首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immobilization of antibodies by their oxidized sugar chain on aminated supports is a very efficient methodology to have a properly oriented antibody. However, these supports may behave as anionic exchangers, producing the unspecific adsorption of other proteins and reducing the selectivity of the system. To overcome this problem, we have proposed two solutions based in tailor-made support surfaces to immobilize antihorseradish peroxidase (HRP). The first solution was the use of supports having a very low amount of amino groups. These amino groups need to be very reactive with the aldehyde groups generated in the protein sugar chains to be efficient. Using supports having 7 micromol EDA/g (e.g., ethylenediamine modified glyoxyl-agarose), the antibody may be immobilized, keeping over 90% of the anti-HRP functionality. Second, by mixing amino groups and carboxylic groups, a neutral surface of the support has been generated. Again, this support has been unable to adsorb proteins while oxidized anti-HRP could be immobilized, giving functional anti-HRP antibodies. Both preparations retained 100% functionality after 2 months of storage at 4 degrees C. This way, the tailoring of the support surfaces has permitted solving some limitations of the immobilization of sugar-chain oxidized antibodies on primary amino supports.  相似文献   

2.
The kinetic constants (Km, Vmax, and inhibition constants for the different products) of soluble and different immobilized preparations of beta-galactosidase from Kluyveromyces lactis were determined. For the soluble enzyme, the Km was 3.6 mM, while the competitive inhibition constant by galactose was 45 mM and the noncompetitive one by glucose was 758 mM. The immobilized preparations conserved similar values of Km and competitive inhibition, but in some instances much higher values for the noncompetitive inhibition constants were obtained. Thus, when glyoxyl or glutaraldehyde supports were used to immobilize the enzyme, the noncompetitive inhibition was greatly reduced (Ki approximately 15,000 and >40,000 mM, respectively), whereas when using sugar chains to immobilize the enzyme the behavior had an effect very similar to the soluble enzyme. These results presented a great practical relevance. While using the soluble enzyme or the enzyme immobilized via the sugar chain as biocatalysts in the hydrolysis of lactose in milk only around 90% of the substrate was hydrolyzed, by using of these the enzyme immobilized via the glyoxyl or the glutaraldehyde groups, more than 99% of the lactose in milk was hydrolyzed.  相似文献   

3.
A new protocol that enables the immobilization of DNA probes on aminated micro-titer plates activated with aldehyde-dextran via an amino group artificially introduced in the 3' end of the oligonucleotide probe is reported in this work. The method is based on the use of hetero-functional-dextran as a long and multifunctional spacer arm covalently attached to an aminated surface capable of immobilizing DNA oligonucleotides. The immobilization occurred only via the amino introduced in the 3' end of the probe, with no implication of the DNA bases in the immobilization, ensuring that the full length of the probe is available for hybridization. These plates having immobilized oligonucleotide probes are able to hybridize complementary DNA target molecules. The tailor-made hetero-functional aldehyde-aspartic-dextran together with the chemical blocking of the remaining primary amino groups on the support using acetic anhydride avoid the nonspecific adsorption of DNA on the surface of the plates. Using these activated plates, (studying the effect of the probe concentration, temperature, and time of the plate activation on the achieved signal), thus, the covalent immobilization of the aminated DNA probe was optimized, and the sensitivity obtained was similar to that achieved using commercial biotin-streptavidin systems. The new DNA plates are stable under very drastic experimental conditions (90% formamide, at 100 degrees C for 30 min or in 100 mM NaOH).  相似文献   

4.
The stabilization achieved by different immobilization protocols have been compared using three different enzymes (glutaryl acylase (GAC), D-aminoacid oxidase (DAAO), and glucose oxidase (GOX)): adsorption on aminated supports, treatment of this adsorbed enzymes with glutaraldehyde, and immobilization on glutaraldehyde pre-activated supports. In all cases, the treatment of adsorbed enzymes on amino-supports with glutaraldehyde yielded the higher stabilizations: in the case of GOX, a stabilization over 400-fold was achieved. After this treatment, the enzymes could no longer be desorbed from the supports using high ionic strength (suggesting the support-protein reaction). Modification of the enzymes immobilized on supports that did not offer the possibility of react with glutaraldehyde showed the same stability that the non modified preparations demonstrating that the mere chemical modification did not have effect on the enzyme stability. This simple strategy seems to permit very good results in terms of immobilization rate and stability, offering some advantages when compared to the immobilization on glutaraldehyde pre-activated supports.  相似文献   

5.
Out of some 800 strains of microorganisms, a potent fungus for milk clotting enzyme was isolated from soil during the course of screening tests and was identified as one of strains of Mucor pusillus Lindt. Satisfactory results were obtained in cheese making experiments with this enzyme which could be produced effectively by solid culture on wheat bran at 30°C for about 70 hrs.

The balance between milk clotting activity and proteolytic activity of this enzyme resembled very much to that of rennet.

Microbial rennet from Mucor pusillus F-27 was obtained with high productivity by solid culture followed by water extraction. The enzyme could be precipitated by salting out with ammonium sulfate and also by mixing with various water-miscible organic solvents such as ethanol, methanol or acetone.

This enzyme is one of acid proteases having its optimal pH for milk casein digestion around 3.5. The ratio of milk clotting activity to proteolytic activity of this enzyme resembled that of calf rennet than those of other proteases of fungal origin. This was more heat stable and more resistant against pH changes than animal rennet. Apparent activity of milk clotting was more affected by Ca ion concentration in milk than that of calf rennet.

The liberation of 12% TCA soluble nitrogen from casein fraction was a little less specific than that of calf rennet. The optimal temperature for milk clotting lay around 56°C.

Electrophoretic patterns of α-peak of casein treated with this enzyme showed the weak proteolysis which resembled that with rennet.  相似文献   

6.
Hydrolysis of proteins by immobilized-stabilized alcalase-glyoxyl agarose   总被引:1,自引:0,他引:1  
This paper presents stable Alcalase-glyoxyl derivatives, to be used in the controlled hydrolysis of proteins. They were produced by immobilizing-stabilizing Alcalase on cross-linked 10% agarose beads, using low and high activation grades of the support and different immobilization times. The Alcalase glyoxyl derivatives were compared to other agarose derivatives, prepared using glutaraldehyde and CNBr as activation reactants. The performance of derivatives in the hydrolysis of casein was also tested. At pH 8.0 and 50 degrees C, Alcalase derivatives produced with 1 h of immobilization time on agarose activated with glutaraldehyde, CNBr, and low and high glyoxyl groups concentration presented half-lives of ca. 10, 29, 60, and 164 h, respectively. More extensive immobilization monotonically led to higher stabilization. The most stabilized Alcalase-glyoxyl derivative was produced using 96 h of immobilization time and high activation grade of the support. It presented half-life of ca. 23 h, at pH 8.0 and 63 degrees C and was ca. 500-fold more stable than the soluble enzyme. Thermal inactivation of all derivatives followed a single-step non-first-order kinetics. The most stable derivative presented ca. 54% of the activity of the soluble enzyme for the hydrolysis of casein and of the small substrate Boc-Ala-ONp. This behavior suggests that the decrease in activity was due to enzyme distortion but not to wrong orientation. The hydrolysis degree of casein at 80 degrees C with the most stabilized enzyme was 2-fold higher than that achieved using soluble enzyme, as a result of the thermal inactivation of the latter. Therefore, the high stability of the new Alcalase-glyoxyl derivative allows the design of continuous processes to hydrolyze proteins at temperatures that avoid microbial growth.  相似文献   

7.
Streptococcus cremoris was cultivated for 7 days at 30°C in sterilized skim milk or in the sterilized 10% solution of dry skim milk. This skim milk culture was divided into precipitate and supernatant by centrifugation. The absorbancy at 280 mμ of the supernatant prepared from the skim milk culture of S. cremoris was higher than that of the control supernatant.

Casein prepared from the skim milk culture of S. cremoris was less hydrolyzed by rennet than control casein at pH 7.0.

According to the free boundary electrophoretic analysis of the treated casein in m/10 veronal buffer of pH 8.5 containing urea, α-casein seemed to be hydrolyzed by S. cremoris but β-casein did with more difficulty.  相似文献   

8.
In this paper, the stabilization of a lipase from Bacillus thermocatenulatus (BTL2) by a new strategy is described. First, the lipase is selectively adsorbed on hydrophobic supports. Second, the carboxylic residues of the enzyme are modified with ethylenediamine, generating a new enzyme having 4-fold more amino groups than the native enzyme. The chemical amination did not present a significant effect on the enzyme activity and only reduced the enzyme half-life by a 3-4-fold factor in inactivations promoted by heat or organic solvents. Next, the aminated and purified enzyme is desorbed from the support using 0.2% Triton X-100. Then, the aminated enzyme was immobilized on glyoxyl-agarose by multipoint covalent attachment. The immobilized enzyme retained 65% of the starting activity. Because of the lower p K of the new amino groups in the enzyme surface, the immobilization could be performed at pH 9 (while the native enzyme was only immobilized at pH over 10). In fact, the immobilization rate was higher at this pH value for the aminated enzyme than that of the native enzyme at pH 10. The optimal stabilization protocol was the immobilization of aminated BTL2 at pH 9 and the further incubation for 24 h at 25 degrees C and pH 10. This preparation was 5-fold more stable than the optimal BTL2 immobilized on glyoxyl agarose and around 1200-fold more stable than the enzyme immobilized on CNBr and further aminated. The catalytic properties of BTL2 could be greatly modulated by the immobilization protocol. For example, from (R/S)-2- O-butyryl-2-phenylacetic acid, one preparation of BTL2 could be used to produce the S-isomer, while other preparation produced the R-isomer.  相似文献   

9.
Glucose oxidase (GOX) has been immobilized on different activated supports, including glyoxyl agarose, epoxy sepabeads and glutaraldehyde-activated supports. Immobilization onto supports pre-activated with glutaraldehyde rendered the most thermo-stable preparation of GOX. Therefore, as the glutaraldehyde chemistry gave a high stabilization of the enzyme, we proposed another technique for improving the multipoint attachment through glutaraldehyde: the enzyme was ionically adsorbed on cationic supports with primary amino groups and then the immobilized preparation was treated with a glutaraldehyde solution. The decrease on enzyme activity was <20%. Following this methodology, we achieved the highest stability of all the immobilization systems analyzed, showing a half-life 100 times higher than the soluble enzyme. Moreover, this derivative showed a higher stability in the presence of organic solvents (for instance methanol) or hydrogen epoxide than the ionically adsorbed enzyme or the soluble one. Therefore, the adsorption of GOX on aminated cationic support and subsequent treatment with glutaraldehyde was presented as a very successful methodology for achieving a very stable biocatalyst.  相似文献   

10.
Sepabeads-EP (a new epoxy support) has been utilized to immobilize-stabilize the enzyme penicillin G acylase (PGA) via multipoint covalent attachment. These supports are very robust and suitable for industrial purposes. Also, the internal geometry of the support is composed by cylindrical pores surrounded by the convex surfaces (this offers a good geometrical congruence for reaction with the enzyme), and it has a very high superficial density of epoxy groups (around 100 micromol/mL). These features should permit a very intense enzyme-support interaction. However, the final stability of the immobilized enzyme is strictly dependent on the immobilization protocol. By using conventional immobilization protocols (neutral pH values, nonblockage of the support) the stability of the immobilized enzyme was quite similar to that achieved using Eupergit C to immobilize the PGA. However, when using a more sophisticated three-step immobilization/stabilization/blockage procedure, the Sepabeads derivative was hundreds-fold more stable than Eupergit C derivatives. The protocol used was as follows: (i) the enzyme was first covalently immobilized under very mild experimental conditions (e.g., pH 7.0 and 20 degrees C); (ii) the already immobilized enzyme was further incubated under more drastic conditions (higher pH values, long incubation periods, etc.) in order to "facilitate" the formation of new covalent linkages between the immobilized enzyme molecule and the support; (iii) the remaining epoxy groups of the support were blocked with very hydrophilic compounds to stop any additional interaction between the enzyme and the support. This third point was found to be critical for obtaining very stable enzymes: derivatives blocked with mercaptoethanol were much less stable than derivatives blocked with glycine or other amino acids. This was attributed to the better masking of the hydrophobicity of the support by the amino acids (having two charges).  相似文献   

11.
In sterilized skim milk or sterilized 10% solution of dry skim milk at 120°C for 15 min, Lactobacillus bulgaricus, Lactobacillus helveticus and Streptococcus lactis were cultivated for 7 days at given temperature.

Both NCN (non casein type nitrogen) content and pH in each culture of lactic acid bacteria were rapidly decreased until 2 days after cultivation, But NCN content increased and the pH change got small after 3 days cultivation.

Caseins prepared from the cultures of these three kinds of lactic acid bacteria were examined electrophoretically. From the results of electrophoresis of these caseins, we have concluded that α-casein could be hydrolyzed by these lactic acid bacteria. And, it seemed that β-casein could not be hydrolyzed by these lactic acid bacteria.

Rennet easily hydrolyzed casein treated with L. bulgaricus and L. helveticus but hardly hydrolyzed that treated with S. lactis compared with control-casein. Caseins treated with L. bulgaricus and L. helveticus were hydrolyzed easier than control-casein.

Particle weights of caseins prepared from fermented milk by lactic acid bacteria, Streptococcus cremoris, Streptococcus lactis, Lactobacillus bulgaricus and Lactobacillus helveticus, and of hydrolyzed casein by rennet, trypsin or pepsin were measured according to the light scattering experiment.

Particle weights of various treated caseins were larger than that of raw native casein at both pH 7.0 and 12.0. And the heating caused the polymerization of casein to large particle.  相似文献   

12.
Using the poly-His-tagged-beta-galactosidase from Thermus sp. strain T2 overexpressed in Escherichia coli (MC1116) as a model enzyme, we have developed a strategy to purify and immobilize proteins in a single step, combining the excellent properties of epoxy groups for enzyme immobilization with the good performance of immobilized metal-chelate affinity chromatography for protein purification. The aforementioned enzyme could not be immobilized onto standard epoxy supports with good yields, and after purification and storage, it exhibited a strong trend to yield very large aggregates as shown by ultracentrifugation experiments. That preparation could not be immobilized in any support, very likely because the pores of the solid became clogged by the large aggregates. These novel epoxy-metal chelate heterofunctional supports contain a low concentration of Co(2+) chelated in IDA groups and a high density of epoxy groups. This enabled the selective adsorption of poly-His-tagged enzymes, and as this adsorption step is necessary for the covalent immobilization procedure, the selective covalent immobilization of the target enzyme could take place. This strategy allowed similar maximum loadings of the target enzyme using either pure or crude preparations of the enzyme. The enzyme derivative presented a very high activity at 70 degrees C (over 1000 IU in the hydrolysis of lactose) and very high stability and stabilization when compared to its soluble counterpart (activity remained unaltered after several days of incubation at 50 degrees C). In fact, this preparation was much more stable than when the same enzyme was immobilized onto standard epoxy Sepabeads.  相似文献   

13.
A single bond covalent immobilization of aminated DNA probes on magnetic particles suitable for selective molecular hybridization of traces of DNA samples has been developed. Commercial superparamagnetic nanoparticles containing amino groups were activated by coating with a hetero-functional polymer (aldehyde-aspartic-dextran). This new immobilization procedure provides many practical advantages: (a) DNA probes are immobilized far from the support surface preventing steric hindrances; (b) the surface of the nanoparticles cannot adsorb DNA ionically; (c) DNA probes are bound via a very strong covalent bond (a secondary amine) providing very stable immobilized probes (at 100 degrees C, or in 70% formamide, or 0.1N NaOH). Due to the extreme sensitivity of this purification procedure based on DNA hybridization, the detection of hybridized products could be coupled to a PCR-ELISA direct amplification of the DNA bond to the magnetic nanoparticles. As a model system, an aminated DNA probe specific for detecting Hepatitis C Virus cDNA was immobilized according to the optimised procedure described herein. Superparamagnetic nanoparticles containing the immobilized HCV probe were able to give a positive result after PCR-ELISA detection when hybridized with 1 mL of solution containing 10(-18) g/mL of HCV cDNA (two molecules of HCV cDNA). In addition, the detection of HCV cDNA was not impaired by the addition to the sample solution of 2.5 million-fold excess of non-complementary DNA. The experimental data supports the use of magnetic nanoparticles containing DNA probes immobilized by the procedure here described as a convenient and extremely sensitive procedure for purification/detection DNA/RNA from biological samples. The concentration/purification potential of the magnetic nanoparticles, its stability under a wide range of conditions, coupled to the possibility of using the particles directly in amplification by PCR greatly reinforces this methodology as a molecular diagnostic tool.  相似文献   

14.
The enzyme with high milk clotting activity produced by Irpex lacteus was partially purified by a CM-cellulose chromatography. Throughout the over-all process, the enzyme was purified approximately 9-fold from a crude powder with about 22.8% recovery of the original activity. The MCA/PU ratio of this fraction was 2.51 and the specific milk clotting activity was 188.7.

The purified enzyme is a sort of acid protease with optimum pH of 2.5 for casein digestion and 4.0 for hemoglobin digestion. The Lineweaver-Burk plot, when casein was used as a substrate, showed that the Km value of the enzyme was about 0.07% and the Vmax value was 0.4. The molecular weight of the enzyme is about 34,000, the isoelectric point is pH 5.2 and a ultraviolet absorption maximum is at 277 mμ. The enzyme has not yet been crystalized but seems to be a sort of glycoprotein, because the Molish reaction was positive at the present purification stage.

Some enzymological properties of the enzyme was studied and compared with those of a calf rennet and Mucor rennet. In some respects such as pH optima, pH stability, thermostability and temperature optima, the enzyme is Mucor rennet alike. On the other hand, as to the increase in activity along with decrease in pH of milk and the increase in activity along with the addition of Ca ion, the enzyme is not very different from the calf rennet. However, proteolysis of milk casein by the enzyme was fairly higher than by the calf rennet.

As to the production of enzymes, I. lacteus can produce at least three types of proteases into liquid media. When, for example, R medium was used, only one type of protease, that is the fraction A, could mainly be produced and it was this enzyme that assumed to be a rennet like enzyme.  相似文献   

15.
Chymosin, the major component of rennet (milk clotting enzyme), is an acid protease produced in the fourth stomach of milk-fed ruminants including goat and sheep in the form of an inactive precursor prochymosin. It is responsible for hydrolysis of kappa-casein chain in casein micelles of milk and therefore, used as milk coagulant in cheese preparation. The present investigation was undertaken to purify and characterize goat (Capra hircus) chymosin for its suitability as milk coagulant. The enzyme was extracted from abomasal tissue of kid and purified nearly 30-fold using anion exchanger and gel filtration chromatography. Goat chymosin resolved into three major active peaks, indicating possible heterogeneity when passed through DEAE-cellulose ion exchange column. The purified enzyme had a molecular mass of 36 kDa on SDS-PAGE, which was further confirmed by Western blot analysis. The purified enzyme preparation was stable up to 55 degrees C with maximum activity at 30 degrees C. The milk clotting activity was decreased steadily as pH is increased and indicated maximum activity at pH 5.5. Proteolytic activity of goat chymosin increased with incubation time at 37 degrees C. Goat chymosin was found to be more thermostable than cattle chymosin and equally stable to buffalo chymosin.  相似文献   

16.
A step function model of milk micelle agglomeration is proposed to explain the observed kinetics of milk clotting following rennet addition. The model ties together the primary and secondary phases of coagulation. The basis of the model is that no micelle flocculation takes place until ca. 75% of the kappa-casein in the milk is hydrolyzed, at which time flocculation occurs rapidly and the rate limiting step for the clotting process shifts to the kappa-casein hydrolysis reaction. Using such a model, it is possible to explain the clotting kinetics for both rapidly denaturing enzymes and stable enzyme systems. The average rate of the flocculation reaction can be obtained from clotting time-versus-reciprocal-enzyme-concentration data by extrapolating the data to infinite enzyme concentration. The critical conversion required for imminent flocculation can be found by extrapolating the enzyme concentration to zero. This approach indicates that the critical conversion necessary for gelation is temperature dependent changing from a limiting value of essentially 100% hydrolysis at temperatures below 15 degrees C to only 60% conversion at temperatures above 30 degrees C.  相似文献   

17.
This work exemplifies the advantages of using a battery of new heterofunctional epoxy supports to immobilize enzymes. We have compared the performance of a standard Sepabeads-epoxy support with other Sepabeads-epoxy supports partially modified with boronate, iminodiacetic, metal chelates, and ethylenediamine in the immobilization of the thermostable beta-galactosidase from Thermus sp. strain T2 as a model system. Immobilization yields depended on the support, ranging from 95% using Sepabeads-epoxy-chelate, Sepabeads-epoxy-amino, or Sepabeads-epoxy-boronic to 5% using Sepabeads-epoxy-IDA. Moreover, immobilization rates were also very different when using different supports. Remarkably, the immobilized beta-galactosidase derivatives showed very improved but different stabilities after favoring multipoint covalent attachment by long-term alkaline incubation, the enzyme immobilized on Sepabeads-epoxy-boronic being the most stable. This derivative had some subunits of the enzyme not covalently attached to the support (detected by SDS-PAGE). This is a problem if the biocatalysts were to be used in food technology. The optimization of the cross-linking with aldehyde-dextran permitted the full stabilization of the quaternary structure of the enzyme. The optimal derivative was very active in lactose hydrolysis even at 70 degrees C (over 1000 IU/g), maintaining its activity after long incubation times under these conditions and with no risk of product contamination with enzyme subunits.  相似文献   

18.
Milk calcium salt solution was prepared by the following procedures using casein phosphopeptides (CPP). To CPP solution, 1 M citric acid, 1 M CaCl2 and 1 M K2HPO4 were added with stirring, while adjusting the pH to 6.7. The prepared solution was left for 12 hr at 25 degrees C and then used for subsequent experiments, or lyophilized. The concentrations of organic phosphate of CPP, calcium, inorganic phosphate, and citrate in the typical milk salt solution were 7, 30, 22, and 10 mM, respectively, which were close to those in bovine milk. The lyophilized sample was easily dissolved in water. No crystal structure of hydroxyapatite was shown in the lyophilized milk calcium salts by X-ray diffraction analysis, although the pattern of KCl crystal was observed. The X-ray diffraction pattern of commercial whey mineral, which was prepared by precipitation at alkaline pH from rennet whey, was similar to that of hydroxyapatite. It was confirmed by high-performance gel chromatographic analysis that the form of calcium phosphate in the milk calcium salts was similar to that of casein micelles.  相似文献   

19.
This work reports an optimization of protease from Penicillium aurantiogriseum immobilization on polyaniline-coated magnetic nanoparticles for antioxidant peptides’ obtainment derived from bovine casein. Immobilization process was optimized using a full two-level factorial design (24) followed by a response surface methodology. Using the derivative, casein was hydrolyzed uncovering its peptides that were sequenced and had antioxidant properties tested through (2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) (ABTS) radical scavenging and hydrogen peroxide scavenging assays. Optimal conditions for immobilization were 2?hr of immobilization, offered protein amount of 200?µg/mL, immobilization pH of 6.3 and 7.3?hr of activation. Derivative keeps over 74% of its original activity after reused five times. Free and immobilized enzyme casein hydrolysates presented similar peptide mass fingerprints, and prevalent peptides could be sequenced. Hydrolysates presented more than 2.5× higher ROS scavenging activity than nonhydrolyzed casein, which validates the immobilized protease capacity to develop casein-derived natural ingredients with potential for functional foods.  相似文献   

20.
Epoxy supports (Eupergit C) may be very suitable to achieve the multipoint covalent attachment of proteins and enzymes, therefore, to stabilize their three-dimensional structure. To achieve a significant multipoint covalent attachment, the control of the experimental conditions was found to be critical. A three-step immobilization/stabilization procedure is here proposed: 1) the enzyme is firstly covalently immobilized under very mild experimental conditions (e.g. pH 7.0 and 20 degrees C); 2) the already immobilized enzyme is further incubated under more drastic conditions (higher pH values, longer incubation periods, etc.) to "facilitate" the formation of new covalent linkages between the immobilized enzyme molecule and the support; 3) the remaining groups of the support are blocked to stop any additional interaction between the enzyme and the support. Progressive establishment of new enzyme-support attachments was showed by the progressive irreversible covalent immobilization of several subunits of multi-subunits proteins (all non-covalent structures contained in crude extracts of different microorganism, penicillin G acylase and chymotrypsin). This multipoint covalent attachment enabled the significant thermostabilization of two relevant enzymes, (compared with the just immobilized derivatives): chymotrypsin (5-fold factor) and penicillin G acylase (18-fold factor). Bearing in mind that this stabilization was additive to that achieved by conventional immobilization, the final stabilization factor become 100-fold comparing soluble penicillin G acylase and optimal derivative. These stabilizations were observed also when the inactivations were promoted by the enzyme exposure to drastic pH values or the presence of cosolvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号