首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Berkels R  Dachs C  Roesen R  Klaus W 《Cell calcium》2000,27(5):281-286
Different methods to measure the unstable radical nitric oxide (NO) have been established. We are going to present a new method to measure intracellular calcium and NO simultaneously in endothelial cells. A new fluorescent dye (DAF-2) has been developed recently which binds NO resulting in an enhanced fluorescence. We loaded porcine aortic endothelial cells with Fura-2, a fluorescent dye commonly used to measure intracellular calcium, and DAF-2 simultaneously (cell permeable dyes). Using excitation wavelengths of lambda 340 nm (Fura-2) and lambda 485 nm (DAF-2) we could show that thrombin induces an intracellular calcium increase and simultaneously a NO formation in endothelial cells which could be blocked by a NO synthase inhibitor. This new method of a simultaneous measurement of intracellular calcium and NO provides the possibility to follow intracellular calcium and NO distributions online, and is sensitive enough to monitor changes of NO formed by the constitutive endothelial NO-synthase.  相似文献   

2.
Herein we report the design of a direct and continuous fluorometric assay for determining tissue transglutaminase (TGase) activity. The progress of the TGase-catalyzed reaction of 4-(N-carbobenzoxy-l-phenylalanylamino)-butyric acid coumarin-7-yl ester was monitored as an increase of fluorescence (lambda(exc) 330 nm, lambda(em) 460 nm) due to the release of 7-hydroxycoumarin. Using this assay, we determined the K(m) of two acceptor substrates, N-acetyl-L-lysine methyl ester and aminoacetonitrile. We also determined the K(m) of 4-(N-carbobenzoxy-L-phenylalanylamino)-butyric acid coumarin-7-yl ester for its TGase-mediated hydrolysis and for its enzymatic reaction with the acyl acceptor substrates N-acetyl-L-lysine methyl ester and aminoacetonitrile. We ascertained that the fluorescent substrate was selective toward tissue TGase by testing it with different enzymes, namely microbial transglutaminase (mTGase), Factor XIIIa, papain, and gamma-glutamyl transpeptidase. 4-(N-carbobenzoxyglycinylamino)-butyric acid coumarin-7-yl ester, lacking the benzyl side chain, was also found to be an efficient fluorogenic substrate of tissue TGase. Finally, we have shown that this method is applicable to 96-well microtiter plate format.  相似文献   

3.
Di(1,N6-ethenoadenosine)5',5'-P1,P4-tetraphosphate, epsilon-(Ap4A), a fluorescent analog of Ap4A has been synthesized by reaction of 2-chloroacetaldehyde with Ap4A. At neutral pH this Ap4A analog presents characteristics maxima at 265 and 274 nm, shoulders at ca 260 and 310 nm and moderate fluorescence (lambda exc 307 nm, lambda em 410 nm). Enzymatic hydrolysis of the phosphate backbone produced a slight hyperchromic effect but a notorious increase of the fluorescence emission. Cytosolic extracts from adrenochromaffin tissue as well as cultured chromaffin cells were able to split epsilon(Ap4A) and catabolize the resulting epsilon-nucleotide moieties up to epsilon-Ado.  相似文献   

4.
Cholylamidofluorescein (CamF) has been selected as a fluorescent bile acid scaffold to perform a full characterization of its photophysical properties. In aqueous medium, under nitrogen, the absorption spectrum of CamF was expectedly dependent on pH. Under air, the presence of CO(2) resulted in a partial protonation of the photoactive form, reducing the absorbance of CamF. The fluorescence spectrum of CamF in ethanol (lambda(exc) = 481 nm) showed a broad band with maximum at 518 nm; the fluorescence quantum yield was 0.67, and the fluorescence lifetime was 4.8 ns. Laser flash photolysis of CamF showed the triplet state transient with a broad maximum at ca. 540 nm and a lifetime of 19 mus. Flow cytometric kinetic assay of CamF uptake in real time was performed in suspensions of rat hepatocytes, showing that living hepatocytes accumulated slowly but constantly CamF along the 5-minute experimental period. Besides, intracellular fluorescence of live cells was found to be clearly dependent on the extracellular concentration of CamF. Thus, flow cytometry has allowed us to demonstrate that CamF is specifically taken up by living rat hepatocytes in a concentration-dependent fashion, suggesting the suitability of this molecule for further studies on bile-acid transport in liver cells.  相似文献   

5.
Resting suspensions of cells of Saccharomyces cerevisiae grown in iron-rich or iron-deficient conditions were studied by following the fluorescence emission changes (lambda em. 400-460 nm, lambda exc. 300-340 nm) occurring in these suspensions upon addition of glucose and ferric iron. The results show that, in addition to NAD(P)H, metabolites of the aromatic amino acid pathway interfere with the fluorescence measurements, and that they could be involved in ferric iron reduction. Wild-type strains of S. cerevisiae are known to excreted anthranilic acid and 3-hydroxyanthranilic acid in response to glucose. The major fluorescing compound excreted by a chorismate-mutase-deficient mutant strain of S. cerevisiae was identified as anthranilic acid. The excretion of anthranilic and 3-hydroxyanthranilic acids was correlated with the ferric-reducing capacity of the extracellular medium. Excretion during growth was much greater by cells cultured in iron-rich medium than by cells grown in iron-deficient medium. The possibility was examined that a link could exist between the biosynthesis of aromatics and the ferri-reductase activity of the cells, via chorismate synthase and its putative diaphorase-associated activity. Two ferri-reductase-deficient mutants excreted much less 3-hydroxyanthranilate than did the parental wild-type strains. However, the ferri-reductase activity of a chorismate-synthase-deficient mutant was comparable to that of the parental strain.  相似文献   

6.
A new fluorescent reagent, 1,5-bis(4,6-dichloro-1,3,5-triazinylamino)naphthalene, containing two active chlorines, was synthesized by a one-step reaction. Under the optimum conditions for the determination of dopamine, the enhanced fluorescence intensity is proportional to the dopamine concentration. The fluorescence intensity was measured at lambda(ex/em) = 400/460 nm, with and without dopamine. The linear range and detection limit for the determination of dopamine were 1.0 x 10(-7) mol/L-5.0 x 10(-5) mol/L and 4.0 x 10(-8) mol/L. This method is simple, practical, can afford good precision and accuracy and can be successfully applied to assess dopamine in injections and human serum samples.  相似文献   

7.
We developed a novel fluorescent probe that contains the neodymium(III) complex moiety and fluorescein moiety. This probe can emit long-lived near-infrared luminescence derived from a Nd ion through excitation of the fluorescein moiety with visible light (lambda(ex) = 488 nm, lambda(em) = 880 nm, lifetime = 2.3 micros). These results indicate the possibility of the probe as a candidate for in vivo fluorescence molecular imaging.  相似文献   

8.
The absorption and fluorescence spectra of dimethyloxyluciferin (DMOL) and monomethyloxyluciferin (MMOL) were studied at pH 3.0-12.0. In the range of pH 3.0-8.0, the fluorescence spectrum of DMOL exhibits a maximum at lambda(em) = 639 nm. At higher pH values an additional emission maximum appears at lambda(em) = 500 nm (wavelength of excitation maximum lambda(ex) = 350 nm), which intensity increases with time. It is shown that this peak corresponds to the product of DMOL decomposition at pH > 8.0. The absorption spectra of MMOL were studied in the range of pH 6.0-9.0. At pH 8.0-9.0, the absorption spectrum of MMOL exhibits one peak at lambda(abs) = 440 nm. At pH 7.3-7.7, an additional band appears with maximum at lambda(abs) = 390 nm. At pH 6.0-7.0 two maxima are observed, at lambda(abs) = 375 and 440 nm. The fluorescence spectra of MMOL (pH 6.0-9.7, lambda(ex) = 440 or 375 nm) exhibit one maximum. It is shown that decomposition of DMOL and MMOL in aqueous solutions results in products of similar structure. DMOL and MMOL are rather stable at the pH optimum of luciferase. It is suggested that they can be used as fluorescent markers for investigation of the active site of the enzyme.  相似文献   

9.
Hyperhomocysteinemia is a risk factor for cardiovascular diseases that induces endothelial dysfunction. Here, we examine the participation of endothelial NO synthase (eNOS) in the homocysteine-induced alterations of NO/O(2)(-) balance in endothelial cells from human umbilical cord vein. When cells were treated for 24 h, homocysteine dose-dependently inhibited thrombin-activated NO release without altering eNOS phosphorylation and independently of the endogenous NOS inhibitor, asymmetric dimethylarginine. The inhibitory effect of homocysteine on NO release was associated with increased production of reactive nitrogen and oxygen species (RNS/ROS) independent of extracellular superoxide anion (O(2)(-)) and was suppressed by the NOS inhibitor L-NAME. In unstimulated cells, L-NAME markedly decreased RNS/ROS formation and the ethidium red fluorescence induced by homocysteine. This eNOS-dependent O(2)(-) synthesis was associated with reduced intracellular levels of both total biopterins (-45%) and tetrahydrobiopterin (-80%) and increased release of 7,8-dihydrobiopterin and biopterin in the extracellular medium (+40%). In addition, homocysteine suppressed the activating effect of sepiapterin on NO release, but not that of ascorbate. The results show that the oxidative stress and inhibition of NO release induced by homocysteine depend on eNOS uncoupling due to reduction of intracellular tetrahydrobiopterin availability.  相似文献   

10.
A low molecular weight protein (approximately 25,000 D) exhibiting a yellow fluorescence emission peaking at approximately 540 nm was isolated from Vibrio fischeri (strain Y-1) and purified to apparent homogeneity. FMN is the chromophore, but it exhibits marked red shifts in both the absorption (lambda max = 380, 460 nm) and the fluorescence emission. When added to purified luciferase from the same strain, which itself catalyzes an emission of blue-green light (lambda max approximately 495 nm), this protein induces a bright yellow luminescence (lambda max approximately 540 nm); this corresponds to the emission of the Y-1 strain in vivo. This yellow bioluminescence emission is thus ascribed to the interaction of these two proteins, and to the excitation of the singlet FMN bound to this fluorescent protein.  相似文献   

11.
This study examined the notion that exogenous generation of nitric oxide (NO) modulates NOS gene expression and activity. Bovine pulmonary artery endothelial cells (BPAEC) were treated with the NO donors, 1 mM SNAP (S-nitroso-N-acetylpenicillamine), 0.5 mM SNP (sodium nitroprusside) or 0.2 microM NONOate (spermine NONOate) in medium 199 containing 2% FBS. Controls included untreated cells and cells exposed to 1 mM NAP (N-acetyl-D-penicillamine). NOS activity was assessed using a fibroblast-reporter cell assay; intracellular Ca2+ concentrations were assessed by Fura-2 microfluorometry; and NO release was measured by chemiluminescence. Constitutive endothelial (e) and inducible (i) NOS gene and protein expression were examined by northern and western blot analysis, respectively. Two hours exposure to either SNAP or NONOate caused a significant elevation in NO release from the endothelial cells (SNAP = 51.4 +/- 5.9; NONOate = 23.8 +/- 4.2; control = 14.5 +/- 2.8 microM); but A23187 (3 microM)-stimulated NO release was attenuated when compared to controls. Treatment with either SNAP or NONOate for 2 h also resulted in a significant increase in NOS activity in endothelial homogenates (SNAP = 23.6 +/- 2.5; NONOate= 29.8 +/- 7.7; control = 14.5 +/- 2.5fmol cGMP/microg per 10(6) cells). Exposure to SNAP and SNP, but not NONOate, for 1 h caused an increase in intracellular calcium. Between 4 and 8 h, SNAP and NONOate caused a 2- to 3-fold increase in eNOS, but not iNOS, gene (P < 0.05) and protein expression. NAP had little effect on either eNOS gene expression, activity or NO production. Our data indicate that exogenous generation of NO leads to a biphasic response in BPAEC, an early increase in intracellular Ca2+, and increases in NOS activity and NO release followed by increased expression of the eNOS gene, but not the iNOS gene. We conclude that eNOS gene expression and activity are regulated by a positive-feedback regulatory action of exogenous NO.  相似文献   

12.
A study was made of the efficacy of trypan blue, acridine orange, tetracycline and oxytetracycline for detection of tumour cells injected into the blood stream of rats. The cells were identified in the mesenteric microvessels by intravital microscopy. Fluorescence of fluorochromized cells was observed in the blue-violet (lambda max = 400 nm) and ultra-violet (lambda max = 365 nm) irradiation of the fluorescent lamp and in the laser irradiation (lambda = 337 nm). The cells stained with acridine orange had a higher fluorescence intensity and a more distinct structure than those labelled with tetracyclines. Identification of cells with trypan blue was more difficult. The fluorescent method of determination is rather simple and permits to indentify tumour cells directly in the blood stream.  相似文献   

13.
This paper reports, for the first time, a reversed-phase high performance liquid chromatographic method for the simultaneous determination of seven glucoconjugated and non-glucoconjugated porphyrins and chlorins, using near infra-red fluorescence detection. Chromatographic separation was performed on nucleosil-CN analytical column using an isocratic acetonitrile-0.1% (w/v) TFA at pH 1.8 (55:45, v/v) as mobile phase. Wavelength gradient was employed for sensitive detection, porphyrins derivates were monitored at lambda(exc) = 440 nm and lambda(emi) = 680 nm; and chlorins derivates at lambda(exc) = 420 nm, lambda(emi) = 650 nm. The method was validated and applied to monitor the biodegradation of a tri glucoconjugated chlorin derivative, TPC(glu)3, in spiked samples of human serum.  相似文献   

14.
Absorption and fluorescence measurements of DNA-Hoechst 33258 complexes at high molar ratio of DNA phosphate to dye are consistent with the existence of two types of bound species. One type (Type I) predominates at high ionic strength, whereas the other (Type II) occurs at low ionic strength. The fluorescence peak (lambda fmax) depends on the excitation wavelength (lambda ex); lambda fmax shifts toward longer wavelength with increasing lambda ex. Optical properties obtained are summarized in the following: for Type I, lambda amax (absorption) = 352 nm, lambda fmax at lambda ex of 335 nm = 460 nm, tau (fluorescence lifetime) = 2.0-2.5 ns; for Type II, lambda amax = 360 nm, lambda fmax at lambda ex of 335 nm = 470 nm, tau = 4.0-5.0 ns. This behavior is interpreted in terms of solvent-solute relaxation. Type I corresponds to less hydrated bound species, while Type II to more hydrated bound species.  相似文献   

15.
4,4-Difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoyl derivatives of serotonin, dopamine, choline, and N,N-dimethylaminoethanol, with the fluorescence maximum at 512 nm (lambda(exc) 470 nm), and 4,4-difluoro-5,7-diphenyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoyl derivatives of choline and N,N-dimethylaminoethanol, with the fluorescence maximum at 554 nm (lambda(exc) 470 nm), were synthesized. These compounds yield protonated molecular ions of 100% intensity upon mass spectrometry with electrospray ionization at atmospheric pressure. The fragmentation of molecular ions under the conditions of secondary mass spectrometry mainly proceeds through the elimination of hydrogen fluoride from the fluorescent core of the molecules. Experiments on sea urchin Lytechinus variegatus embryos and larvae showed that these compounds easily penetrate into the cells and are accumulated in the cytoplasm. They do not differ in their biological activity from similar derivatives of arachidonic acid described previously and are agonists of serotonin or acetylcholine or antagonists of nicotinic acetylcholine receptors. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 5; see also http: // www.maik.ru.  相似文献   

16.
A method for measuring the activity of the pyruvate dehydrogenase complex (PDC) by coupling acetyl-CoA production to acetylation of a fluorescent dye is described. Acetylation of cresyl violet acetate by pigeon liver acetyltransferase results in a shift of its fluorescence spectrum from lambda ex max = 575, lambda em max = 620 nm to lambda ex max = 475, lambda em max = 575 nm. The rate of appearance of acetylated dye was followed fluorometrically and was proportional to PDC activity in extracts of cultured human fibroblasts. The assay showed appropriate substrate and cofactor dependence and had a working range between 0.04 and 70 munits. It is 10 times more sensitive than the spectrophotometric assay on which it is based (working range 0.4-31 munits) and is equally convenient. Unactivated PDC activity in fibroblast extracts was 0.75 (0.60-0.92) munits/mg protein (mean and range for six cell lines).  相似文献   

17.
Peroxynitrite (PN), the product of the diffusion-limited reaction between nitric oxide (*NO) and superoxide (O*-(2)), represents a relevant mediator of oxidative modifications in low-density lipoprotein (LDL). This work shows for the first time the simultaneous action of low-controlled fluxes of PN and *NO on LDL oxidation in terms of lipid and protein modifications as well as oxidized lipid-protein adduct formation. Fluxes of PN (e.g., 1 microM min(-1)) initiated lipid oxidation in LDL as measured by conjugated dienes and cholesteryl ester hydroperoxides formation. Oxidized-LDL exhibited a characteristic fluorescent emission spectra (lambda(exc) = 365 nm, lambda(max) = 417 nm) in parallel with changes in both the free amino groups content and the relative electrophoretic mobility of the particle. Physiologically relevant fluxes of *NO (80-300 nM min(-1)) potently inhibited these PN-dependent oxidative processes. These results are consistent with PN-induced adduct formation between lipid oxidation products and free amino groups of LDL in a process prevented by the simultaneous presence of *NO. The balance between rates of PN and *NO production in the vascular wall will critically determine the final extent of LDL oxidative modifications leading or not to scavenger receptor-mediated LDL uptake and foam cell formation.  相似文献   

18.
Using a novel NO-specific reagent, the complex of Cu2+ with a fluorescein derivative (Cu-FL), stimulation of NO production by the medicinal leech salivary cell secretion (SCS) has been demonstrated for the first time in cultures of human endothelial cells (HUVEC) and rat cardiomyocytes (RCM). NO was detected in the cells by fluorescent electronic microscopy and determined quantitatively in the cells and in the culture fluid by the fluorescence method. SCSstimulated NO synthesis in HUVEC but not in RCM cells was accompanied by NO release into the intercellular space thus determining its subsequent distribution. Localization of intracellular NO synthesis centers is presented and it is shown that the increase in NO levels during the SCS action on HUVEC and RCM is associated with the increase in the activity of eNOS/nNOS, but not iNOS. In the endothelial cells SCS-activated nitrosylation processes, estimated by the increase of nitrite-ion content in the culture medium. It is therefore important to use Cu-FL, rather than Griss-reagent, during the first hour of analysis of NO synthesis. It is possible that the NO-depended mechanism of the SCS action on endothelial cells may be a factor responsible for the positive effect of SCS during hirudotheraphy.  相似文献   

19.
Nitric oxide (NO) serves as a messenger for cellular signaling. To visualize NO in living cells, we synthesized a turn-on fluorescent probe for use in combination with microscopy. Unlike existing fluorescent sensors, the construct--a Cu(II) complex of a fluorescein modified with an appended metal-chelating ligand (FL)--directly and immediately images NO rather than a derivative reactive nitrogen species. Using spectroscopic and mass spectrometric methods, we established that the mechanism of the reaction responsible for the NO-induced fluorescence involves reduction of the complex to Cu(I) with release of the nitrosated ligand, which occurs irreversibly. We detected NO produced by both constitutive and inducible NO synthases (cNOS and iNOS, respectively) in live neurons and macrophages in a concentration- and time-dependent manner by using the Cu(II)-based imaging agent. Both the sensitivity to nanomolar concentrations of NO and the spatiotemporal information provided by this complex demonstrate its value for numerous biological applications.  相似文献   

20.
A Lückhoff 《Cell calcium》1986,7(4):233-248
Indo-1 is a new fluorescent indicator of the intracellular free calcium concentration Cai++. Indo-1 may be used in a similar manner as its predecessor quin2 but offers the principal advantage that the Ca++ saturated form of the Ca++ chelator has a emission maximum different in wavelength from that of free indo-1 (400 nm versus 483 nm). Therefore, the ratio of the fluorescence intensity F emitted at 400 nm to that of the fluorescence intensity G emitted at 483 nm (or 500 nm) should be a measure of Cai++ independent of the total amount of intracellular dye. However, when indo-1 is loaded into endothelial cells (grown in culture on quartz coverslips) by incubation with the acetoxymethylester of indo-1 (indo-1/AM), the ester in not completely hydrolysed to indo-1 intracellularly. Fluorescence emitted by uncleaved indo-1/AM at wavelengths 483-500 nm interferes with the fluorescence of indo-1. Ester fluorescence is influenced not only by ester concentration but by the fluorescence emitted at 400 nm by Ca++ bound indo-1 as well. Therefore, the ratio F/G cannot reliably evaluate increases in Cai++ in endothelial cells although F/G would indicate a basal Cai++ constant with time. By contrast, the fluorescence F is a sensitive parameter of the intracellular concentration of Ca++ bound indo-1, in particular when the excitation wavelength is set to 332 nm. F was used to measure resting Cai++ in endothelial cells (132 +/- 22 nM; n = 22) and to demonstrate dose-dependent and reversible increases in Cai++ in response to stimulation with bradykinin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号