or when, where and what size of investments will be made.France has ambitious goals for synthetic biology, but it remains to be seen whether the government is willing to put ‘meat to the bones'' in terms of financial and institutional support. If not, these goals might come to be seen as unrealistic and downgraded or they will be replaced with another vision that sees synthetic biology as something that only needs discussion and deliberation but no further investment. One thing is already certain: the future development of synthetic biology in France is a political issue.  相似文献   

16.
Two articles—one published online in January and in the March issue EMBO reports—implicate autophagy in the control of appetite by regulating neuropeptide production in hypothalamic neurons. Autophagy decline with age in POMC neurons induces obesity and metabolic syndrome.Kaushik et al. EMBO reports, this issue doi:10.1038/embor.2011.260Macroautophagy, which I will call autophagy, is a critical process that degrades bulk cytoplasm, including organelles, protein oligomers and a range of selective substrates. It has been linked with diverse physiological and disease-associated functions, including the removal of certain bacteria, protein oligomers associated with neurodegenerative diseases and dysfunctional mitochondria [1]. However, the primordial role of autophagy—conserved from yeast to mammals—appears to be its ability to provide nutrients to starving cells by releasing building blocks, such as amino acids and free fatty acids, obtained from macromolecular degradation. In yeast, autophagy deficiency enhances death in starvation conditions [2], and in mice it causes death from starvation in the early neonatal period [3,4]. Two recent articles from the Singh group—one of them in this issue of EMBO reports—also implicate autophagy in central appetite regulation [5,6].Autophagy seems to decline with age in the liver [7], and it has thus been assumed that autophagy declines with age in all tissues, but this has not been tested rigorously in organs such as the brain. Conversely, specific autophagy upregulation in Caenorhabditis elegans and Drosophila extends lifespan, and drugs that induce autophagy—but also perturb unrelated processes, such as rapamycin—promote longevity in rodents [8].Autophagy literally means self-eating, and it is therefore interesting to see that this cellular ‘self-eating'' has systemic roles in mammalian appetite control. The control of appetite is influenced by central regulators, including various hormones and neurotransmitters, and peripheral regulators, including hormones, glucose and free fatty acids [9]. Autophagy probably has peripheral roles in appetite and energy balance, as it regulates lipolysis and free fatty acid release [10]. Furthermore, Singh and colleagues have recently implicated autophagy in central appetite regulation [5,6].The arcuate nucleus in the hypothalamus has received extensive attention as an integrator and regulator of energy homeostasis and appetite. Through its proximity to the median eminence, which is characterized by an incomplete blood–brain barrier, these neurons rapidly sense metabolic fluctuations in the blood. There are two different neuronal populations in the arcuate nucleus, which appear to have complementary effects on appetite (Fig 1). The proopiomelanocortin (POMC) neurons produce the neuropeptide precursor POMC, which is cleaved to form α-melanocyte stimulating hormone (α-MSH), among several other products. The α-MSH secreted from these neurons activates melanocortin 4 receptors on target neurons in the paraventricular nucleus of the hypothalamus, which ultimately reduce food intake. The second group of neurons contain neuropeptide Y (NPY) and Agouti-related peptide (AgRP). Secreted NPY binds to downstream neuronal receptors and stimulates appetite. AgRP blocks the ability of α-MSH to activate melanocortin 4 receptors [11]. Furthermore, AgRP neurons inhibit POMC neurons [9].Open in a separate windowFigure 1Schematic diagram illustrating the complementary roles of POMC and NPY/AgRP neurons in appetite control. AgRP, Agouti-related peptide; MC4R, melanocortin 4 receptor; α-MSH, α-melanocyte stimulating hormone; NPY, neuropeptide Y; POMC, proopiomelanocortin.The first study from Singh''s group started by showing that starvation induces autophagy in the hypothalamus [5]. This finding alone merits some comment. Autophagy is frequently assessed by using phosphatidylethanolamine-conjugated Atg8/LC3 (LC3-II), which is specifically associated with autophagosomes and autolysosomes. LC3-II levels on western blot and the number of LC3-positive vesicles strongly correlate with the number of autophagosomes [1]. To assess whether LC3-II formation is altered by a perturbation, its level can be assessed in the presence of lysosomal inhibitors, which inhibit LC3-II degradation by blocking autophagosome–lysosome fusion [12]. Therefore, differences in LC3-II levels in response to a particular perturbation in the presence of lysosomal inhibitors reflect changes in autophagosome synthesis. An earlier study using GFP-LC3 suggested that autophagy was not upregulated in the brains of starved mice, compared with other tissues where this did occur [13]. However, this study only measured steady state levels of autophagosomes and was performed before the need for lysosomal inhibitors was appreciated. Subsequent work has shown rapid flux of autophagosomes to lysosomes in primary neurons, which might confound analyses without lysosomal inhibitors [14]. Thus, the data of the Singh group—showing that autophagy is upregulated in the brain by a range of methods including lysosomal inhibitors [5]—address an important issue in the field and corroborate another recent study that examined this question by using sophisticated imaging methods [15].“…decreasing autophagy with ageing in POMC neurons could contribute to the metabolic problems associated with age”Singh and colleagues then analysed mice that have a specific knockout of the autophagy gene Atg7 in AgRP neurons [5]. Although fasting increases AgRP mRNA and protein levels in normal mice, these changes were not seen in the knockout mice. AgRP neurons provide inhibitory signals to POMC neurons, and Kaushik and colleagues found that the AgRP-specific Atg7 knockout mice had higher levels of POMC and α-MSH, compared with the normal mice. This indicated that starvation regulates appetite in a manner that is partly dependent on autophagy. The authors suggested that the peripheral free fatty acids released during starvation induce autophagy by activating AMP-activated protein kinase (AMPK), a known positive regulator of autophagy. This, in turn, enhances degradation of hypothalamic lipids and increases endogenous intracellular free fatty acid concentrations. The increased intracellular free fatty acids upregulate AgRP mRNA and protein expression. As AgRP normally inhibits POMC/α-MSH production in target neurons, a defect in AgRP responses in the autophagy-null AgRP neurons results in higher α-MSH levels, which could account for the decreased mouse bodyweight.In follow-up work, Singh''s group have now studied the effects of inhibiting autophagy in POMC neurons, again using Atg7 deletion [6]. These mice, in contrast to the AgRP autophagy knockouts, are obese. This might be accounted for, in part, by an increase in POMC preprotein levels and its cleavage product adrenocorticotropic hormone in the knockout POMC neurons, which is associated with a failure to generate α-MSH. Interestingly, these POMC autophagy knockout mice have impaired peripheral lipolysis in response to starvation, which the authors suggest might be due to reduced central sympathetic tone to the periphery from the POMC neurons. In addition, POMC-neuron-specific Atg7 knockout mice have impaired glucose tolerance.This new study raises several interesting issues. How does the autophagy defect in the POMC neurons alter the cleavage pattern of POMC? Is this modulated within the physiological range of autophagy activity fluctuations in response to diet and starvation? Importantly, in vivo, autophagy might fluctuate similarly (or possibly differently) in POMC and AgRP neurons in response to diet and/or starvation. Given the tight interrelation of these neurons, how does this affect their overall response to appetite regulation in wild-type animals?Finally, the study also shows that hypothalamic autophagosome formation is decreased in older mice. To my knowledge, this is the first such demonstration of this phenomenon in the brain. The older mice phenocopied aspects of the POMC-neuron autophagy null mice—increased hypothalamic POMC preprotein and ACTH and decreased α-MSH, along with similar adiposity and lipolytic defects, compared with young mice. These data are provocative from several perspectives. In the context of metabolism, it is tantalizing to consider that decreasing autophagy with ageing in POMC neurons could contribute to the metabolic problems associated with ageing. Again, this model considers the POMC neurons in isolation, and it would be important to understand how reduced autophagy in aged AgRP neurons counterbalances this situation. In a more general sense, the data strongly support the concept that neuronal autophagy might decline with age.Autophagy is a major clearance route for many mutant, aggregate-prone intracytoplasmic proteins that cause neurodegenerative disease, such as tau (Alzheimer disease), α-synuclein (Parkinson disease), and huntingtin (Huntington disease), and the risk of these diseases is age-dependent [1]. Thus, it is tempting to suggest that the dramatic age-related risks for these diseases could be largely due to decreased neuronal capacity of degrading these toxic proteins. Neurodegenerative pathology and age-related metabolic abonormalities might be related—some of the metabolic disturbances that occur in humans with age could be due to the accumulation of such toxic proteins. High levels of these proteins are seen in many people who do not have, or who have not yet developed, neurodegenerative diseases, as many of them start to accumulate decades before any sign of disease. These proteins might alter metabolism and appetite either directly by affecting target neurons, or by influencing hormonal and neurotransmitter inputs into such neurons.  相似文献   

17.
18.
19.
Assisted reproductive technologies enable subfertile couples to have children. But there are health risks attached for both mothers and children that need to be properly understood and managed.Assisted reproductive technology (ART) has become a standard intervention for couples with infertility problems, especially as ART is highly successful and overall carries low risks [1,2]. The number of infants born following ART has increased steadily worldwide, with more than 5,000,000 so far [3]. In industrialized countries, 1–4% of newborns have been conceived by using ART [4,5], probably owing to the fact that couples frequently delay childbearing until their late 30s, when fertility decreases in both men and women [2]. Considering the possibility that male fertility might be declining, as Richard Sharpe has discussed in this series [6], it is likely that ART will be even more widely used in the future. Yet, as the rate of ART and the total number of pregnancies has increased, it has become apparent that ART is associated with potential risks to the mother and fetus. The most commonly cited health problems pertain to multiple gestation pregnancies and multiple births. More recently, however, concerns about the risks of birth defects and genetic disorders have been raised. There are questions about whether the required manipulations and the artificial environments of gametes and embryos are potentially creating short- and long-term health risks in mothers and children by interfering with epigenetic reprogramming.Notwithstanding, ART represents a tremendous achievement in human reproductive medicine. The birth of Louise Brown, the first ‘test tube baby'' in 1978, was the result of the collaborative work of embryologist Robert Edwards and gynaecologist Patrick Steptoe [7]. This success was a culmination of many years of work at universities and clinics worldwide. An initial lack of support, as well as criticism from ethicists and the church, delayed the opening of the first in vitro fertilization (IVF) clinic in Bourn Hall near Cambridge until 1980. By 1986, 1,000 children conceived by IVF at Bourn Hall had been born [8]. In 2010, Edwards received the Nobel Prize in Medicine for the development of IVF. Regrettably, Steptoe had passed away in 1988 and could not share the honour.…as the rate of ART and the total number of pregnancies has increased, it has become apparent that ART is associated with potential risks to mother and fetusOver the next decades, many improvements in IVF procedures were made to reduce the risks of adverse effects and increase success rates, including controlled ovarian stimulation, timed ovulation induction, ultrasound-guided egg retrieval, cryopreservation of embryos and intracytoplasmic sperm injection (ICSI)—a technique in which a single sperm cell is injected into an oocyte using a microneedle. In addition, there were further improvements such as assisted hatching and in media composition, such as sequential media, which allow the in vitro culture of the embryo to reach the blastocyst stage [8].Current IVF procedures involve multiple steps including ovarian stimulation and monitoring, oocyte retrieval from the ovary, fertilization in vitro and embryo transfer to the womb. Whereas the first IVF cycles, including the conception of Louise Brown, used natural ovulatory cycles, which result in the retrieval of one or two oocytes, most IVF cycles performed today rely on controlled ovarian stimulation using injectable gonadotropins—follicle stimulating hormone and luteinizing hormone—in supraphysiological concentrations for 10–14 days, followed by injection of human chorionic gonadotropin (hCG) 38–40 h before egg retrieval to trigger ovulation. This updated protocol makes it possible to grow multiple follicles and to retrieve 10–20 oocytes in one IVF cycle, thereby increasing the number of eggs available for fertilization.Post-retrieval, the embryologist places an egg and sperm together in a test tube for fertilization. Alternatively, a single sperm cell can be injected into an egg by using ICSI. This procedure was initially developed for couples with poor sperm quality [9], but has become the predominant fertilization technique used in many IVF clinics worldwide [8]. The developing embryos are monitored by microscopy, and viable embryos are transferred into the woman''s womb for implantation. Louise Brown, as with many embryos today, was transferred three days after egg retrieval, at approximately the eight-cell stage. However, using sequential media, many clinics advocate culturing embryos until day five when they reach the blastocyst stage. The prolonged culture period allows self-selection of the most viable embryos for transfer and increases the chance of a viable pregnancy. Excess embryos can be cryopreserved and transferred at a later date by using a procedure known as frozen embryo transfer (FET). In this article we use the term ART to refer to IVF procedures with or without ICSI and FET.

Science & Society Series on Sex and Science

Sex is the greatest invention of all time: not only has sexual reproduction facilitated the evolution of higher life forms, it has had a profound influence on human history, culture and society. This series explores our attempts to understand the influence of sex in the natural world, and the biological, medical and cultural aspects of sexual reproduction, gender and sexual pleasure.Embryos can also be screened for chromosomal aneuploidies—missing or extra chromosomes—by preimplantation genetic diagnosis (PGD) when indicated and when available. PGD can also be used to test fertile couples at increased risk of genetic disorders. To perform PGD, a single cell is obtained from three-day-old embryos for molecular testing, for example sequencing for inherited monogenic disorders or fluorescent in situ hybridization for chromosomal abnormalities [8]. Only embryos with a normal chromosomal constitution, and without the genetic disorder in question, would then be transferred into the woman''s womb.Despite tremendous progress during the past three decades, people undertaking ART still face a considerable risk of failure to achieve parenthood. The rate of clinical pregnancies in Bourn Hall between 1980 and 1985 was 24% and 14% in women younger and older than 40 years, respectively [10]. The reported rates for clinical pregnancies and live births vary by country; the average delivery rate is 22.4%, 23.3% and 17.1% for IVF, ICSI and FET cycles, respectively [11]. According to the last Centers for Disease Control and Prevention report in 2009, the average live-birth rate was 35% per fresh ART cycle, although it sharply declines with age, from 45% among women younger than 35 years to 7% among women older than 42 years [5]. The reasons include poor response to ovarian stimulation, ovarian hyperstimulation syndrome and failure of eggs to fertilize. However, these failures occur in only a minority of patients and the success rate of egg retrieval and fertilization leading to embryo transfer is a remarkable 90% [12].Implantation remains the least understood process and is a key rate-limiting step in ART. Poor embryo quality is considered to be the main cause of implantation failure and it reflects a high incidence of chromosomal aneuploidies, which increases with maternal age [13]. One obvious solution to improve implantation rates is to transfer more embryos. However, this also increases the risk of multiple births, and related morbidity and mortality in newborns. An alternative approach is to select for good-quality embryos by culturing them to the blastocyst stage, because it seems that aneuploid embryos arrest by this stage and that blactocysts are more likely to have a normal chromosomal complement. There is ongoing research aimed at identifying viable embryos through PGD and metabolic profiling [13].Despite tremendous progress during the past three decades, people undertaking ART still face a considerable risk of failure to achieve parenthoodIt has also been suggested that failure to implant could be caused by the inability of the embryo to hatch out of a glycoprotein layer surrounding the embryo, known as the ‘zona pellucida''; this layer hardens if the embryo is cultured or frozen. Assisted hatching by rupturing the zona pellucida before embryo transfer does increase clinical pregnancy rates, especially for thawed embryos [13]. Another factor linked to the failure of implantation is endometrial receptivity. The endometrium consists of multi-layered mucosa cells in the inner wall of the uterus, which undergoes coordinated remodelling during the menstrual cycle and there is a specific time window when it is receptive to embryo implantation. Several research studies have identified molecular biomarkers of poor endometrial receptivity, showing that prostaglandins, cell adhesion molecules, mucins and cytokines are important [13].When it comes to health risks for mothers and infants, the use of ART increases the risk of multiple births, including higher rates of caesarian sections, prematurity, low birth weight, infant death and disability. More recently, concerns regarding elevated risks of birth defects, genetic abnormalities, neurodevelopmental disorders and imprinting disorders have been reported; however, not all are substantiated. There are still many unanswered questions regarding the potential short- and long-term health risks of ART for women and children, and there are tremendous challenges in studying the safety of ART procedures. Apart from the subset of individuals undergoing ART for social reasons—single parents or same sex couples—most patients are subfertile couples. Subfertility, defined as a failure to conceive naturally after 12 months of unprotected intercourse, affects 8–20% of couples [2], and it can occur for a variety of unknown or known reasons including maternal factors—endocrine, hormonal, endometriosis and blocked fallopian tubes—and paternal factors such as spermatogenesis abnormalities.Most studies have assessed the risks of ART by comparing the outcomes of ART-conceived pregnancies to naturally conceived pregnancies. There is emerging evidence that underlying maternal or paternal subfertility might be an important factor in obstetric, neonatal and childhood outcomes in the ART population. Therefore, to determine the specific health risks associated with the ART process itself, the outcomes of ART-conceived pregnancies should be assessed in comparison with naturally conceived pregnancies in subfertile parents, which is methodologically difficult. Alternatively, studying the health risks of ART in fertile couples—for instance, same-sex couples and couples at risk of genetic disorders—would be informative, but the number of such couples is relatively small.Women who undergo ART are at risk of ovarian hyperstimulation syndrome (OHSS). OHSS is a complication of ovulation induction resulting in enlargement of ovaries and retention of fluids leading to various secondary complications, which normally resolve within two weeks, but can persist if pregnancy occurs. Patients with OHSS can be offered embryo cryopreservation and frozen embryo transfer when symptoms resolve. Moderate forms of OHSS occur in 5% of patients undergoing ART; 2% of patients require hospitalization. Death occurs with an incidence of approximately 3 per 100,000 ART cycles [14]. OHSS is predominantly caused by human chorionic gonadotropin injection used for inducing final oocyte maturation and ovulation. Research is focused on optimizing alternative stimulation protocols [14].The use of supraphysiological concentrations of hormones during ovarian stimulation has also raised concerns that ART can increase cancer risks linked to hormonal fluctuations. These include breast, ovarian, endometrial, cervical and colon cancers, as well as melanoma. Studies evaluating the risks of cervical cancers, colon cancers and melanoma have not demonstrated increased risks for women undergoing ART [1]. The data for breast, ovarian and endometrial cancer is more complex, however, and more research is required to conclusively determine whether there is an increased risk.The perinatal and obstetric risks of ART are most significantly influenced by multiple pregnancies. These are at a more than 60% risk of low birth weight or premature delivery [2], and related risks of pregnancy complications such as gestational diabetes, abnormal placentation and hypertensive disorders [1]. Multiple pregnancies occur in 1% of naturally conceived pregnancies and 25–50% of ART pregnancies, owing to multiple embryo transfer. In the Western world, about 30–50% of all twin pregnancies result from ART [2]. Whilst double or triple embryo transfer is still common, the development of cryopreservation techniques and extended blastocyst culture has increased the use of single embryo transfer (SET), especially for younger women. Many European countries and the province of Quebec, in Canada, where ART is publicly funded, have adopted a policy of SET, which has dramatically decreased the incidence of multiple pregnancies. In Belgium and Quebec, SET policies have reduced multiple pregnancies from 19% to 3% and from 27% to 6%, respectively. It has been argued that SET results in a lower live-birth rate than a double-embryo transfer, but this is almost completely overcome by an additional single frozen embryo cycle [2].…there are tremendous challenges in studying the safety of ART proceduresThe question of whether ART increases the risks of pregnancy complications, including prematurity and low birth weight in singletons, remains unresolved; several studies have found an increased risk, but others have not replicated these findings [1,2]. It has been suggested that the fertility history of patients undergoing ART is an important factor, as there is an association between the length of time to conception and prematurity and birth weight [15]. Prematurity and low birth weight are also known to be associated with long-term health effects, including adult onset coronary artery disease, hypertension, obesity and type 2 diabetes [16,17].Various studies have also reported a higher incidence of congenital anomalies in ART-conceived children, with a suggested 30% increase of malformations [2]. However, this is another risk that might be attributable to parental subfertility, as a study comparing children conceived by ART to subfertile parents and children conceived naturally to subfertile parents did not find any significant difference in the congenital anomaly rate [2]. Findings from another study of the risks of birth defects in children conceived naturally to women with and without a history of subfertility compared with children conceived with the assistance of ART also suggest that it is subfertility, rather than ART, that is associated with an increased risk of birth defects [18].Several studies reported an increased risk of cerebral palsy and other neurological abnormalities in children conceived by ART [2]. But again, these findings are mainly attributed to complications resulting from multiple pregnancies including prematurity and low birth weight. The increased utilization of SET is therefore expected to result in fewer multiple pregnancies, which should result in a concomitant decrease in neurological complications. Further evidence that neurological complications in ART children are not exclusively related to ART came from studies that have assessed neurodevelopmental outcomes, such as locomotion, cognition, language and behavioural development of ART children in comparison with naturally conceived children. These analyses did not reveal any differences when adjusted for confounding factors of low birth weight and prematurity. In a similar vein, numerous studies have investigated whether there is an increased incidence of autism in ART-conceived children, but these have been inconclusive [19].There are potential concerns regarding the fertility of ART children. However, this requires future studies as most of this population is younger than 30 years of age. There is some evidence that boys conceived through ICSI have an increased rate of genital anomalies [2] and that males with severe infertility, such as low sperm counts, are more likely to carry chromosomal abnormalities, which could be passed on to their children conceived through ICSI [15].It has also been suggested that there might be an increased risk of cancers in ART-conceived offspring. Although multiple studies have identified no such risk, a large Swedish study reported a marginally increased risk of cancer, including haematologic, eye, nervous system, solid tumours and histiocytosis [2]. Similarly to other ART-related adverse health outcomes, it has been suggested that the increased risk of cancer could be attributed to prematurity, a recognized risk factor for cancer, rather than to the ART procedure itself. Further long-term studies are required to determine if there is truly an increased risk of adult cancers in ART offspring.…there remain unanswered questions about both the health risks associated with ART and the potential mechanisms that could account for these findingsOne thing is clear from the available evidence to date: there remain unanswered questions about both the health risks associated with ART and the potential mechanisms that could account for these findings. One possible explanation is that the exposure of gametes and preimplantation embryos to the various steps of ART might affect growth and development of offspring through dysregulation of epigenetic pathways [20]. In addition, there is evidence that genetic and epigenetic alterations might be inherited from the gametes of subfertile parents, which would reinforce assertions that subfertility itself might play a role in ART-related health outcomes [1,20].Epigenetics refers to heritable changes in gene expression without alterations to the underlying DNA sequence. DNA methylation and modifications of histones are epigenetic modifications that determine active against repressive conformation of chromatin structure, thereby regulating gene expression and driving essential processes such as embryonic development, fetal organ development, cell differentiation and tissue-specific gene expression [21]. Genomic imprinting is a type of epigenetic gene regulation that uses epigenetic marks to silence specifically one of the parental alleles. There are approximately 100 known imprinted genes in humans [22]. Most imprinted genes are found in clusters across the genome and are regulated by parent-specific DNA methylation and histone modification marks at cis-acting imprinting centres, as well as non-coding RNAs. Most of the known imprinted genes have functions related to growth and behaviour; disruption of the normally programmed parental expression of imprinted genes can therefore result in disorders related to growth and neurodevelopment.Gametogenesis and embryogenesis are important stages of mammalian development that require genome-wide epigenetic reprogramming. During spermatogenesis, protamines replace most histone proteins to create a highly compacted DNA. Establishment of DNA methylation imprints at paternally methylated imprinting centres is complete in males at the time of birth. In females, the establishment of maternally methylated imprinting centres begins during puberty and is almost complete in ovulated oocytes. After fertilization, the paternal genome undergoes rapid active DNA demethylation in which protamines are replaced by histones, whilst the maternal genome is passively demethylated, so that DNA methylation patterns are lost through cell divisions. Although, the whole genome undergoes demethylation, parent-specific DNA methylation is maintained at imprinting centres. Subsequently, the genome is remethylated and cell-type-specific epigenetic patterns are established as embryonic development proceeds. The parent-specific DNA methylation at imprinting centres is maintained in somatic cells, but it is erased and re-established in the gametes starting a new cycle of imprinting (Fig 1; [23]). As the establishment and maintenance of imprinting marks coincides in timing with important stages of ART, such as oocyte maturation under supraphysiological hormone concentrations and embryo culture, it has been proposed that ART can lead to imprinting errors [24].Open in a separate windowFigure 1Life cycle of genomic imprinting and assisted reproductive technology. Erasure, re-establishment and maintenance of genomic imprinting occur during gametogenesis and preimplantation embryo development. Blue and red solid lines show paternal and maternal methylation at imprinting centres through gametogenesis and early stages of preimplantation development. Imprinting marks are erased at early stages of gametogenesis. Re-establishment of imprinting occurs throughout gametogenesis, but finishes much later in oocytes compared with sperm. During preimplantation development, both maternal and paternal imprinting marks are maintained whilst the rest of the genome is demethylated. The paternal genome is demethylated rapidly and actively (dashed blue line) whilst the maternal genome is demethylated at a slower rate passively through cell division (dashed red line). Various steps of assisted reproductive technology such as ovarian stimulation, ovulation induction, gamete and embryo manipulation and culturing create unusual environments for gametes and embryos and thus, can interfere with proper establishment of imprinting marks in oocytes or maintenance of imprinting marks in embryos. Subfertility can be associated with epigenetic errors in imprinting erasure and/or establishment in both oocytes and sperm. Adapted from [23].In 2001, the first evidence that genomic imprinting can be perturbed during ART procedures came from studying sheep fetuses derived from in vitro cultured embryos that presented with large offspring syndrome (LOS; [25]). LOS occurs sporadically in cattle and sheep conceived by IVF and is characterized by a 20–30% increase in birth weight frequently accompanied by congenital anomalies and placental dysfunction [24]. Owing to phenotypic similarities of LOS to the human overgrowth disorder Beckwith–Wiedemann syndrome (BWS), which is caused by the dysregulation of gene expression within an imprinted cluster on chromosome 11p15.5, the authors hypothesized that genes from the orthologous cluster in sheep or a closely related pathway could be dysregulated in LOS. They tested expression of the insulin-like growth factor 2 (IGF2) gene known to be overexpressed in BWS, and the IGF2R receptor gene, which is involved in clearance of IGF2 from the circulation. IGF2R is imprinted in sheep but not in humans. In sheep with LOS, no differences for IGF2 were found, but reduced expression of IGF2R was observed after loss of DNA methylation at the imprinting centre for this gene [25].In the following decade, several studies provided further evidence that children conceived by ART might be at increased risk of imprinting disorders. The strongest case has been made for BWS and Angelman syndrome. BWS is the most common human overgrowth syndrome characterized by prenatal and postnatal overgrowth, congenital anomalies and tumour predisposition [26]. Angelman syndrome is a neurodevelopmental disorder characterized by microcephaly, severe intellectual disability and a unique behavioural profile including frequent laughter, smiling and excitability [27]. Multiple case reports from various countries indicate an increased frequency of BWS and Angelman syndrome in ART children (3–10-fold) compared with the general population. However, two cohort studies failed to replicate this association [28]. The low incidence of both BWS (1 in 13,700) and Angelman syndrome (1 in 15,000) in the general population [28] makes epidemiological studies difficult—the two cohort studies reported 2,492 and 6,052 ART children, respectively, and are probably underpowered to detect an increased risk of BWS and Angelman syndrome. However, even if there might be increased relative risks for these syndromes in ART children, the absolute risks in this population remain low.The molecular causes of BWS and Angelman syndrome are heterogeneous. They include genomic (deletion, uniparental disomy and gene mutation) and epigenetic (loss of imprinting due to aberrant DNA methylation) alterations at imprinted gene clusters on chromosomes 11p5.5 and 15q11–q13, respectively. These alterations occur with specific frequencies for each of the two disorders [26,27]. Results of molecular testing in children with these syndromes and conceived using ART, reveal an excess of epigenetic compared with genetic molecular alterations. For example, loss of DNA methylation at imprinting centre 2 occurs in about 50% of BWS cases in the general population, whereas several studies found loss of DNA methylation at imprinting centre 2 in 96% (27/28) of BWS ART-conceived children. In Angelman syndrome, approximately 3% of cases in the general population have loss of methylation at 15q11–13, whereas 5 out of 19 (26%) Angelman syndrome children conceived by ART or naturally by parents with a history of subfertility had loss of DNA methylation at 15q11–13 (Fig 2).Open in a separate windowFigure 2Enrichment of epigenetic alterations in Beckwith–Wiedemann syndrome and Angelman syndrome after assisted reproductive technology. Loss of methylation (LOM) at imprinting centre 2 (IC2) on chromosome 11p15.5 contributes to 50% of Beckwith–Wiedemann syndrome (BWS) cases in the general population, whereas LOM at IC2 is found in 27 out of 28 cases (96%) in the BWS assisted reproductive technology (ART) population, which represents a 1.9-fold enrichment of this epigenetic defect. For Angelman syndrome (AS), methylation disruption at the 15q11–q13 imprinting centre contributes to 3% of AS cases, and in the AS ART and subfertility population it was found in 5 out of 19 cases (26%; eight fold enrichment). Data from the following publications were used for these calculations, BWS [31,32,33,34,35] AS [35,36].The data for loss of DNA methylation in Angelman syndrome cases conceived naturally by subfertile parents highlights the fact that epigenetic alterations could, at least in part, result from underlying parental subfertility. Indeed, several studies have shown that abnormalities of spermatogenesis, such as oligospermia (low sperm concentration), low sperm motility or abnormal sperm morphology are associated with altered DNA methylation at imprinted loci. These occur in both maternal and paternal alleles of imprinting centres in sperm and could be transmitted to offspring conceived by ART [26]. One study of chromosomally normal fetuses spontaneously aborted at six to nine weeks of gestation found that DNA methylation alterations at imprinted loci were sometimes inherited from sperm. Thus, it is possible that this dysregulation of imprinting in male gametes might be one cause of the association between imprinting disorders and ART.Studies of other known imprinted syndromes, such as Prader–Willi syndrome, Russell–Silver syndrome, maternal and paternal uniparental disomy of chromosome 14, pseudohypoparathyroidism type 1b and transient neonatal diabetes mellitus, have either not demonstrated an association with ART or have been inconclusive owing to their small size [29]. A link has also been suggested between ART and the newly defined ‘multiple maternal hypomethylation syndrome'', which clinically presents either as BWS or transient neonatal diabetes mellitus, and is associated with loss of DNA methylation at multiple maternally methylated imprinting centres; loss of methylation at paternal imprinting centres has not been reported so far. Thus, human imprinting disorders that have been observed with increased relative frequency in ART offspring are confined to loss of DNA methylation at maternally methylated imprinting centres, similar to epimutations of IGF2R in LOS. One could propose that ART has a greater impact on female than male gametes, as the eggs are subjected to more environmental exposures—supraphysiological doses of hormones—and more manipulation than the sperm. However, studies of mouse in vitro cultured embryos and ART-exposed human and mouse gametes suggest that ART can also be associated with either loss or gain of DNA methylation on both maternal and paternal alleles [23].Mouse models are a valuable method to investigate which stages of ART procedures can disrupt normal imprinting patterns. The advantage of using mouse models is the ability to investigate each of the parameters of ART—ovulation stimulation and embryo culturing—separately and at different stages of development. Furthermore, mouse models allow investigators to alter ART parameters, such as concentration of hormones or media for embryo culturing. Most importantly, studies in animal models have shown that ART procedures without the confounding factor of subfertility do have a negative impact on imprint regulation [23].The exposure of maturing oocytes from mice to abnormally high doses of gonadotropins has been suggested to alter imprint establishment. Yet, studies performed directly on superovulated oocytes are inconclusive, as not all of them have demonstrated increased rates of DNA methylation errors at imprint centres compared with spontaneously ovulated oocytes. Interestingly, studies of DNA methylation in mouse blastocysts harvested from superovulated mothers identified an increased rate of DNA methylation errors at imprint centres. This included loss of DNA methylation at the paternally methylated H19—the imprinting centre on human chromosome 11 and mouse chromosome 7 implicated in BWS and the related undergrowth Russell–Silver syndrome. It suggests that superovulation also impairs imprinting maintenance; probably by affecting the ability of the oocyte to synthesize and store sufficient maternal factors (RNA and proteins; [23]). In support of this hypothesis, four maternal effect proteins have been previously identified that are involved in imprinting maintenance in preimplantation embryos. It was also found that imprint errors arise in blastocysts in a dose-dependent manner—higher doses of hormones resulted in DNA methylation errors in a larger number of embryos [23].As the establishment and maintenance of imprinting marks coincides in timing with important stages of ART […] it has been proposed that ART can lead to imprinting errorsAnother factor that might contribute to imprinting errors is the micromanipulation of gametes during IVF and ICSI procedures. Evidence supporting this hypothesis includes the observation in mouse models that a higher number of IVF embryos—resulting from superovulation alone or superovulation and embryo culturing—have aberrant H19 DNA methylation compared with in vivo conceived embryos [23]. Media with varying compositions are used in ART clinics, and whilst all of the media are suboptimal for normal maintenance of all DNA imprints in mouse embryos, the number of embryos with aberrant DNA methylation at imprinting centres varies depending on the media [23]. Interestingly, it was also found that embryos with faster rates of development are more prone to loss of DNA methylation at imprinting centres [23].Though it is not yet clear how these findings relate to ART in humans, the mouse research is crucial for informing human studies about which variables should be addressed to optimize the safety and efficacy of ART procedures. Apart from ART itself, it has been shown that compromised fertility in mice results in loss or delay of DNA methylation acquisition in one of three tested imprinted genes. The compromised fertility is induced by genetic manipulation of a gene involved in communication between oocytes and surrounding follicular cells, which is crucial for proper oocyte maturation. The results suggest that the observed loss of DNA methylation could be caused by impaired transport of metabolites from follicular cells to oocytes, which is important for imprint establishment [23].Data linking dysregulation of imprinted loci and ART is limited to several imprinted gene clusters associated with clinically recognizable syndromes. However, there are more genes in the human genome that have been discovered to be, or are predicted to be, imprinted [22] but are not yet known to be associated with clinical phenotypes. Potentially, ART can lead to dysregulation of these imprinted genes, which might be another, as yet unrecognized factor contributing to neonatal and long-term health problems of ART-conceived children. At this point, it is also not clear whether epigenetic disruption during ART is limited to imprinted genes or has more global effects on the genome. The data for genome-wide DNA methylation analysis are limited in both human and mouse to individuals with no apparent disease phenotype. So far, these data have been inconclusive [23,28].One could propose that ART has a greater impact on female than male gametes, as the eggs are subjected to more environmental exposures […] and more manipulation than the spermDespite significant advances in the efficacy and success of ART procedures during the past few decades, the health risks, especially related to long-term outcomes in ART-conceived children, remain poorly understood. Moreover, the phenomena known as ‘fetal programming''—when maternal and in utero exposures can lead to various adult onset disease susceptibilities—have been suggested to be transmissible to the next generations, probably through epigenetic mechanisms [30]. In the case of ART procedures, the effect of ‘unusual'' environments during gametogenesis and early embryonic development on adult-onset disease and trans-generational inheritance is still not clear. Additional research is needed to elucidate the effects of ART on genome-wide epigenetic patterns and their link to human disease. As ART will continue to be an important medical intervention and the number of children born with the help of ART procedures will probably continue to rise in the future, it is crucial to understand the associated health risks and underlying molecular mechanisms of these technologies. This will increase the safety of this intervention and enable couples using ART to be fully informed regarding both present and future health-related risks.? Open in a separate windowDaria GrafodatskayaOpen in a separate windowCheryl CytrynbaumOpen in a separate windowRosanna Weksberg  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号