首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Bjors  L Luna  B Johnsen  E Hoff  T Haug  T Rognes    E Seeberg 《The EMBO journal》1997,16(20):6314-6322
The guanine modification 7,8-dihydro-8-oxoguanine (8-oxoG) is a potent premutagenic lesion formed spontaneously at high frequencies in the genomes of aerobic organisms. We have characterized a human DNA repair glycosylase for 8-oxoG removal, hOGH1 (human yeast OGG1 homologue), by molecular cloning and functional analysis. Expression of the human cDNA in a repair deficient mutator strain of Escherichia coli (fpg mutY) suppressed the spontaneous mutation frequency to almost normal levels. The hOGH1 enzyme was localized to the nucleus in cells transfected by constructs of hOGH1 fused to green fluorescent protein. Enzyme purification yielded a protein of 38 kDa removing both formamidopyrimidines and 8-oxoG from DNA. The enzymatic activities of hOGH1 was analysed on DNA containing single residues of 8-oxoG or abasic sites opposite each of the four normal bases in DNA. Excision of 8-oxoG opposite C was the most efficient and was followed by strand cleavage via beta-elimination. However, significant removal of 8-oxoG from mispairs (8-oxoG: T >G >A) was also demonstrated, but essentially without an associated strand cleavage reaction. Assays with abasic site DNA showed that strand cleavage was indeed dependent on the presence of C in the opposite strand, irrespective of the prior removal of an 8-oxoG residue. It thus appears that strand incisions are made only if repair completion results in correct base insertion, whereas excision from mispairs preserves strand continuity and hence allows for error-free correction by a postreplicational repair mechanism.  相似文献   

2.
The Escherichia coli Fpg protein is involved in the repair of oxidized residues. We examined, by targeted mutagenesis, the effect of the conserved lysine residue at position 57 upon the various catalytic activities of the Fpg protein. Mutant Fpg protein with Lys-57-->Gly (K57G) had dramatically reduced DNA glycosylase activity for the excision of 7,8-dihydro-8-oxo-guanine (8-oxoG). While wild type Fpg protein cleaved 8-oxoG/C DNA with a specificity constant ( k cat/ K M) of 0.11/(nM@min), K57G cleaved the same DNA 55-fold less efficiently. FpgK57G was poorly effective in the formation of Schiff base complex with 8-oxoG/C DNA. The efficiency in the binding of 8-oxoG/C DNA duplex for K57G mutant was decreased 16-fold. The substitution of Lys-57 for another basic amino acid Arg (K57R) had a slight effect on the 8-oxoG-DNA glycosylase activity and Schiff base formation. The DNA glycosylase activities of FpgK57G and FpgK57R using 2,6-diamino-4-hydroxy-5N-methylformamidopyrimidine residues as substrate were comparable to that of wild type Fpg. In vivo, the mutant K57G, in contrast to the mutant K57R and wild type Fpg, only partially restored the ability to prevent spontaneously induced transitions G/C-->T/A in E.coli BH990 ( fpg mutY ) cells. These results suggest an important role for Lys-57 in the 8-oxoG-DNA glycosylase activity of the Fpg protein in vitro and in vivo.  相似文献   

3.
Escherichia coli MutY is an adenine DNA glycosylase active on DNA substrates containing A/G, A/8-oxoG, or A/C mismatches and also has a weak guanine glycosylase activity on G/8-oxoG-containing DNA. The N-terminal domain of MutY, residues 1-226, has been shown to retain catalytic activity. Substrate binding, glycosylase, and Schiff base intermediate formation activities of the truncated and intact MutY were compared. MutY has high binding affinity with 8-oxoG when mispaired with A, G, T, C, or inosine. The truncated protein has more than 18-fold lower affinities for binding various 8-oxoG-containing mismatches when compared with intact MutY. MutY catalytic activity toward A/8-oxoG-containing DNA is much faster than that on A/G-containing DNA whereas deletion of the C-terminal domain reduces its catalytic preference for A/8-oxoG-DNA over A/G-DNA. MutY exerts more inhibition on the catalytic activity of MutM (Fpg) protein than does truncated MutY. The tight binding of MutY with GO mispaired with T, G, and apurinic/apyrimidinic sites may be involved in the regulation of MutM activity. An E. coli mutY strain that produces an N-terminal 249-residue truncated MutY confers a mutator phenotype. These findings strongly suggest that the C-terminal domain of MutY determines the 8-oxoG specificity and is crucial for mutation avoidance by oxidative damage.  相似文献   

4.
The Escherichia coli Fpg protein is a DNA glycosylase/AP lyase. It removes, in DNA, oxidized purine residues, including the highly mutagenic C8-oxo-guanine (8-oxoG). The catalytic mechanism is believed to involve the formation of a transient Schiff base intermediate formed between DNA containing an oxidized residue and the N-terminal proline of the Fpg protein. The importance and the role of this proline upon the various catalytic activities of the Fpg protein was examined by targeted mutagenesis, resulting in the construction of three mutant Fpg proteins: Pro-2 --> Gly (FpgP2G), Pro-2 --> Thr (FpgP2T), and Pro-2 --> Glu (FpgP2E). The formamidopyrimidine DNA glycosylase activities of FpgP2G and FpgP2T were comparable and accounted for 10% of the wild-type activity. FpgP2G and FpgP2T had barely detectable 8-oxoG-DNA glycosylase activity and produced minute Schiff base complex with 8-oxoG/C DNA. FpgP2G and FpgP2T mutants did not cleave a DNA containing preformed AP site but readily produced Schiff base complex with this substrate. FpgP2E was completely inactive in all the assays. The binding constants of the different mutants when challenged with a duplex DNA containing a tetrahydrofuran residue were comparable. The mutant Fpg proteins barely or did not complement in vivo the spontaneous transitions G/C --> T/A in E. coli BH990 (fpg mutY) cells. These results show the mandatory role of N-terminal proline in the 8-oxoG-DNA glycosylase activity of the Fpg protein in vitro and in vivo as well as in its AP lyase activity upon preformed AP site but less in the 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine-DNA glycosylase activity.  相似文献   

5.
Chromosomal rearrangements and base substitutions contribute to the large intraspecies genetic diversity of Helicobacter pylori. Here we explored the base excision repair pathway for the highly mutagenic 8-oxo-7,8-dihydroguanine (8-oxoG), a ubiquitous form of oxidized guanine. In most organisms, 8-oxoG is removed by a specific DNA glycosylase (Fpg in bacteria or OGG1 in eukaryotes). In the case where replication of the lesion yields an A/8-oxoG base pair, a second DNA glycosylase (MutY) can excise the adenine and thus avoid the fixation of the mutation in the next round of replication. In a genetic screen for H. pylori genes complementing the hypermutator phenotype of an Escherichia coli fpg mutY strain, open reading frame HP0142, a putative MutY coding gene, was isolated. Besides its capacity to complement E. coli mutY strains, HP0142 expression resulted in a strong adenine DNA glycosylase activity in E. coli mutY extracts. Consistently, the purified protein also exhibited such an activity. Inactivation of HP0142 in H. pylori resulted in an increase in spontaneous mutation frequencies. An Mg-dependent AP (abasic site) endonuclease activity, potentially allowing the processing of the abasic site resulting from H. pylori MutY activity, was detected in H. pylori cell extracts. Disruption of HP1526, a putative xth homolog, confirmed that this gene is responsible for the AP endonuclease activity. The lack of evidence for an Fpg/OGG1 functional homolog is also discussed.  相似文献   

6.
Cunniffe SM  Lomax ME  O'Neill P 《DNA Repair》2007,6(12):1839-1849
Ionizing radiation induces clustered DNA damaged sites, defined as two or more lesions formed within one or two helical turns of the DNA through passage of a single radiation track. It is now established that clustered DNA damage sites are found in cells and present a challenge to the repair machinery of the cell but to date, most studies have investigated the effects of bi-stranded lesions. A subset of clustered DNA damaged sites exist in which two or more lesions are present in tandem on the same DNA strand. In this study synthetic oligonucleotides containing an AP site 1, 3 or 5 bases 5' or 3' to 8-oxo-7,8-dihydroguanine (8-oxoG) on the same DNA strand were synthesized as a model of a tandem clustered damaged sites. It was found that 8-oxoG retards the incision of the AP site by exonuclease III (Xth) and formamidopyrimidine DNA glycosylase (Fpg). In addition the rejoining of the AP site by xrs5 nuclear extracts is impaired by the presence of 8-oxoG. The mutation frequency arising from 8-oxoG within a tandem clustered site was determined in both wild type and mutant E. coli backgrounds. In wild-type, nth, fpg and mutY null E. coli, the mutation frequency is slightly elevated when an AP site is in tandem to 8-oxoG, compared with when 8-oxoG is present as a single lesion. Interestingly, in the double mutant mutY/fpg null E. coli, the mutation frequency of 8-oxoG is reduced when an AP site is present in tandem compared with when 8-oxoG is present as a single lesion. This study demonstrates that tandem lesions can present a challenge to the repair machinery of the cell.  相似文献   

7.
8-Oxoguanine (8-oxoG), induced by reactive oxygen species (ROS) and ionizing radiation, is arguably the most important mutagenic lesion in DNA. This oxidized base, because of its mispairing with A, induces GC-->TA transversion mutations often observed spontaneously in tumor cells. The human cDNA encoding the repair enzyme 8-oxoG-DNA glycosylase (OGG-1) has recently been cloned, however, its activity was never detected in cells. Here we show that the apparent lack of this activity could be due to the presence of an 8-oxoG-specific DNA binding protein. Moreover, we demonstrate the presence of two antigenically distinct OGG activities with an identical reaction mechanism in human cell (HeLa) extracts. The 38 kDa OGG-1, identical to the cloned enzyme, cleaves 8-oxoG when paired with cytosine, thymine and guanine but not adenine in DNA. In contrast, the newly discovered 36 kDa OGG-2 prefers 8-oxoG paired with G and A. We propose that OGG-1 and OGG-2 have distinct antimutagenic functions in vivo . OGG-1 prevents mutation by removing 8-oxoG formed in DNA in situ and paired with C, while OGG-2 removes 8-oxoG that is incorporated opposite A in DNA from ROS-induced 8-oxodGTP. We predict that OGG-2 specifically removes such 8-oxoG residues only from the nascent strand, possibly by utilizing the same mechanism as the DNA mismatch repair pathway.  相似文献   

8.
DNA glycosylases play the opening act in a highly conserved process for excision of damaged bases from DNA called the base excision repair pathway. DNA glycosylases attend to a wide variety of lesions arising from both endogenous and exogenous factors. The types of damage include alkylation, oxidation, and hydrolysis. A major DNA oxidation product is 8-oxoguanine (8-oxoG), a base with a high mutagenic potential. In bacteria, this lesion is repaired by formamidopyrimidine-DNA glycosylase (Fpg), while in the case of humans this function belongs to 8-oxoG-DNA glycosylase (OGG1). We have attempted a comprehensive characterization of 8-oxoG recognition by DNA glycosylases. First, we have obtained thermodynamic parameters for melting of DNA duplexes containing 8-oxoG in all possible nucleotide contexts. The energy of stacking interactions of 8-oxoG was in strict dependence on 8-oxoG nucleotide environment, which may affect the recognition of damage and the efficiency of eversion of 8-oxoG from DNA helix by glycosylases. Next, we established how the flexibility of DNA context affects damage recognition by these enzymes (Kirpota et al., 2011). Then, we have found that DNA containing 8-oxoG next to a single-strand break provides a good substrate for Fpg, as soon as all structural phosphate residues are maintained. Using site-directed mutagenesis, we have addressed the functions of many previously unstudied amino acid residuess that were predicted to be important for Fpg activity by molecular dynamics simulation and phylogenetic analysis. Of note, many substitutions abolished the excision of 8-oxoG, but did not affect the cleavage efficiency of abasic substrates. Finally, we investigated the contribution of separated structural domains of Fpg to specific enzyme-substrate interaction. Surprisingly, despite the absence of the catalytic domain, C-terminal domain of Fpg possessed a low- residual ability to recognize and cleave abasic substrates. Our study sheds light on mechanism details of Fpg and OGG1 activity, with the ultimate goal of understanding how binding energy can be spent by these enzymes for catalysis.  相似文献   

9.
Low rates of spontaneous G:C-->C:G transversions would be achieved not only by the correction of base mismatches during DNA replication but also by the prevention and removal of oxidative base damage in DNA. Escherichia coli must have several pathways to repair such mismatches and DNA modifications. In this study, we attempted to identify mutator loci leading to G:C-->C:G transversions in E.coli. The strain CC103 carrying a specific mutation in lacZ was mutagenized by random miniTn 10 insertion mutagenesis. In this strain, only the G:C-->C:G change can revert the glutamic acid at codon 461, which is essential for sufficient beta-galactosidase activity to allow growth on lactose. Mutator strains were detected as colonies with significantly increased rates of papillae formation on glucose minimal plates containing P-Gal and X-Gal. We screened approximately 40 000 colonies and selected several mutator strains. The strain GC39 showed the highest mutation rate to Lac+. The gene responsible for the mutator phenotypes, mut39 , was mapped at around 67 min on the E.coli chromosome. The sequencing of the miniTn 10 -flanking DNA region revealed that the mut39 was identical to the mutY gene of E.coli. The plasmid carrying the mutY + gene reduced spontaneous G:C-->T:A and G:C-->C:G mutations in both mutY and mut39 strains. Purified MutY protein bound to the oligonucleotides containing 7,8-dihydro-8-oxo-guanine (8-oxoG):G and 8-oxoG:A. Furthermore, we found that the MutY protein had a DNA glycosylase activity which removes unmodified guanine from the 8-oxoG:G mispair. These results demonstrate that the MutY protein prevents the generation of G:C-->C:G transversions by removing guanine from the 8-oxoG:G mispair in E.coli.  相似文献   

10.
The base excision repair (BER) of modified nucleotides is initiated by damage-specific DNA glycosylases. The repair of the resulting apurinic/apyrimidinic site involves the replacement of either a single nucleotide (short patch BER) or of several nucleotides (long patch BER). The mechanism that controls the selection of either BER pathway is unknown. We tested the hypothesis that the type of base damage present on DNA, by determining the specific DNA glycosylase in charge of its excision, drives the repair of the resulting abasic site intermediate to either BER branch. In mammalian cells hypoxanthine (HX) and 1,N6-ethenoadenine (epsilonA) are both substrates for the monofunctional 3-methyladenine DNA glycosylase, the ANPG protein, whereas 7,8-dihydro-8-oxoguanine (8-oxoG) is removed by the bifunctional DNA glycosylase/beta-lyase 8-oxoG-DNA gly- cosylase (OGG1). Circular plasmid molecules containing a single HX, epsilonA, or 8-oxoG were constructed. In vitro repair assays with HeLa cell extracts revealed that HX and epsilonA are repaired via both short and long patch BER, whereas 8-oxoG is repaired mainly via the short patch pathway. The preferential repair of 8-oxoG by short patch BER was confirmed by the low efficiency of repair of this lesion by DNA polymerase beta-deficient mouse cells as compared with their wild-type counterpart. These data fit into a model where the intrinsic properties of the DNA glycosylase that recognizes the lesion selects the branch of BER that will restore the intact DNA template.  相似文献   

11.
Ionising radiation induces clustered DNA damage sites which pose a severe challenge to the cell’s repair machinery, particularly base excision repair. To date, most studies have focussed on two-lesion clusters. We have designed synthetic oligonucleotides to give a variety of three-lesion clusters containing abasic sites and 8-oxo-7, 8-dihydroguanine to investigate if the hierarchy of lesion processing dictates whether the cluster is cytotoxic or mutagenic. Clusters containing two tandem 8-oxoG lesions opposing an AP site showed retardation of repair of the AP site with nuclear extract and an elevated mutation frequency after transformation into wild-type or mutY Escherichia coli. Clusters containing bistranded AP sites with a vicinal 8-oxoG form DSBs with nuclear extract, as confirmed in vivo by transformation into wild-type E. coli. Using ung1 E. coli, we propose that DSBs arise via lesion processing rather than stalled replication in cycling cells. This study provides evidence that it is not only the prompt formation of DSBs that has implications on cell survival but also the conversion of non-DSB clusters into DSBs during processing and attempted repair. The inaccurate repair of such clusters has biological significance due to the ultimate risk of tumourigenesis or as potential cytotoxic lesions in tumour cells.  相似文献   

12.
Lu AL  Wright PM 《Biochemistry》2003,42(13):3742-3750
Escherichia coli MutY is an adenine and a weak guanine DNA glycosylase involved in reducing mutagenic effects of 7,8-dihydro-8-oxoguanine (8-oxoG). The [4Fe-4S] cluster of MutY is ligated by four conserved cysteine residues and has been shown to be important in substrate recognition. Here, we show that the C199A mutant MutY is very insoluble and can be denatured and renatured to regain activity only if iron and sulfur are present in the renaturation steps. The solubility of C199A-MutY can be improved substantially as a fusion protein containing streptococcal protein G (GB1 domain) at its N-terminus. Here, we describe the first biochemical characterization of the purified GB1-C199A-MutY protein which contains a [3Fe-4S] cluster. The apparent dissociation constant (K(d)) values of GB1-C199A-MutY with both A/G and A/8-oxoG mismatches are slightly higher than that of the wild-type protein. The DNA glycosylase activity of GB1-C199A-MutY is comparable to that of the wild-type enzyme. Interestingly, the major difference between the C199A-MutY and wild-type proteins is their trapping activities (formation of Schiff base intermediates). The GB1-C199A-MutY mutant has a weaker trapping activity than the wild-type enzyme. Importantly, highly expressed GB1-C199A-MutY and untagged C199A-MutY can complement mutY mutants; however, GB1-C199A-MutY and untagged C199A-MutY cannot complement mutY mutants in vivo when both proteins are poorly expressed. Therefore, an intact [4Fe-4S] cluster domain is critical for MutY stability and activity.  相似文献   

13.
The DNA damage product 7,8-dihydro-8-oxo-2'-deoxyguanine (8-oxoG) is a commonly used biomarker of oxidative stress. The mutagenic potential of this DNA lesion is mitigated in Escherichia coli by multiple enzymes. One of these enzymes, MutY, excises an A mispaired with 8-oxoG as part of the process to restore the original G:C base pair. However, numerous studies have shown that 8-oxoG is chemically labile toward further oxidation. Here, we examine the activity of MutY on the 8-oxoG oxidation products guanidinohydantoin (Gh), two diastereomers of spiroiminodihydantoin (Sp1 and Sp2), oxaluric acid (Oa), and urea (Ur). Single-stranded viral genomes containing a site-specific lesion were constructed and replicated in E. coli that are either proficient in DNA repair or that lack MutY. These lesions were found previously to be potently mutagenic in repair competent bacteria, and we report here that these 8-oxoG-derived lesions are equally miscoding when replicated in E. coli lacking MutY; no significant change in mutation identity or frequency is observed. Interestingly, however, in the presence of MutY, Sp1 and Sp2 are more toxic than in cells lacking this repair enzyme.  相似文献   

14.
8-Oxoguanine (8-oxoG) is an unstable mutagenic DNA lesion that is prone to further oxidation. High valent metals such as Cr(V) and Ir(IV) readily oxidize 8-oxoG to form guanidinohydantoin (Gh), its isomer iminoallantoin (Ia), and spiroiminodihydantoin (Sp). When present in DNA, these lesions show enhanced base misincorporation over the parent 8-oxoG lesion leading to G --> T and G --> C transversion mutations and polymerase arrest. These findings suggested that further oxidized lesions of 8-oxoG are more mutagenic and toxic than 8-oxoG itself. Repair of oxidatively damaged bases, including Sp and Gh/Ia, are initiated by the base excision repair (BER) system that involves the DNA glycosylases Fpg, Nei, and Nth in E. coli. Mammalian homologs of two of these BER enzymes, OGG1 and NTH1, have little or no affinity for Gh/Ia and Sp. Herein we report that two recently identified mammalian glycosylases, NEIL1 and NEIL2, showed a high affinity for recognition and cleavage of DNA containing Gh/Ia and Sp lesions. NEIL1 and NEIL2 recognized both of these lesions in single-stranded DNA and catalyzed the removal of the lesions through a beta- and delta-elimination mechanism. NEIL1 and NEIL2 also recognized and excised the Gh/Ia lesion opposite all four natural bases in double-stranded DNA. NEIL1 was able to excise the Sp lesion opposite the four natural bases in double-stranded DNA, however, NEIL2 showed little cleavage activity against the Sp lesion in duplex DNA although DNA trapping studies show recognition and binding of NEIL2 to this lesion. This work suggests that NEIL1 and NEIL2 are essential in the recognition of further oxidized lesions arising from 8-oxoG and implies that these BER glycosylases may play an important role in the repair of DNA damage induced by carcinogenic metals.  相似文献   

15.
We have investigated in detail the interactions between the Escherichia coli mutT, mutM, and mutY error-prevention systems. Jointly, these systems protect the cell against the effects of the oxidative stress product, 8-oxoguanine (8-oxoG), a base analog with ambiguous base-pairing properties, pairing with either A or C during DNA synthesis. mutT mutator strains display a specific increase in A.T-->C.G transversions, while mutM and mutY mutator strains show specific G.C-->T.A increases. To study in more detail the in vivo processing of the various mutational intermediates leading to A.T-->C.G and G.C-->T.A transversions, we analyzed defined A.T-->C.G and G.C-->T.A events in strains containing all possible combinations of these mutator alleles. We report three major findings. First, we do not find evidence that the mutT allele significantly increases G.C-->T.A transversions in either mut(+), mutM, mutY or mutMmutY backgrounds. We interpret this result to indicate that incorporation of 8-oxodGTP opposite template C may not be frequent relative to incorporation opposite template A. Second, we show that mutT-induced A.T-->C.G transversions are significantly reduced in strains carrying mutY and mutMmutY deficiencies suggesting that 8-oxoG, when present in DNA, preferentially mispairs with dATP. Third, the mutY and mutMmutY deficiencies also decrease A.T-->C.G transversions in the mutT(+) background, suggesting that, even in the presence of functional MutT protein, A.T-->C.G transversions may still result from 8-oxodGTP misincorporation.  相似文献   

16.
We have investigated repair of DNA containing 8-oxoguanine and certain mismatches in cell-free extracts from mouse embryonic fibroblasts (MEFs) using a plasmid substrate with a single lesion at a defined position. Repair synthesis was monitored in a small restriction fragment with different size single strands in order to follow the fate of repair reactions in both strands at the same time. An important part of the study was to assess the role of OGG1 in various repair reactions and the experiments were carried out with extracts from mouse embryonic fibroblasts diploid for a mogg1 deletion (Ogg1(-/-)) as well as wild type. In wild type, DNA containing 8-oxoG:C was repaired in the expected fashion predominantly through short-patch repair. Overall repair was reduced to 20% in the Ogg1(-/-) extracts and to 40% if only long-patch repair was considered. The 8-oxoG:A pair was processed similarly in wild type and Ogg1(-/-) extracts and repair synthesis at A as well as at 8-oxoG could be demonstrated, however, to the same extent in Ogg1(-/-) and wild type for both strands. Extracts from Ogg1(-/-) behaved normally in the correction of A:C and C:C mismatches, with a strong bias for correction of A for A:C and no significant strand discrimination for C:C. Similar experiments with extracts from Escherichia coli showed a 50% reduction in the repair of 8-oxoG:C in fpg extracts and an increase to 50% above wild type in mutY. These results show that the mouse OGG1 is the major enzyme for 8-oxoG repair in the MEF cells and does not participate in mismatch repair of A:C or C:C. Furthermore, 8-oxoG opposite A appears to be repaired by a two-step repair pathway with sequential removal of A and 8-oxoG mediated by enzymes different from OGG1.  相似文献   

17.
8-Oxoguanine (8-oxoG) is a major mutagenic DNA base damage corrected by the base excision repair (BER) pathway, which is initiated by lesion specific DNA glycosylases. The human DNA glycosylase hOgg1 catalyses excision of 8-oxoG followed by strand incision 3' to the abasic site if cytosine is positioned in the complementary strand. Unlike most bifunctional glycosylases, hOgg1 uncouples base removal and strand cleavage. This paper addresses the significance of product inhibition and magnesium for the non-concerted action of hOgg1 activities. The enzymatic activities of hOgg1 were analysed on duplex DNA containing a single 8-oxoG or abasic site opposite cytosine. AP-lyase cleavage of abasic sites was inhibited in the presence of free 8-oxoG, indicating that the product of base excision inhibits the subsequent strand incision step. Assays with DNA containing 8-oxoG showed that free 8-oxoG also inhibited the glycosylase activity. This result suggests that the free 8-oxoG base may retain in the recognition site following N-glycosylic cleavage, implying that product inhibition contribute to uncoupling the activities of hOgg1. Magnesium reduced the efficiency of base excision and strand incision on DNA containing 8-oxoG under single turnover conditions; however, the reduction was more pronounced for the AP-lyase activity. Furthermore, Shiff-base formation between hOgg1 and 8-oxoG containing DNA was abrogated in the presence of magnesium. These results suggest that hOgg1 mainly operates as a monofunctional glycosylase under physiological concentrations of magnesium.  相似文献   

18.
Free radicals produce a broad spectrum of DNA base modifications including 7,8-dihydro-8-oxoguanine (8-oxoG). Since free radicals have been implicated in many pathologies and in aging, 8-oxoG has become a benchmark for factors that influence free radical production. Fab g37 is a monoclonal antibody that was isolated by phage display in an effort to create a reagent for detecting 8-oxoG in DNA. Although this antibody exhibited a high degree of specificity for the 8-oxoG base, it did not appear to recognize 8-oxoG when present in DNA. Fab g37 was modified using HCDR1 and HCDR2 segment shuffling and light chain shuffling. Fab 166 and Fab 366 which bound to 8-oxoG in single-stranded DNA were isolated. Fab 166 binds more selectively to single-stranded oligonucleotides containing 8-oxoG versus control oligonucleotides than does Fab 366 which binds DNA with reduced dependency on 8-oxoG. Numerous other clones were also isolated and characterized that contained a spectrum of specificities for 8-oxoG and for DNA. Analysis of the primary sequences of these clones and comparison with their binding properties suggested the importance of different complementarity determining regions and residues in determining the observed binding phenotypes. Subsequent chain shuffling experiments demonstrated that mutation of SerH53 to ArgH53 in the Fab g37 heavy chain slightly decreased the Fab's affinity for 8-oxoG but significantly improved its binding to DNA in an 8-oxoG-dependent manner. The light chain shuffling experiments also demonstrated that numerous promiscuous light chains could enhance DNA binding when paired with either the Fab g37 or Fab 166 heavy chains; however, only the Fab 166 light chain did so in an additive manner when combined with the Fab 166 heavy chain that contains ArgH53. A three-point model for Fab 166 binding to oligonucleotides containing 8-oxoG is proposed. We describe a successful attempt to generate a desired antibody specificity, which was not present in the animal's original immune response.  相似文献   

19.
Overexpression of the MutS repair protein significantly decreased the rate of lacZ GC --> TA transversion mutation in stationary-phase and exponentially growing bacteria and in mutY and mutM mutants, which accumulate mismatches between 8-oxoguanine (8-oxoG) and adenine residues in DNA. Conversely, GC --> TA transversion increased in mutL or mutS mutants in stationary phase. In contrast, overexpression of MutS did not appreciably reduce lacZ AT --> CG transversion mutation in a mutT mutant. These results suggest that MutS-dependent repair can correct 8-oxoG:A mismatches in Escherichia coli cells but may not be able to compete with mutation fixation by MutY in mutT mutants.  相似文献   

20.
The biological consequences of clusters containing a single strand break and base lesion(s) remain largely unknown. In the present study we determined the mutagenicities of two- and three-lesion clustered damage sites containing a 1-nucleotide gap (GAP) and 8-oxo-7,8-dihydroguanine(s) (8-oxoG(s)) in Escherichia coli. The mutation frequencies (MFs) of bi-stranded two-lesion clusters (GAP/8-oxoG), especially in mutY-deficient strains, were high and were similar to those for bi-stranded clusters with 8-oxoG and base lesions/AP sites, suggesting that the GAP is processed with an efficiency similar to the efficiency of processing a base lesion or an AP site within a cluster. The MFs of tandem two-lesion clusters comprised of a GAP and an 8-oxoG on the same strand were comparable to or less than the MF of a single 8-oxoG. The mutagenic potential of three-lesion clusters, which were comprised of a tandem lesion (a GAP and an 8-oxoG) and an opposing single 8-oxoG, was higher than that of a single 8-oxoG, but was no more than that of a bi-stranded 8-oxoGs. We suggest that incorporation of a nucleotide opposite 8-oxoG is less mutagenic when a GAP is present in a cluster than when a GAP is absent. Our observations indicate that the repair of a GAP is retarded by an opposing 8-oxoG, but not by a tandem 8-oxoG, and that the extent of GAP repair determines the biological consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号