首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
L St?hle 《Life sciences》1991,49(24):1835-1842
Microdialysis was applied to estimate concentrations of caffeine and theophylline in vitro or in vivo in blood, adipose tissue, muscle, liver and brain of rats. The in vivo and in vitro recovery of a compound was estimated by perfusing the dialysis probe with varying concentrations of caffeine and theophylline. The difference between the concentration in the dialysate and the concentration in the perfusion medium was plotted against the concentration in the perfusion medium and the slope of the resulting line was taken as an estimate of the recovery (difference method). In all experiments caffeine (20 mg/kg sc) and theophylline (20 mg/kg sc) were administered simultaneously. The recovery in vitro was virtually identical for caffeine and theophylline. The in vivo recovery of theophylline was significantly smaller than the recovery of caffeine in brain, liver, muscle and adipose tissue. The difference in recovery was significantly larger in the brain than in other tissues. The results show that the transport of a substance from the tissue to the dialysis probe may differ between tissues and between chemically very similar compounds. It is shown that the recovery of theophylline rapidly declines after death ensues which shows that energy-dependent processes are involved in the transport to the dialysis probe and not solely passive diffusion. It is suggested the differences in transport over brain capillaries explain the difference between caffeine and theophylline. It is concluded that the use of internal standards in microdialysis experiments requires validation in every specific application.  相似文献   

2.
Caffeine as well as the antiasthmatic drug theophylline can cause seizures when administered to humans or animals in excessive doses. Studies on rats have shown rapid development of functional tolerance to caffeine-induced seizures whereas repeated pretreatment with theophylline had no significant effect on the theophylline concentrations required to produce seizures. The purpose of this investigation was to determine whether chronic exposure to caffeine can affect susceptibility to the convulsant effect of theophylline. Rats received caffeine, 40 mg/kg, or solvent twice a day for 7 days as an intravenous injection. On the eighth day, theophylline was infused intravenously until the onset of maximal seizures. At this pharmacologic end point, rats pretreated with caffeine had significantly higher theophylline concentrations in the brain and cerebrospinal fluid than did control (solvent-pretreated) animals. Although the concentration differences were relatively small (approximately 11%), they demonstrate in principle the development of caffeine-induced tolerance to the neurotoxic effect of theophylline. Additional experiments showed that the caffeine effect on theophylline neurotoxicity is not acutely mediated by paraxanthine, a major metabolite of caffeine.  相似文献   

3.
L St?hle  P Arner  U Ungerstedt 《Life sciences》1991,49(24):1853-1858
Microdialysis was applied to estimate the extracellular concentration of caffeine in subcutaneous abdominal adipose tissue of five healthy volunteers after oral administration of approximately 5 mg/kg (300 or 400 mg) of caffeine. The peak extracellular levels were in the range of 20 - 80 microM. The time-course in blood and in extracellular fluid was similar but the plateau concentrations were not closely correlated. The estimated mean concentration of five individuals was similar in blood and extracellular fluid. The intraindividual variation between probes was found to be small compared to the interindividual variation (8% versus 43%). It is concluded that microdialysis yield useful data on drug distribution in man and that distribution to adipose tissue may not strictly follow the concentrations in blood. A comparison with available information of the in vitro properties of caffeine shows that the levels attained in the extracellular fluid were too small to significantly affect phosphodiesterase but sufficiently high to block adenosine receptors.  相似文献   

4.
Short term administration of methylxanthines has been reported to alter levels and turnover rates of brain catecholamines and indoles. In the present study continuous administration of caffeine and theophylline was achieved by subcutaneous implantation of silastic tubing filled with powdered methylxanthines. Serum levels of caffeine and theophylline were monitored daily for 2 weeks by high performance liquid chromatography (HPLC) and averaged 35 microM and 7 microM, respectively. After 2 weeks of continuous exposure to methylxanthines the dopamine level and turnover rate were unaltered from control in the neostriatum, hypothalamus and cortex. Likewise the level and turnover of norepinephrine were unaltered from control in the cerebellum, hypothalamus and cortex. Also unaffected were the levels of 3,4-dihydroxyphenylacetic acid (DOPAC), 4-hydroxy-3-methoxyphenylacetic acid (HVA), serotonin and 5-hydroxyindoleacetic acid (5-HIAA) in the hypothalamus and cortex. These results indicate that in mice the continuous exposure to methylxanthines has no long lasting effect on monoamine neurotransmitters in the brain.  相似文献   

5.
In root-tip cells of Vicia faba the frequencies of chromatid aberrations induced by 3-h treatments with 0.05 microM camptothecin were strongly modified when the treatments were carried out in the presence of caffeine at concentrations above 1 mM. Depending on the concentration of caffeine, the clastogenic effect of camptothecin was either enhanced or reduced. At concentrations between 1 and 6 mM, caffeine increased the camptothecin-induced chromosome damage, the strongest enhancement being obtained at 5 mM. A reduction of the chromosome damage was apparent at caffeine concentrations above 10 mM, and in the presence of 20 mM caffeine the clastogenic effect of camptothecin was almost completely suppressed. When present during the camptothecin treatment, theophylline, 8-chlorocaffeine and 1,3,7,9-tetramethyluric acid influenced the induced chromosome damage in a similar way as caffeine, although with varying efficiency. If the concentrations required to produce the two types of modifying effect are used as a criterion, 8-chlorocaffeine was the most effective and 1,3,7,9-tetramethyluric acid the least, whereas caffeine and theophylline were about equally effective.  相似文献   

6.
7.
The effects of zero extracellular Ca2+ on the contractility of rat diaphragmatic strips in vitro were studied in conjunction with various pharmacological agents known to influence the intracellular Ca2+ concentration: the Na+ ionophore, monensin, and the Na(+)-K+ pump inhibitor, ouabain, which enhance [Ca2+]i, caffeine, which induces Ca2+ release from the sarcoplasmic reticulum (SR), and ryanodine, which prevents Ca2+ retention by the SR. The effect of increasing [Ca2+]i on diaphragmatic contraction was assessed by comparing contractions induced by 120 mM K+ in the small muscle strips before and after the addition of ouabain or monensin. Monensin (20 microM) and ouabain (1-100 microM) augmented contractions up to threefold. Treatment of diaphragm strips with 3 nM ryanodine increased baseline tension 360% above the original resting tension but only if the diaphragm was electrically stimulated concurrently; 100 microM ryanodine induced contracture in quiescent tissue. High K+ contractures were of greater magnitude in the presence of ryanodine compared with control, and relaxation time was prolonged by greater than 200%. Ca(2+)-free conditions ameliorated these actions of ryanodine. Ryanodine reduced contractions induced by 10 mM caffeine and nearly abolished them in Ca(2+)-free solution. The data demonstrate that extracellular Ca2+ is important in certain types of contractile responses of the diaphragm and suggest that the processes necessary to utilize extracellular Ca2+ are present in the diaphragm.  相似文献   

8.
We have used the adenosine-stimulated adenylate cyclase of guinea-pig brain to examine the potency of diazepam as an adenosine uptake inhibitor. Diazepam at concentrations in the range 10--500 microM stimulates the production of cAMP in incubated slices of guinea-pig cerebral cortex, with maximal fivefold stimulations over basal levels by 200 microM diazepam. The increases can be largely (but not completely) blocked by the adenosine antagonist theophylline or by addition of excess adenosine deaminase to the system. It appears that the stimulation of cAMP production is due to a blockade of adenosine uptake which results in an increase in extracellular adenosine and concomitant activation of the adenosine receptor coupled to adenylate cyclase. Since the cAMP response to standard adenosine uptake blockers (dipyridamole, dilazep) can be completely blocked by theophylline or adenosine deaminase, a small component of the diazepam response cannot be explained by an adenosine effect. The concentration of diazepam at which the first significant cAMP increase occurs is 10 microM or slightly lower. This is significantly higher than the concentration of diazepam needed to saturate the pharmacologically characterized central nervous system receptors for benzodiazepines.  相似文献   

9.
Caffeine and theophylline inhibited the activity of rat liver glutamate dehydrogenase (GDH), but not that of beef liver GDH, in forward and reverse directions of the enzyme reaction. In the forward direction, approximately 16 mM caffeine or 16 mM theophylline inhibited 50 per cent of the rat liver GDH activity (I50); while in the reverse direction, the I50 of caffeine and theophylline was 15 mM and 8 mM, respectively. The inhibition produced by caffeine was cooperative in both directions, while that of theophylline was negatively cooperative in the forward direction and non-cooperative in the reverse. However, ADP reduced the inhibitory effect of caffeine and theophylline to the extent of 40% and 80%, respectively. The Ki values obtained for caffeine and theophylline were different in the presence of various concentrations of substrates and coenzymes. Based upon these data, we presume that certain subtle changes occurring in the conformation of the rat liver GDH (probably at the ADP/NADH site) in comparison with those of the beef liver GDH may be responsible for its inhibition by caffeine and theophylline.  相似文献   

10.
The kinetic properties and susceptibilities to various agents of intracellular (particulate and soluble) and extracellular phosphodiesterases [EC 3.1.4.17] of Dictyostelium discoideum induced by cyclic adenosine 3',5'-monophosphate (cyclic AMP) were studied and compared. Intracellular particulate phosphodiesterase was obtained by solubilization of the light mitochondrial fraction with Emulgen. The Michaelis constants of this enzyme were 4.5 +/- 0.7 and 10 +/- 0.7 microM, while those of the intracellular soluble phosphodiesterase were 4.6 +/- 0.3 and 13 +/- 2.8 microM. However, the Michaelis constant of the extracellular phosphodiesterase was 6.8 +/- 0.9 microM, differing from the values of the two intracellular enzymes. Susceptibilities of the enzyme activity to various agents (theophylline, caffeine, dithiothreitol, glutathione, etc.) were essentially the same among these three phosphodiesterases. In the presence of 10 mM ethylenediaminetetraacetate, the activities of the particulate and the soluble enzymes were both decreased to about 60%, while that of the extracellular enzyme remained at 90%. The inhibition constants of cyclic inosine monophosphate for the cellular enzymes (35 and 100 microM for the particulate enzyme, and 37 and 90 microM for the soluble one) were considerably different from the value for the extracellular enzyme (48 microM). These results suggest that the characteristics of these three phosphodiesterases are substantially similar, but that the affinity of the intracellular (particulate and soluble) enzymes for the substrate is somewhat different from that of the extracellular enzyme.  相似文献   

11.
C I Larsson 《Life sciences》1991,49(13):PL73-PL78
Microdialysis of intravenously injected theophylline in blood and in lung tissue was performed in two rats during anaesthesia. The recovery (dialysate extraction fraction) in blood was greater than the recovery in lung tissue and there was a change in recovery with time both in blood and in lung. The concentrations of theophylline in the dialysates were corrected for the recovery using caffeine as an "internal standard" in the perfusate as well as tritiated water injected into the rats. There was excellent agreement between the two different methods. Furthermore, the corrected concentration of unbound theophylline in the blood was in accordance with the simultaneously measured total concentration of theophylline in plasma when binding to plasma proteins was taken into account. The conclusion is that an "internal standard" for correction of the recovery is a useful method to approach the true concentrations of compounds in the extracellular water. The "internal standard" must be as equal as possible to the substance of interest.  相似文献   

12.
The purpose of this investigation was to examine the effects of the Ca2+ agonist BAY K 8644 and the Ca2+ antagonist nifedipine on halothane- and caffeine-induced twitch potentiation of mammalian skeletal muscle. Muscle fiber bundles were taken from normal Landrace pigs and exposed to BAY K 8644 (10 microM), nifedipine (1 microM), and low Ca2+ media administered alone and in combination with halothane (3%) or with increasing concentrations of caffeine (0.5-8.0 mM). Both BAY K 8644 and halothane potentiated twitches by approximately 80%; when they were administered in combination, twitch potentiation was nearly double that caused by either drug alone. In the presence of nifedipine, halothane increased twitches by less than 30%. Low Ca2+ significantly depressed twitches by approximately 25% but also inhibited halothane's inotropic effect. BAY K 8644 augmented caffeine potentiation but only at low caffeine concentrations (0.5-2.0 mM). Nifedipine and low Ca2+ failed to inhibit caffeine's inotropic effects. These results suggest that halothane potentiates twitches via a mechanism that involves or is influenced by extracellular Ca2+.  相似文献   

13.
The three xanthine derivatives, caffeine, theophylline and 3-isobutyl-1-methyl-xanthine (IBMX) produced dose-dependent increases in cyclic AMP concentrations in HeLa cells after long term treatment. Only IBMX produced increases over the first 60 minutes, with a peak of approximately 5-fold control values five to 10 minutes after the addition of the drug. About four hours after the addition of either 0.67 or 1.0 mM IBMX there was a second peak in the concentration of cyclic AMP which was at least as large and usually larger than the peak observed at five to ten minutes. Neither caffeine nor theophylline increased cyclic AMP concentrations above control values until one hour after addition of the compounds, and there was no indication of a peak in the concentration at four hours. Between 24 and 72 hours, all three compounds produced elevations in cyclic AMP levels that were steadily maintained. At any given concentration, the order of potency was IBMX greater than theophylline greater than caffeine. If the xanthine derivatives were removed from the medium after 24 hours of treatment, the cyclic AMP concentrations fell to control levels within one hour. Treatment with 5-iodo-2'-deoxyuridine (IdUrd) or hydrocortisone alone did not change the levels of cyclic AMP, nor did the presence of these inducers of alkaline phosphatase activity alter the effects of the xanthine derivations on cyclic AMP concentrations. The data showed a significant correlation between the magnitude of the increase in cycli AMP concentrations over the period from 24 to 72 hours and the degree of inhibition by the xanthine derivatives of the induction of alkaline phosphatase activity.  相似文献   

14.
The inhibitory effects of caffeine on receptor-activated cytosolic Ca2+ signal generation in isolated mouse pancreatic acinar cells were investigated. Using the ability of caffeine to quench Indo-1 fluorescence we measured simultaneously the free intracellular Ca2+ concentration ([Ca2+]i) and the intracellular caffeine concentration ([caffeine]i). We also measured inositol 1,4,5-trisphosphate (InsP3) production with a radioreceptor assay. When caffeine was added to the extracellular solution during a sustained receptor-activated increase in [Ca2+]i, [caffeine]i rose to its steady level within a few seconds. This was accompanied by a decrease of [Ca2+]i, which started only after [caffeine]i had reached an apparent threshold concentration (about 2 mM in the case of 0.5 microM acetylcholine (ACh) stimulation). Above this [caffeine]i level there was a linear relationship between [caffeine]i and [Ca2+]i. Throughout the caffeine exposure [Ca2+]i remained at a steady low level. Following removal of caffeine from the bath, [caffeine]i decreased to zero within seconds. There was no significant increase in [Ca2+]i until [caffeine]i had been reduced to the threshold level (about 2 mM at 0.5 microM ACh). Caffeine inhibited Ca2+ signals evoked by ACh, cholecystokinin, and ATP and also inhibited signals generated in the absence of external Ca2+. Caffeine application had the same effect as removal of agonist allowing recovery from apparent desensitization. Caffeine inhibited the agonist-evoked production of InsP3 in a dose-dependent manner. Our results demonstrate the acute and reversible dose-dependent inhibition of agonist-evoked cytosolic Ca2+ signal generation due to rapid intracellular caffeine accumulation and washout. The inhibition can be explained by the reduction of agonist-evoked InsP3 production.  相似文献   

15.
Glycogen particle synthase phosphatase activity is stimulated by glucose with an A0.5 of approximately 27 mM. The A0.5 is higher than the usual concentrations present in the liver. However, in vitro, certain methylxanthines such as caffeine or theophylline reduce the glucose A0.5 to approximately 10 mM, a concentration well within the normal range of liver glucose concentrations. Methylxanthines do not affect the maximum stimulation by glucose (2.3-fold greater than control rate). The phosphatase reaction also is inhibited by ATP-Mg (I0.5 = 0.1 mM). In the present studies, we have determined the interaction of these effectors. The presence of ATP-Mg at a concentration of 3 mM only slightly reduced the maximal stimulation by glucose. The A0.5 for glucose was unaffected (24 mM). The synergistic effect of caffeine with glucose also was not changed by the presence of ATP-Mg. The A0.5 for glucose was reduced to 11 mM, similar to that in the absence of ATP-Mg. In addition, maximum stimulation by glucose was unchanged. Similar results were obtained when theophylline replaced caffeine. We conclude that the ATP-Mg binding site on either the phosphatase or its substrate, synthase D, does not influence the glucose and methylxanthine binding sites. Effectively, ATP-Mg increased the range over which glucose stimulates the phosphatase activity. In the presence of ATP-Mg, the maximum stimulation by glucose is approximately 7-fold; whereas, in the absence of ATP-Mg it is approximately 2.3-fold. Thus, ATP-Mg may serve to increase the sensitivity of the synthase phosphatase reaction to glucose regulation under in vivo conditions.  相似文献   

16.
Hamster diaphragm muscle strips were treated with theophylline (100 mg/l) or caffeine (100 mg/l) to study the effect on the time constant of relaxation (tau) during repeated contractions and with recovery. Two stimulation protocols were used: a high-tension time index (TTI, 60 Hz, 160 ms, 2/s) and a low TTI (25 Hz, 160 ms, 1/s). In the high TTI protocol an early increase in the tau was noted in theophylline but not in caffeine or control. In the low TTI protocol there was no difference in tau with theophylline. The combination of theophylline (100 mg/l) and verapamil (5 microM) was also studied. Verapamil decreased force in contractions of 300-ms duration but not in those lasting 160 ms and had no effect on tau. It did not block the prolongation of tau seen with theophylline. These studies suggest that theophylline has a direct effect on relaxation of skeletal muscle, which is not prevented by verapamil, and also that external calcium may be important for sustained contractions of skeletal muscle.  相似文献   

17.
1. In assays of 36Cl- uptake into mouse brain vesicles, 100 microM GABA markedly increased both the initial rate of 36Cl- uptake and the total amount of chloride taken up over a 120-sec incubation period. Specific GABA-dependent 36Cl- uptake (the difference between total and background uptake) was essentially complete within 15 sec of incubation. 2. Incubation with GABA following preincubation with 10 microM endrin, a polychlorocycloalkane insecticide and established blocker of GABA-gated chloride channels, showed a stimulation of uptake over background levels that was much slower in onset than that observed with GABA alone but nevertheless achieved virtually the same level of stimulation above background levels after 90 sec of incubation with GABA. 3. In electrophysiological assays of GABA receptors expressed in Xenopus oocytes following injection with rat brain mRNA, endrin (20 microM) effectively blocked the transient currents elicited by brief exposure of oocytes to GABA (200 microM). However, prolonged exposure to GABA in the absence of perfusion produced a large, slowly-developing inward current. 4. The actions of several known GABA antagonists were also compared as inhibitors of GABA-dependent 36Cl- uptake into mouse brain vesicles at short (4 sec) and long (120 sec) incubation times using concentrations of inhibitors known to produce approximately 70-90% inhibition of GABA-dependent chloride uptake in 4-sec incubations. Picrotoxinin and TBPS, like endrin, were completely ineffective as inhibitors in 120-sec incubations. In contrast, bicuculline was almost as effective at 120 sec as at 4 sec, and avermectin Bla produced approximately 50% inhibition of the GABA response after 120 sec.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The determination of caffeine and its analogues is important for a wide variety of analyses and is performed in an assortment of matrices ranging from food to clinical samples. While reversed-phase HPLC has become the standard analysis protocol in most laboratories, capillary electrophoresis has the advantages of higher separation efficiency and shorter separation time. The micellar capillary electrophoresis (MECC) separation of caffeine and its metabolites, theobromine, paraxanthine, theophylline and 1,3,7-trimethyluric acid was investigated using sodium dodecyl sulphate (SDS) as the micellar phase. The effects of pH, micelle concentration, buffer concentration, ionic strength, buffer salts, applied voltage and injection time were studied to select the optimum conditions for the determination of caffeine and its four analogues in drugs, foods and body fluids. Caffeine and its three analogues were resolved within 120 s with detection limits less than 1 μg/ml. Samples could be analyzed utilizing direct injection with satisfactory resolution and reproducibility.  相似文献   

19.
Theophylline is a potent bronchodilator with a narrow therapeutic index. A simple fluorescent biosensor that detects clinically relevant theophylline concentrations has been developed using the well-characterized theophylline binding RNA aptamer. Hybridization of the RNA aptamer to a fluorescently labeled DNA strand (FL-DNA) yields a fluorescent RNA:DNA hybrid that is sensitive to theophylline. The biosensor retains the remarkable selectivity of the RNA aptamer for theophylline over caffeine and is sensitive to 0-2 muM theophylline, well below the clinically relevant concentration (5-20 mg/L or approximately 10-50 muM). Adding a dabcyl quenching dye to the 3'-terminus of the fluorescently labeled DNA strand yielded a dual-labeled DNA strand (FL-DNA-Q) and increased the dynamic range of this simple biosensor from 1.5-fold to 4-fold.  相似文献   

20.
1. The intracellular mechanism of heterosynaptic facilitation (HSF) formation in identified neurons from the snail Planorbis corneus has been studied. 2. Facilitation of excitatory postsynaptic currents (EPSC) were induced by (a) stimulation of pallial nerve, and (b) addition to extracellular saline of serotonin, NaF, papaverine, theophylline, caffeine or dibutril-cAMP. 3. A depression of EPSC in solutions containing tolbutamide, a cAMP-dependent protein kinase inhibitor was observed. 4. In some cases the similar facilitation or depression of the current induced by acetylcholine application (ACh-current) was found in the same neuron. 5. The effects on ACh-current were distorted in solutions containing caffeine, a well-known activator of calcium ions release from the intracellular depot. 6. According to our findings, we suggest that adenylate cyclase activity of postsynaptic cells could underlie the formation of HSF and it is likely that this activity was modulated by intracellular concentration of calcium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号