首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temporal relationship of several hormones to a metabolite of prostaglandin F2α (PGFM) was studied in mares and heifers from the beginning of the first PGFM pulse during luteolysis to the end of the second pulse. Mares (n=7) were selected with a 9-h interval between the peaks of the two pulses. In mares, estradiol-17β (estradiol) increased (P<0.05) within each PGFM pulse and plateaued for a mean of 6h between the pulses, resulting in a stepwise estradiol increase. Progesterone decreased linearly (P<0.0001) throughout the intra-pulse and inter-pulse intervals of PGFM. In heifers (n=6), inter-pulse intervals were variable, and therefore Hours 1-4 of the first pulse (Hour 0=PGFM peak) and Hours -4 to -1 of the second pulse were used to represent the mean 8-h interval between peaks of the two pulses. Estradiol increased (P<0.05) during the ascending portion of each PGFM pulse and then decreased (P<0.05) beginning at Hour -1 of the first PGFM pulse and Hour 0 of the second pulse. The 1-h delay during the second pulse was accompanied by an apparent increase in PRL. A transient decrease in estradiol occurred in individuals between PGFM pulses at a mean of 5h after the first PGFM peak, concomitant with a transient LH increase (P<0.05). Results indicated that estradiol plateaued in mares and fluctuated in heifers during the interval between PGFM pulses. Heifers also showed temporal relationships between estradiol and LH and apparently between estradiol and PRL.  相似文献   

2.
《Theriogenology》2013,79(9):1969-1976
The luteotrophic effect of bromocriptine in heifers was studied to determine if the reported posttreatment increase in progesterone (P4) just before or at the beginning of luteolysis was attributable to loss of a luteolytic effect of prolactin (PRL) or to the stimulation of LH, a known luteotropin. Four treatment groups (n = 7) were used: control (Ct), bromocriptine (Bc; 16 mg/heifer), acyline (Ac; 3 μg/kg), and bromocriptine and acyline combined (BcAc). Bromocriptine (inhibitor of PRL) and acyline (antagonist of GnRH and therefore blocker of LH) were given at Hour 0 on Day 16 postovulation, and blood samples were taken hourly at Hours 0 to 8. Concentration of P4 was greater (P < 0.05) in the Bc group than in the Ct group at each of Hours 1 to 8. Concentration of LH increased (P < 0.05) between Hours 0 to 2 in the Bc group but not in the other three groups. The peak of the first posttreatment LH pulse occurred earlier in the Bc group than in the Ct group. Average concentration of PRL was lower (P < 0.05) and number of PRL pulses was less (P < 0.05) in the Bc group than in the Ct group. Acyline inhibited LH in the Ac and BcAc groups as indicated by a decrease (P < 0.05) in concentration between Hours 0 and 2 and a decrease (P < 0.001) in number of pulses/heifer during the 8 h. A decrease in PRL but not an increase in P4 and LH occurred in the BcAc group. Results supported the hypothesis that the P4 increase associated with PRL suppression by bromocriptine treatment is attributable to an increase in LH.  相似文献   

3.
A single physiologic dose (0.1 mg) of estradiol-17β in sesame-oil vehicle or vehicle alone (n = 8) was given to heifers on day 14 after ovulation to study the effect on circulating 13-14-dihydro-15-keto-PGF2α (PGFM), PGFM pulses, and changes in progesterone concentrations within a PGFM pulse. Blood samples were collected hourly for 16 h after treatment. The estradiol group had a greater mean concentration of PGFM, greater number of heifers with PGFM pulses and number of pulses/heifer, and greater prominence of the PGFM pulses. Changes in progesterone concentrations were not detected during the 16 h sampling session in the vehicle group, indicating that the heifers were in preluteolysis. Progesterone decreased after 12 h in the estradiol group, indicating a luteolytic effect of the estradiol-induced PGF secretion as represented by PGFM concentrations. Intrapulse changes in progesterone were detected during a PGFM pulse in the estradiol group (P < 0.006), but not in the vehicle group. Progesterone increased (P < 0.01) between Hours −2 and −1 of an estradiol-induced PGFM pulse (Hour 0 = peak of pulse), decreased (P < 0.004) between Hours −1 and 0, and increased (P < 0.01) or rebounded between Hours 0 and 1. Results were compatible with previous reports of a role for estradiol in the induction of PGFM pulses in cattle and demonstrated intrapulse changes in progesterone concentrations during an induced PGFM pulse.  相似文献   

4.
Pulses of prolactin (PRL) and a metabolite of prostaglandin F2α (PGFM) were determined from hourly blood samples collected before, during, and after luteolysis (n=7 heifers). Progesterone concentrations were used to partition the results into six 12-h sets from 12h before to 36h after luteolysis. Pulses of PRL with a nadir-to-nadir interval of 4.4±0.2h were detected in each 12-h set. Pulses were rhythmic (P<0.05) in six heifers, beginning 12h before the end of luteolysis. The peak of a PRL pulse was greater (P<0.05) for the 12h after the end of luteolysis than for other 12-h sets, except for the last set of luteolysis. Area under the curve of a pulse was greater (P<0.05) for the 24h that encompassed the end of luteolysis than for two previous 12-h sets. Synchrony between the peaks of PRL and PGFM pulses was greater (P<0.03) during and after luteolysis (same hour for 29/39 pairs) than before luteolysis (0/12). Concentration of PRL centralized to the peak (Hour 0) of PGFM pulses was greater (P<0.05) at Hours 0 and 1 than at Hours -2, -1, and 3. Results supported the hypothesis that PRL is secreted in pulses in heifers. The pulses were most prominent and rhythmic during the last 12h of luteolysis and thereafter. The pulse peaks of PRL and PGFM were synchronized for most PRL pulses during and after luteolysis.  相似文献   

5.
Temporality among episodes of a prostaglandin F2alpha metabolite (PGFM), progesterone (P4), luteinizing hormone (LH), and estradiol (E2) were studied during preluteolysis and luteolysis. A vehicle group (n = 10) and a group with an E2-induced PGFM pulse (n = 10) were used. Blood sampling was done every 0.25 h for 8 h. An episode was identified by comparing its coefficient of variation (CV) with the intra-assay CV. Pulsatility of PGFM, P4, LH, and E2 in individual heifers was inferred if the autocorrelation functions were different (P < 0.05) from zero. About four nonrhythmic fluctuations of PGFM/8 h were superimposed on PGFM pulses. Pulsatility was detected for LH but not for P4 and E2. A transient increase in P4 was not detected during the ascending portion of a PGFM pulse. Progesterone decreased (P < 0.003) during Hours -1.25 to -0.50 of the PGFM pulse (Hour 0 = peak) and ceased to decrease temporally with an increase (P < 0.05) in LH. Maximum P4 concentration occurred 0.25 h after an LH pulse peak, and an increase (P < 0.005) in E2 began at the LH peak. Nadirs of LH pulses were greater (P < 0.05) and the nadir-to-nadir interval was shorter (P < 0.003) in the E2 group, which is consistent with reported characteristics during luteolysis. The results did not support the hypothesis of a transient P4 increase early in a PGFM pulse and indicated a balance between a luteolytic effect of PGF and a luteotropic effect of LH within the hours of a PGFM pulse.  相似文献   

6.
The relationships between PRL and PGF and their effect on luteolysis were studied. Heifers were treated with a dopamine-receptor agonist (bromocriptine; Bc) and a Cox-1 and -2 inhibitor (flunixin meglumine [FM]) to inhibit PRL and PGF, respectively. The Bc was given (Hour 0) when ongoing luteolysis was indicated by a 12.5% reduction in CL area (cm2) from the area on Day 14 postovulation, and FM was given at Hours 0, 4, and 8. Blood samples were collected every 8-h beginning on Day 14 until Hour 48 and hourly for Hours 0 to 12. Three groups of heifers in ongoing luteolysis were used: control (n = 7), Bc (n = 7), and FM (n = 4). Treatment with Bc decreased (P < 0.003) the PRL concentrations averaged over Hours 1 to 12. During the greatest decrease in PRL (Hours 2-6), LH concentrations were increased. Progesterone concentrations averaged over hours were greater (P < 0.05) in the Bc group than in the controls. In the FM group, no PGFM pulses were detected, and PRL concentrations were reduced. Concentrations of PGFM were not reduced in the Bc group, despite the reduction in PRL. Results supported the hypothesis that a decrease (12.5%) in CL area (cm2) is more efficient in targeting ongoing luteolysis (63%) than using any day from Days 14 to ≥19 (efficiency/day, 10-24%). The hypothesis that PRL has a role in luteolysis was supported but was confounded by the known positive effect of LH on progesterone. The hypothesis was supported that the synchrony of PGFM and PRL pulses represents a positive effect of PGF on PRL, rather than an effect of PRL on PGF.  相似文献   

7.
Luteal blood flow was studied in heifers by transrectal color-Doppler ultrasound. Data were normalized to the decrease in plasma progesterone to <1 ng/ml (Day 0 or Hour 0). Blood flow in the corpus luteum (CL) was estimated by the percentage of CL area with color flow signals. Systemic prostaglandin F2alpha (PGF) treatment (25 mg; n=4) resulted in a transient increase in CL blood flow during the initial portion of the induced decrease in progesterone. Intrauterine treatment (1 or 2 mg) was done to preclude hypothetical secondary effects of systemic treatment. Heifers were grouped into responders (luteolysis; n=3) and nonresponders (n=5). Blood flow increased transiently in both groups; induction of increased blood flow did not assure the occurrence of luteolysis. A transient increase in CL blood flow was not detected in association with spontaneous luteolysis when examinations were done every 12 h (n=6) or 24 h (n=10). The role of PGF pulses was studied by examinations every hour during a 12-h window each day during expected spontaneous luteolysis. At least one pulse of 13,14-dihydro-15-keto-PGF2alpha (PGFM) was identified in each of six heifers during the luteolytic period (Hours -48 to -1). Blood flow increased (P<0.02) during the 3-h ascending portion of the PGFM pulse, remained elevated for 2 h after the PGFM peak, and then decreased (P<0.03) to baseline. Results supported the hypothesis that CL blood flow increased and decreased with individual PGFM pulses during spontaneous luteolysis.  相似文献   

8.
The role of LH in luteolysis and development of the ovulatory follicle and the involvement of GnRH receptors in estradiol (E2) stimulation of LH secretion were studied in heifers. A pulse of PGF, as indicated by a metabolite, was induced by E2 treatment on Day 15 (Day 0 = ovulation) and LH concentration was reduced with a GnRH-receptor antagonist (acyline) on Days 15, 16, and 17. Blood samples were collected every 6 h on Days 14-17 and hourly for 10 h beginning at the Day-15 treatments. Four groups were used (n = 6): control, acyline, E2, and E2/acyline. The number of LH pulses/heifer during the 10 h posttreatment was greater (P < 0.0002) in the E2 group (2.3 ± 0.4, mean ± SEM) than in the acyline group (0.2 ± 0.2) and was intermediate in the E2/acyline group (1.4 ± 0.2). Concentrations of progesterone in samples collected every 6 h on Day 15 showed a group-by-hour interaction (P < 0.02); concentrations decreased in the acyline group but not in the control group. The 12 heifers in the combined acyline and E2/acyline groups had three follicular waves compared to two waves in 10 of 12 heifers in the combined control and E2 groups. Results (1) supported the hypothesis that LH delays the progesterone decrease associated with luteolysis, (2) supported the hypothesis that LH has a positive effect on the continued development and growth of the selected ovulatory follicle, and (3) indicated that E2 stimulates LH production through an intracellular pathway that involves GnRH receptors on the gonadotropes and a pathway that does not involve the receptors.  相似文献   

9.
This study was designed to test the hypothesis that treatment with super-ovulatory drugs suppresses endogenous pulsatile LH secretion. Heifers (n=5/group) were superovulated with eCG (2500 IU) or FSH (equivalent to 400 mg NIH-FSH-P1), starting on Day 10 of the estrous cycle, and were injected with prostaglandin F(2alpha) on Day 12 to induce luteolysis. Control cows were injected only with prostaglandin. Frequent blood samples were taken during luteolysis (6 to 14 h after PG administration) for assay of plasma LH, estradiol, progesterone, testosterone and androstenedione. The LH pulse frequency in eCG-treated cows was significantly lower than that in control cows (2.4 +/- 0.4 & 6.4 +/- 0.4 pulses/8 h, respectively; P<0.05), and plasma progesterone (3.4 +/- 0.4 vs 1.8 +/- 0.1 ng/ml, for treated and control heifers, respectively; P<0.05) and estradiol concentrations (25.9 +/- 4.3 & 4.3 +/- 0.4 pg/ml, for treated and control heifers, respectively; P<0.05) were higher compared with those of the controls. No LH pulses were detected in FSH-treated cows, and mean LH concentrations were significantly lower than those in the controls (0.3 +/- 0.1 & 0.8 +/- 0.1, respectively; P<0.05). This suppression of LH was associated with an increase in estradiol (9.5 +/- 1.4 pg/ml; P<0.05 compared with controls) but not in progesterone concentrations (2.1 +/- 0.2 ng/ml; P>0.05 compared to controls). Both superovulatory protocols increased the ovulation rate (21.6 +/- 3.9 and 23.0 +/- 4.2, for eCG and FSH groups, respectively; P>0.05). These data demonstrate that super-ovulatory treatments decrease LH pulse frequency during the follicular phase of the treatment cycle. This could be explained by increased steroid secretion in the eCG-trated heifers but not in FSH-treated animals.  相似文献   

10.
The long-term negative feedback effects of sustained elevations in circulating estradiol and progesterone on the pulsatile secretion of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) were evaluated in the ewe following ovariectomy during the mid-late anestrous and early breeding seasons. GnRH secretion was monitored in serial samples of hypophyseal portal blood. Steroids were administered from the time of ovariectomy by s.c. Silastic implants, which maintained plasma concentrations of estradiol and progesterone at levels resembling those that circulate during the mid-luteal phase of the estrous cycle; control ewes did not receive steroidal replacement. Analysis of hormonal pulse patterns in serial samples during 6-h periods on Days 8-10 after ovariectomy disclosed discrete, concurrent pulses of GnRH in hypothalamo-hypophyseal portal blood and LH in peripheral blood of untreated ovariectomized ewes. These pulses occurred every 97 min on the average. Treatment with either estradiol or progesterone greatly diminished or abolished detectable pulsatile secretion of GnRH and LH, infrequent pulses being evident in only 3 of 19 steroid-treated ewes. No major seasonal difference was observed in GnRH or LH pulse patterns in any group of ewes. Our findings in the ovariectomized ewe provide direct support for the conclusion that the negative-feedback effects of estradiol and progesterone on gonadotropin secretion in the ewe include an action on the brain and a consequent inhibition of pulsatile GnRH secretion.  相似文献   

11.
Ginther OJ  Beg MA 《Theriogenology》2012,77(9):1731-1740
Hourly blood sampling in both horses and cattle indicate that the transition between the end of preluteolysis and the beginning of luteolysis occurs within 1 h, as manifested by a change in progesterone concentrations. Each species presents a separate temporality enigma on the relationship between pulses of a prostaglandin (PG) F2α metabolite (PGFM) and the hour of the progesterone transition. In horses, relatively small pulses of PGFM occur during preluteolysis (before transition) and at transition. Oxytocin, but not estradiol, increases and decreases concomitantly with the small PGFM pulse at transition but not with previous pulses and may account for the initiation of luteolysis during the small PGFM pulse. In cattle, the last PGFM pulse of preluteolysis occurs hours before transition (e.g., 4 h), and the next pulse occurs well after transition (e.g., 9 h); unlike in horses, a PGFM pulse does not occur at transition. During the last PGFM pulse before transition, progesterone concentration decreases during the ascending portion of the PGFM pulse. Concentration then rebounds in synchrony with an LH pulse. The rebound returns progesterone to the concentration before the PGFM pulse. During luteolysis, an LH-stimulated progesterone rebound may occur after the peak of a PGFM pulse, but progesterone does not return to the concentration before the PGFM pulse. A similar LH-stimulated progesterone rebound does not occur in horses, and therefore progesterone fluctuations are more shallow in horses than in cattle.  相似文献   

12.
LH pulse secretion is suppressed during superovulation of cattle. The objective of this study was to determine how soon after initiation of superovulation treatments this suppressive effect occurs, and to test the hypothesis that decreased LH pulsatility is not related to changes in circulating estradiol or progesterone. Heifers (n = 7/group) were injected with eCG (FOLLIGON: a single injection of 2,500 IU) or twice daily injections of decreasing doses of FOLLTROPIN-V (total equivalent of 280 mg of NIH-FSH-P1) or F.S.H.-P (total equivalent of 28 mg of Armour standard) or saline (time controls), starting on Day 10 (Day 0 = estrus). Blood samples were taken every 10 min for 12 h intervals on the day prior to first injection, at 8 to 20 h and 32 to 44 h after initiation of gonadotropin treatment, and also during prostaglandin (PG)-induced luteolysis. A simple method based on robust statistics and on graphical representations of time series was developed to characterize LH pulses. There was a significant interaction between time and treatment for mean LH, estradiol and progesterone when control and treated groups were analyzed together, and no interaction when only the gonadotropin groups were analyzed together. When compared to pretreatment values, pulse frequency of LH was significantly reduced (P<0.05) in each treatment group, 8 to 20 h and 32 to 44 h following initiation of gonadotropin treatment. Mean LH concentrations were also reduced 32 to 44 h following initiation of treatments (P<0.05). Mean estradiol concentrations increased two to threefold at 8 to 20 h following initiation of superovulation treatments (P<0.05). Progesterone concentrations also increased by 20 or 44 h. There was no significant correlation between estradiol or progesterone and LH pulse frequency, amplitude and mean concentrations at any time in control or superovulated animals. This study demonstrates that superovulation treatment in the cow causes a rapid decrease in pulsatile release of LH and suggests that this effect is not mediated through the negative feedback actions of estradiol and progesterone.  相似文献   

13.
Control of the equine estrous cycle was studied by suppressing gonadotropin secretion by administration of a GnRH antagonist to cyclic pony mares. Four mares received vehicle (control cycle) or a GnRH antagonist, Antarelix (100 microg/kg) on Day 8 of diestrus, and blood samples were collected at 15-min intervals from 0 to 16 h, 24 to 36 h, and daily until the next ovulation. Ovarian activity was monitored by transrectal ultrasonography, and measurement of plasma concentrations of progesterone and estradiol. Antagonist treatment eliminated large diestrous pulses of LH. Progesterone concentrations had fallen significantly in all mares by the day after treatment and, in three of the four mares, remained low until luteolysis. However timing of luteolysis (ie., progesterone concentrations <1 ng/mL) was not affected by antagonist treatment. The preovulatory surges of estradiol and LH were significantly delayed in the treatment cycle, as was the appearance of a preovulatory follicle >30 mm. Cycle length was significantly longer during the treatment than the control cycle. These results show that treatment of diestrous mares with a GnRH antagonist attenuated progesterone secretion, indicating a role for LH in control of CL function in the mare, and delayed ovulation presumably because of lack of gonadotropic support.  相似文献   

14.
Ovariectomized gilts (n = 63) were given estradiol benzoate (estradiol), antiserum to neutralize endogenous GnRH, and pulses of a GnRH agonist (GnRH-A) to stimulate release of LH. GnRH-A was given as 200-ng pulses hourly from 0 to 54 h and as 100- or 200-ng pulses every 30 or 60 min from 54 to 96 h after estradiol. Estradiol alone suppressed LH from 6 to 54 h and elicited an LH surge that peaked at 72 h. When GnRH-A was given every 30-60 min from 0 to 96 h, estradiol suppressed LH for 6-12 h, but then LH returned to pre-estradiol concentrations. When pulses of GnRH-A were given only between 54 and 96 h after estradiol, the surge of LH was related positively to dose and frequency of GnRH-A. We conclude that 1) estrogen acts at the hypothalamus to inhibit release of GnRH for 54 h and then causes a synchronous release of GnRH; 2) estrogen acts at the pituitary to block its response to GnRH for 6-12 h and enhances the accumulation of releasable LH; and 3) magnitude of the LH surge is dependent on the amount of GnRH stimulation.  相似文献   

15.
Mann GE  Lamming GE 《Theriogenology》2000,54(2):219-227
The importance of the ovarian steroid hormones estradiol and progesterone in the control of luteolysis in domestic ruminants is well established. However, there is a lack of studies specifically investigating the effect of stimulating "physiological" changes in endogenous estradiol or progesterone secretion on subsequent luteolysis. In this study we have stimulated endogenous ovarian hormone secretion by infusion of the GnRH analogue, Buserelin, and have assessed the effect of these changes on the timing of luteolysis. Concentrations of estradiol and progesterone were monitored in plasma samples collected from 6 mature, cyclic, lactating, Friesian cows during a control cycle and during a cycle in which Buserelin was infused via osmotic minipump (8.6 microg/h) for 28 days starting on Day 2 of the cycle. Buserelin infusion had little effect on progesterone secretion but did result in a marked stimulation of estradiol secretion from Days 6 to 10 of the cycle (treated cycle 4.3+/-0.2 pg/mL; control cycle 1.8+/-0.3 pg/mL; P<0.001). In addition, there was a significant advancement in the timing of luteolysis during the Buserelin -infused cycle (Day 19.3+/-0.3 compared with Day 21.3+/-0.4; P<0.01). In this study, we have found that infusion of buserelin caused both a significant stimulation of estradiol secretion from the first follicle and a significant advancement in the timing of luteolysis. We hypothesise that the increased secretion of estradiol may have been involved in causing this advancement of luteolysis.  相似文献   

16.
The profile of circulating progesterone concentration is more dynamic in cattle than in horses. Greater prominence of progesterone fluctuations in cattle than in horses reflect periodic interplay in cattle between pulses of a luteotropin (luteinizing hormone; LH) and pulses of a luteolysin (prostaglandin F2alpha; PGF2alpha). A dose of PGF2alpha that induces complete regression of a mature corpus luteum with a single treatment in cattle or horses is an overdose. The overdose effects on the progesterone profile in cattle are an immediate nonphysiological increase taking place over about 30 min, a decrease to below the original concentration, a dose-dependent rebound 2 h after treatment, and a progressive decrease until the end of luteolysis. An overdose of PGF2alpha in horses results in a similar nonphysiological increase in progesterone followed by complete luteolysis; a rebound does not occur. An overdose of PGF2alpha and apparent lack of awareness of the rebound phenomenon has led to faulty interpretations on the nature of spontaneous luteolysis. A transient progesterone suppression and a transient rebound occur within the hours of a natural PGF2alpha pulse in cattle but not in horses. Progesterone rebounds are from the combined effects of an LH pulse and the descending portion of a PGF2alpha pulse. A complete transitional progesterone rebound occurs at the end of preluteolysis and the beginning of luteolysis and returns progesterone to its original concentration. It is proposed that luteolysis does not begin in cattle until after the transitional rebound. During luteolysis, rebounds are incomplete and gradually wane. A partial rebound during luteolysis in cattle is associated with a concomitant increase in luteal blood flow. A similar increase in luteal blood flow does not occur in mares.  相似文献   

17.
Flunixin meglumine (FM; 2.5 mg/kg) was given to heifers at three 8-h intervals, 16 d after ovulation (first treatment = Hour 0) to inhibit the synthesis of prostaglandin F (PGF), based on plasma concentrations of a PGF metabolite (PGFM). Blood samples were collected at 8-h intervals from 15 to 18 d in a vehicle (control) and FM group (n = 16/group). Hourly samples were collected from Hours −2 to 28 in 10 heifers in each group. Heifers that were in preluteolysis or luteolysis at Hour 0 based on plasma progesterone (P4) concentrations at 8-h intervals were partitioned into subgroups. Concentration of PGFM was reduced (P < 0.05) by FM treatment in each subgroup. For the preluteolytic subgroup, the first decrease (P < 0.05) in P4 concentration after Hour 0 occurred at Hours 24 and 40 in the vehicle and FM groups, respectively. Plasma P4 concentrations 32 and 40 h after the beginning of luteolysis in the luteolytic subgroup were greater (P < 0.05) in the FM group. Concentration at the peak of a PGFM pulse in the FM group was greater (P < 0.05) in the luteolytic than in the preluteolytic subgroup. The peak of a PGFM pulse occurred more frequently (P < 0.001) at the same hour as the peak of an LH fluctuation than at the ending nadir of an LH fluctuation. In conclusion, a reduction in prominence of PGFM pulses during luteolysis delayed completion of luteolysis, and treatment with FM inhibited PGFM production more during preluteolysis than during luteolysis.  相似文献   

18.
The beginning of postluteolysis (progesterone, <1 ng mL−1) in heifers was targeted by using 8 h after ultrasonic detection of a 25% decrease in CL area (cm2) and was designated Hour 0. Flunixin meglumine (FM; n = 10) to inhibit PGF secretion or vehicle (n = 9) were given intramuscularly at Hours 0, 4, 8, 16, 24, 32, and 40. The dose of FM was 2.5 mg/kg at each treatment. Blood sampling and measurement of the CL and dominant follicle were done every 8 h beginning 14 days postovulation in each group. Blood samples for detection of pulses of PRL and pulses of a metabolite of PGF (PGFM) were obtained every hour for 24 h beginning at Hour 0. Pulse concentrations of both PGFM and PRL were lower in the FM group than in the vehicle group. Concentration of PRL was greatest at the peak of a PGFM pulse. Neither CL area (cm2) nor progesterone concentration differed between groups during Hours 0 to 48 (postluteolysis). Ovulation occurred in nine of nine heifers in the vehicle group and in three of 10 heifers in the FM group. The anovulatory follicles in the FM group grew to 36.2 ± 2.9 mm, and the wall became thickened from apparent luteinization. The hypothesis that PGF was involved in the continued P4 decrease and structural CL regression during postluteolysis was not supported. However, the hypotheses that pulses of PGFM and PRL were temporally related and that systemic FM treatment induced an anovulatory follicle were supported.  相似文献   

19.
The release profile of GnRH in cerebrospinal fluid (CSF) and its correlation with LH in peripheral blood of ovary-intact heifers during the estrous cycle were investigated. A silicon catheter was placed into the third ventricle of six heifers using ultrasonography. During the mid-luteal phase, the heifers were injected with prostaglandin F(2alpha) to induce luteolysis. Surges of CSF GnRH (66.7 h after prostaglandin F(2alpha) administration) and peripheral LH (66.3 h) occurred simultaneously and were coincident with the onset of estrus (67.0 h). Duration of elevated GnRH concentration considerably overlapped with the estrous phase in each of the heifers. Mean pulse frequencies of both GnRH and LH were significantly higher during the proestrous and early luteal phases than during the mid-luteal phase, while mean concentration and pulse amplitude of both GnRH and LH were not different between these three phases. Of all the GnRH pulses identified, more than 80% were accompanied by an LH pulse during the proestrous and early luteal phases. However, the proportion of GnRH pulses that were coincident with an LH pulse during the mid-luteal phase decreased to 60%. The results clearly demonstrate that a dynamic (pulse) and longer-term (surge) changes of GnRH release into CSF are physiologically expressed during the estrous cycle in heifers, and the pattern of pulsatile GnRH secretion in heifers depends upon their estrous cycle.  相似文献   

20.
The aim of the present study was to evaluate the possible direct effects of GnRH, oxytocin (OT) and vasoactive intestinal peptide (VIP) on the release of LH and PRL by dispersed porcine anterior pituitary cells. Pituitary glands were obtained from mature gilts, which were ovariectomized (OVX) one month before slaughter. Gilts randomly assigned to one of the four groups were treated: in Group 1 (n = 8) with 1 ml/100 kg b.w. corn oil (placebo); in Group 2 (n = 8) and Group 3 (n = 8) with estradiol benzoate (EB) at the dose 2.5 mg/100 kg b.w., respectively, 30-36 h and 60-66 h before slaughter; and in Group 4 (n = 9) with progesterone (P4) at the dose 120 mg/ 100 kg b.w. for five consecutive days before slaughter. In gilts of Group 2 and Group 3 treatments with EB have induced the negative and positive feedback in LH secretion, respectively. Isolated anterior pituitary cells (10(6)/well) were cultured in McCoy's 5a medium with horse serum and fetal calf serum for 3 days at 37 degrees C under the atmosphere of 95% air and 5% CO2. Subsequently, the culture plates were rinsed with fresh McCoy's 5A medium and the cells were incubated for 3.5 h at 37 degrees C in the same medium containing one of the following agents: GnRH (100 ng/ml), OT (10-1000 nM) or VIP (1-100 nM). The addition of GnRH to cultured pituitary cells resulted in marked increases in LH release (p < 0.001) in all experimental groups. In the presence of OT and VIP we noted significant increases (p < 0.001) in LH secretion by pituitary cells derived from gilts representing the positive feedback phase (Group 3). In contrast, OT and VIP were without any effect on LH release in Group 1 (placebo) and Group 2 (the negative feedback). Pituitary cells obtained from OVX gilts primed with P4 produced significantly higher amounts (p < 0.001) of LH only after an addition of 100 nM OT. Neuropeptide GnRH did not affect PRL secretion by pituitary cells obtained from gilts of all experimental groups. Oxytocin also failed to alter PRL secretion in Group 1 and Group 2. However, pituitary cells from animals primed with EB 60-66 h before slaughter and P4 produced markedly increased amounts of PRL in the presence of OT. Neuropeptide VIP stimulated PRL release from pituitary cells of OVX gilts primed with EB (Groups 2 and 3) or P4. In contrast, in OVX gilts primed with placebo, VIP was without any effect on PRL secretion. In conclusion, the results of our in vitro studies confirmed the stimulatory effect of GnRH on LH secretion by porcine pituitary cells and also suggest a participation of OT and VIP in modulation of LH and PRL secretion at the pituitary level in a way dependent on hormonal status of animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号