首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FLP-mediated recombination of FRT sites in the maize genome.   总被引:9,自引:0,他引:9       下载免费PDF全文
Molecular evidence is provided for genomic recombinations in maize cells induced by the yeast FLP/FRT site-specific recombination system. The FLP protein recombined FRT sites previously integrated into the maize genome leading to excision of a selectable marker, the neo gene. NPTII activity was not observed after the successful recombination process; instead, the gusA gene was activated by the removal of the blocking DNA fragment. Genomic sequencing in the region of the FRT site (following the recombination reaction) indicated that a precise rearrangement of genomic DNA sequences had taken place. The functional FLP gene could be either expressed transiently or after stable integration into the maize genome. The efficiency of genomic recombinations was high enough that a selection for recombination products, or for FLP expression, was not required. The results presented here establish the FLP/FRT site-specific recombination system as an important tool for controlled modifications of maize genomic DNA.  相似文献   

2.
Site-specific recombination provides a powerful tool for studying gene function at predetermined chromosomal sites. Here we describe the use of a blasticidin resistance system to select for recombination in mammalian cells using the yeast enzyme FLP. The vector is designed so that site-specific recombination reconstructs the antibiotic resistance marker within the sequences flanked by the FLP target sites. This approach allows the detection of DNA excised by FLP-mediated recombination and facilitates the recovery of recombination products that would not be detected by available screening strategies. We used this system to show that the molecules excised by intrachromosomal recombination between tandem FLP recombinase target sites do not reintegrate into the host genome at detectable frequencies. We further applied the direct selection approach to recover a rare FLP-mediated recombination event displaying the characteristics of an unequal sister chromatid exchange between FLP target sites. Implications of this approach for the generation of duplications to assess their effect on gene dosage and chromosome stability are discussed.  相似文献   

3.
The FLP recombinase of yeast catalyses site-specific recombination between repeated FLP recombinase target (FRT) elements in yeast and in heterologous system (Escherichia coli, Drosophila, mosquito and cultured mammalian cells). In this report, it is shown that transient FLP recombinase expression can recombine and activate an extrachromosomal silent reporter gene following coinjection into fertilized one-cell mouse eggs. Furthermore, it is demonstrated that introduction of a FLP-recombinase expression vector into transgenic one-cell fertilized mouse eggs induces a recombination event at a chromosomal FRT target locus. The resulting event occured at the one-cell stage and deleted a chromosomal tandem array of a FRT containinglacZ expression cassette down to one or two copies. These results demonstrate that the FLP recombinase can be utilized to manipulate the genome of transgenic animals and suggest that FLP recombinase-mediated plasmid-to-chromosome targeting is feasible in microinjected eggs.  相似文献   

4.
In our earlier works we observed high frequency of recombination between two chimeric plasmids of different types, when they were introduced into yeast cells via cotransformation. Incapability of one of these plasmids to replicate autonomously in yeast cell is the necessary condition for such recombination. The high efficiency of this process point to the differences between interplasmid recombination and other types of yeast recombination. In this work, we studied the participation of two genes in the control of interplasmid exchanges. These are RAD52 responsible for normal processes of meiotic and mitotic recombination and highly specific gene FLP located on 2 mkm DNA which specifies site-specific recombination in the region of inverted sequences of this plasmid. The mutation rad52 in the recipient strain was shown to sharply decrease the efficiency of recombination between integrative and episome plasmids during cotransformation. The absence of FLP gene in the recipient strain (cirO) has no influence on this process.  相似文献   

5.
The ability to manipulate the genome and induce site-specific recombination using either Flippase (FLP) or Cre recombinase has been useful in many systems including Plasmodium berghei for specific deletion events or to obtain conditional gene expression. To test whether these recombinases are active in Plasmodium falciparum we constructed gene knockouts that contain sequences recognised as templates for site-specific recombination. We tested the ability of FLP and Cre recombinases, expressed conditionally in P. falciparum, to mediate deletion of the human dihydrofolate reductase (hdhfr) drug resistance gene. We show that Cre recombinase is capable of efficient removal of hdhfr by site-specific recombination. In contrast, FLP recombinase is very inefficient, even at the optimum temperature of 30 °C for this enzyme. These results demonstrate that Cre recombinase can be utilised in P. falciparum for deletion of specific sequences such as drug resistance genes. This can be exploited for recycling of drug resistance cassettes and for the design of specific recombination events in P. falciparum.  相似文献   

6.
Recombination within the yeast plasmid 2mu circle is site-specific   总被引:39,自引:0,他引:39  
J R Broach  V R Guarascio  M Jayaram 《Cell》1982,29(1):227-234
The multicopy yeast plasmid, 2mu circle, encodes a specialized recombination system. It contains two regions, each 599 bp in length, that are precise inverted repeats of each other and between which recombination occurs readily. In addition, this recombination requires the product of a 2mu circle gene, designated FLP. By examining the products of FLP-mediated recombination of plasmids containing single insertions within one of the repeated regions, we show that this recombination occurs only at a specific site within the repeat. This result was confirmed from analysis of the ability of plasmids containing various deletions within one of the repeated regions to serve as substrates for FLP-mediated recombination. These experiments limit the recombination site to a sequence of less than 65 bp. In addition, by mutational analysis of the recombination potential of a hybrid plasmid containing the entire 2mu circle genome, we have shown that FLP is only the 2mu circle gene necessary for this site-specific recombination. Finally, we describe a sensitive assay for recombination between the repeated sequences of 2mu circle; using it, we demonstrate that even in the absence of FLP gene product, recombination between the repeats occurs at a low but detectable level during meiosis.  相似文献   

7.
8.
Activity of yeast FLP recombinase in maize and rice protoplasts.   总被引:19,自引:2,他引:19       下载免费PDF全文
We have demonstrated that a yeast FLP/FRT site-specific recombination system functions in maize and rice protoplasts. FLP recombinase activity was monitored by reactivation of beta-glucuronidase (GUS) expression from vectors containing the gusA gene inactivated by insertion of two FRTs (FLP recombination targets) and a 1.31 kb DNA fragment. The stimulation of GUS activity in protoplasts cotransformed with vectors containing FRT inactivated gusA gene and a chimeric FLP gene depended on both the expression of the FLP recombinase and the presence and structure of the FRT sites. The FLP enzyme could mediate inter- and intramolecular recombination in plant protoplasts. These results provide evidence that a yeast recombination system can function efficiently in plant cells, and that its performance can be manipulated by structural modification of the FRT sites.  相似文献   

9.
Double-strand breaks in DNA are known to promote recombination in Saccharomyces cerevisiae. Yeast mating type switching, which is a highly efficient gene conversion event, is apparently initiated by a site-specific double-strand break. The 2 micrograms circle site-specific recombinase, FLP, has been shown to make double-strand breaks in its substrate DNA. By using a hybrid 2 micrograms circle::Tn5 plasmid, a portion of which resembles, in its DNA organization, the active (MAT) and the silent (HML) yeast mating type loci, it is shown that FLP mediates a conversion event analogous to mating type switching. Whereas the FLP site-specific recombination is not dependent on the RAD52 gene product, the FLP-induced conversion is abolished in a rad52 background. The FLP-promoted conversion in vivo can be faithfully reproduced by making a double-stranded gap in vitro in the vicinity of the FLP site and allowing the gap to be repaired in vivo.  相似文献   

10.
The FLP protein of the Saccharomyces cerevisiae plasmid 2 microns circle catalyzes site-specific recombination between two repeated segments present on the plasmid. In this paper we present results of experiments we performed to define more precisely the features of the FLP recognition target site, which we propose to designate FRT, and to determine the actual recombination crossover point in vivo. We found that essential sequences for the recombination event are limited to an 8-base-pair core sequence and two 13-base-pair repeated units immediately flanking it. This is the region identified as the FLP binding site in vitro and at which FLP protein promotes specific single-strand cleavages (B. J. Andrews, G. A. Proteau, L. G. Beatty, and P. D. Sadowski, Cell 40:795-803, 1985; J. F. Senecoff, R. C. Bruckner, and M. M. Cox, Proc. Natl. Acad. Sci. USA 82:7270-7274, 1985). Mutations within the core domain can be suppressed by the presence of the identical mutation in the chromatid with which it recombines. However, mutations outside the core are not similarly suppressed. We found that strand exchange during FLP recombination occurs most of the time within the core region, proceeding through a heteroduplex intermediate. Finally, we found that most FLP-mediated events are reciprocal exchanges and that FLP-catalyzed gene conversions occur at low frequency. The low level of gene conversion associated with FLP recombination suggests that it proceeds by a breakage-joining reaction and that the two events are concerted.  相似文献   

11.
The FLP recombinase derived from Saccharomyces cerevisiae mediates precise site‐specific recombination between a pair of FLP recognition targets (FRTs). Like the Cre/loxP system derived from bacteriophage P1, the FLP/FRT system has recently been applied to gene regulation systems using an FLP‐expressing recombinant adenovirus (rAd) (Nakano et al, Nucleic Acids Res. 29: e40, 2001). In an attempt to improve the FLP/FRT system by altering its DNA substrates, we compared the recombination efficiency among different substrates by a quantitative in vitro assay using FLP expressed in mammalian cells. Unexpectedly, we found that one linearized DNA substrate showed 4‐ to > 20‐fold lower recombination efficiency than other substrates, which phenomenon has not been observed in the Cre/loxP system. The quantitative in vitro assay using truncated DNA substrates suggested that the recombination efficiency seemed to be influenced not only by the linearized position of the substrate, but also by the length between a pair of FRTs. Such substrate preference of FLP expressed in mammalian cells should probably be noted when designing versatile applications of the FLP/FRT system as a gene regulation system in mammalian systems. Fortunately, however, we demonstrated that no substrate preference was observed when using a particular substrate (pCAFNF5) and the preference was reduced when using a certain pair of mutant FRTs (f72), which will also be a promising tool for simultaneous gene regulation in combination with wild‐type FRT.  相似文献   

12.
FLP-mediated recombination in the vector mosquito, Aedes aegypti.   总被引:5,自引:2,他引:3       下载免费PDF全文
The activity of a yeast recombinase, FLP, on specific target DNA sequences, FRT, has been demonstrated in embryos of the vector mosquito, Aedes aegypti. In a series of experiments, plasmids containing the FLP recombinase under control of a heterologous heat-shock gene promoter were co-injected with target plasmids containing FRT sites into preblastoderm stage mosquito embryos. FLP-mediated recombination was detected between (i) tandem repeats of FRT sites leading to the excision of specific DNA sequences and (ii) FRT sites located on separate plasmids resulting in the formation of heterodimeric or higher order multimeric plasmids. In addition to FRT sites originally isolated from the yeast 2 microns plasmid, a number of synthetic FRT sites were also used. The synthetic sites were fully functional as target sites for recombination and gave results similar to those derived from the yeast 2 microns plasmid. This successful demonstration of yeast FLP recombinase activity in the mosquito embryo suggests a possible future application of this system in establishing transformed lines of mosquitoes for use in vector control strategies and basic studies.  相似文献   

13.
14.
Homologous and site-specific DNA recombination has revolutionized genetic engineering. The reliability of recombinases such as Cre and FLP has allowed scientists to design complex strategies to study gene function in mammals. However, the retention of recombination sites in the genome limits the use of Cre and FLP recombinases in subsequent modifications. Access to additional recombinases in the ES cell toolbox would enormously widen the number of possibilities to manipulate the genome. In the method presented here, we combine the use of PhiC31, a site-specific integrase, with FLP to obtain site-specific insertion and replacement in pre-inserted docking sites in the genome of mouse ES cells. This method allows for the integration of any sequence of interest in a pre-defined locus, leaving Cre recombinase available for downstream applications. The selection strategy is based on a silent selection marker activated by a plasmid-delivered promoter, making the integration system highly reliable and reducing the need for extensive molecular screens. This article describes how to create "dockable" mouse embryonic stem (ES) cell lines, integrate incoming vectors, and analyze the resulting clones. Current applications of this technology are also discussed.  相似文献   

15.
DNA重组酶FLP存在于酵母2μ质粒上,能识别34bp的FRT位点,并根据2个FRT位点的相对方向完成位点间DNA序列的交换、重组、删除与逆转,在现代分子生物学理论研究与基因工程技术开发中具有广泛应用。构建了在原核大肠杆菌中高效表达FLP重组酶的表达载体pQE32-flpe并建立起相应的原核高效表达体系,在原核细菌大肠杆菌M15菌株中实现FLP酶蛋白的高效表达,同时建立了相应的纯化方法。纯化时先用硫酸铵沉淀法富集FLP酶蛋白,经透析脱盐后再用镍离子鳌合微柱(0.5~1.0mL)亲合层析梯度洗脱的方法获得纯化的FLP酶蛋白。通过构建含有2个方向相同的FRT序列位点的质粒pUC18-FRT-gfp-FRT和含有1个FRT位点的表达载体pET30a-FRT,并分别以其为底物来检测FLP重组酶的删除、交换与重组功能的活性。结果表明,该方法不仅能有效表达FLP酶蛋白,并能行之有效地纯化FLP酶蛋白,以及检测纯化的FLP酶蛋白对DNA序列的删除、重组与交换功能。该方法简单易行并能获得有活性的FLP酶蛋白,为深入研究其机理以及研发相应的DNA重组技术提供重要参考。  相似文献   

16.
SUMMARY: The coding sequences of Cre (site-specific recombinase from bacteriophage P1) and FLP (yeast 2-microm plasmid site-specific recombinase) were fused in frame to produce a novel, dual-function, site-specific recombinase gene. Transgenic maize plants containing the Cre::FLP fusion expression vector were crossed to transgenic plants containing either the loxP or FRT excision substrate. Complete and precise excisions of chromosomal fragments flanked by the respective target sites were observed in the F1 and F2 progeny plants. The episomal DNA recombination products were frequently lost. Non-recombined FRT substrates found in the F1 plants were recovered in the F2 generation after the Cre::FLP gene segregated out. They produced the recombination products in the F3 generation when crossed back to the FLP-expressing plants. These observations may indicate that the efficiency of site-specific recombination is affected by the plant developmental stage, with site-specific recombination being more prevalent in developing embryos. The Cre::FLP fusion protein was also tested for excisions catalysed by Cre. Excisions were identified in the F1 plants and verified in the F2 plants by polymerase chain reaction and Southern blotting. Both components of the fusion protein (FLP and Cre) were functional and acted with similar efficiency. The crossing strategy proved to be suitable for the genetic engineering of maize using the FLP or Cre site-specific recombination system.  相似文献   

17.
Heat-inducible expression of FLP gene in maize cells   总被引:5,自引:1,他引:4  
The soybean heat-shock gene promoter ( Gmhsp 17.5-E ) has been used to direct expression of gusA and FLP genes in maize cells. At inducible temperatures, in transient expression assays, gusA gene expression controlled by the heat-shock promoter is about 10-fold higher than the expression directed by the CaMV 35S promoter. The Gmhsp 17.5-E promoter preserves its regulatory functions in heterologous maize cells after random integration into genomic DNA.
Heat-shock inducible expression of the FLP gene was investigated by co-transformation of the FLP expression vector (pHsFLP) and a recombination test vector (pUFNeo-FmG) into maize protoplasts. Co-transformed protoplasts were incubated at 42°C for 2 h. This treatment induced recombination of 20–25% of the available FRT sites in transient assays. As a result of heat-shock treatment of stably co-transformed maize cells, activation of gusA gene expression and an associated decrease or elimination of NPT-II activity in transgenic maize lines was observed. Molecular evidence was obtained of the expected DNA excision process catalyzed by the FLP protein in maize transgenic cells. Thus, the experiments presented in this paper indicate that the FLP protein can recognize and subsequently recombine the FRT target sites that had integrated into plant genomic DNA, and that regulated expression of the FLP gene is possible in maize cells using the soybean heat-shock promoter.  相似文献   

18.
We have examined the replication and segregation of the Saccharomyces cerevisiae 2 microns circle. The amplification of the plasmid at low copy numbers requires site-specific recombination between the 2 microns inverted repeat sequences catalyzed by the plasmid-encoded FLP gene. No other 2 microns gene products are required. The overexpression of FLP in a strain carrying endogenous 2 microns leads to uncontrolled plasmid replication, longer cell cycles, and cell death. Two different assays show that the level of Flp activity decreases with increasing 2 microns copy number. This regulation requires the products of the REP1 and REP2 genes. These gene products also act together to ensure that 2 microns molecules are randomly segregated between mother and daughter cells at cell division.  相似文献   

19.
利用FLP/frt重组系统产生无选择标记的转基因烟草植株   总被引:3,自引:0,他引:3  
在植物转基因植株产生过程中,对转化细胞进行抗性筛选是通用程序,转化细胞的抗性一般是抗生素抗性或除草剂抗性,将赋予转化细胞抗性的选择标记基因删除是提高转基因植物生物安全性的重要措施。来自于啤酒酵母的FLP/frt位点特异性重组系统可有效删除同向定点重组位点frt之间的基因。通过多步骤重组,建立了可在植物中广泛应用的FLP/frt位点特异性重组系统。该系统包括含有frt位点的植物表达载体pCAMBIA1300-betA-frt-als-frt和含有由热诱导启动子hsp启动的FLP重组酶基因的植物表达载体pCAMBIA1300-hsp-FLP-hpt。利用二次转化的方式将二者先后转入烟草植株,热激处理后,热诱导型启动子hsp调控的重组酶FLP基因的表达催化位于选择标记基因als两侧同向frt位点间的重组反应,有效地删除了选择标记基因als。41%的经热激处理的二次转化植株发生了选择标记基因的删除,表明该系统在获得无选择标记基因的转基因植株中有很好的应用价值。  相似文献   

20.
The yeast 2-micron circle plasmid encodes a protein, FLP, that mediates site-specific recombination across the two FLP-binding sites of the plasmid. We have used a novel technique, "exonuclease-treated substrate analysis," to determine the minimal duplex DNA sequence needed for this recombination event. A linear DNA containing two FLP sites in a direct orientation was treated with the double-strand specific 3'-exonuclease, exonuclease III, to generate molecules with a nested set of single-strand deletions that extended into one of the FLP sites. The DNA was then end-labeled at the sites of the deletions and used as a substrate for recombination in vitro. FLP-mediated recombination between two FLP sites excised a restriction endonuclease cleavage site from the DNA. Comparison of the fragments produced by restriction enzyme digestion of untreated and FLP-treated DNA showed to the nucleotide the duplex DNA sequence required for FLP-mediated recombination. To examine essential sequences in the opposite DNA strand, similar experiments were done using the 5'-exonuclease encoded by phage T7. The minimal essential duplex DNA sequence lies within the region of the FLP site that was previously shown to be protected from nuclease digestion in the presence of FLP. A modified form of this technique can be used to study the minimal sequence requirements of site-specific DNA binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号