首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Innate immunity is the major host defense against invasive aspergillosis. To determine whether the collectin mannan-binding lectin (MBL) is involved in the initial protective immunity through complement activation against opportunistic fungal infections caused by Aspergillus, we performed in vitro studies on 29 different strains of Aspergillus conidia from five different species. Incubation of Aspergillus conidia in human normal serum leads to activation of the alternative pathway, whereas neither the classical nor the lectin pathways through C4 and C2 cleavage are activated. Complement response to conidia was investigated using a MBL-deficient serum and reconstitution experiments were conducted with MBL/MASPs complexes. We found that MBL can directly support C3 activation by a C2 bypass mechanism. Finally, a stronger activation of the alternative pathway was observed for the clinical strains isolated from patients with invasive aspergillosis, compared with the environmental strains.  相似文献   

2.
The recently identified lectin pathway of the complement system, initiated by binding of mannan-binding lectin (MBL) to its ligands, is a key component of innate immunity. MBL-deficient individuals show an increased susceptibility for infections, especially of the mucosal system. We examined whether IgA, an important mediator of mucosal immunity, activates the complement system via the lectin pathway. Our results indicate a dose-dependent binding of MBL to polymeric, but not monomeric IgA coated in microtiter plates. This interaction involves the carbohydrate recognition domain of MBL, because it was calcium dependent and inhibited by mannose and by mAb against this domain of MBL. Binding of MBL to IgA induces complement activation, as demonstrated by a dose-dependent deposition of C4 and C3 upon addition of a complement source. The MBL concentrations required for IgA-induced C4 and C3 activation are well below the normal MBL plasma concentrations. In line with these experiments, serum from individuals having mutations in the MBL gene showed significantly less activation of C4 by IgA and mannan than serum from wild-type individuals. We conclude that MBL binding to IgA results in complement activation, which is proposed to lead to a synergistic action of MBL and IgA in antimicrobial defense. Furthermore, our results may explain glomerular complement deposition in IgA nephropathy.  相似文献   

3.
MBL is a serum lectin that activates the lectin pathway of the complement system. MBL forms complexes with three types of MASPs. Upon binding to Salmonella serogroup C-specific oligosaccharide, MBL activates the alternative pathway via a C2-bypass pathway without involving MASP-2, C2 or C4. We demonstrate that mannan-bound MBL activates the alternative pathway via a C2-bypass pathway that requires MASP-2 and C4. Thus, depending on the ligands to which MBL binds, there may be two distinct MBL-mediated C2-bypass pathways.  相似文献   

4.
The lectin pathway of complement is activated by multimolecular complexes that recognize and bind to microbial polysaccharides. These complexes comprise a multimeric carbohydrate recognition subunit (either mannan-binding lectin (MBL) or a ficolin), three MBL-associated serine proteases (MASP-1, -2, and -3), and MAp19 (a truncated product of the MASP-2 gene). In this study we report the cloning of chicken MASP-2, MASP-3, and MAp19 and the organization of their genes and those for chicken MBL and a novel ficolin. Mammals usually possess two MBL genes and two or three ficolin genes, but chickens have only one of each, both of which represent the undiversified ancestors of the mammalian genes. The primary structure of chicken MASP-2 is 54% identical with those of the human and mouse MASP-2, and the organization of its gene is the same as in mammals. MASP-3 is even more conserved; chicken MASP-3 shares approximately 75% of its residues with human and Xenopus MASP-3. It is more widely expressed than other lectin pathway components, suggesting a possible function of MASP-3 different from those of the other components. In mammals, MASP-1 and MASP-3 are alternatively spliced products of a single structural gene. We demonstrate the absence of MASP-1 in birds, possibly caused by the loss of MASP-1-specific exons during phylogeny. Despite the lack of MASP-1-like enzymatic activity in sera of chicken and other birds, avian lectin pathway complexes efficiently activate C4.  相似文献   

5.
Mannan-binding lectin (MBL) forms a multimolecular complex with at least two MBL-associated serine proteases, MASP-1 and MASP-2. This complex initiates the MBL pathway of complement activation by binding to carbohydrate structures present on bacteria, yeast, and viruses. MASP-1 and MASP-2 are composed of modular structural motifs similar to those of the C1q-associated serine proteases C1r and C1s. Another protein of 19 kDa with the same N-terminal sequence as the 76-kDa MASP-2 protein is consistently detected as part of the MBL/MASP complex. In this study, we present the primary structure of this novel MBL-associated plasma protein of 19 kDa, MAp19, and demonstrate that MAp19 and MASP-2 are encoded by two different mRNA species generated by alternative splicing/polyadenylation from one structural gene.  相似文献   

6.
Two cyclic structures, the 15-membered thiolactone A and the 5-membered lactam P, have been proposed for the metastable binding sites of the serum proteins C3, C4, and alpha 2-macroglobulin. Neither structure alone adequately explains two unusual reactions of these sites, namely, covalent attachment to nucleophiles with liberation of a thiol group and spontaneous hydrolysis (autolysis) of an internal peptide bond. The metastable binding sites of these proteins were modeled with the 15-membered thiolactone 1 (Khan, S. A., and Erickson, B. W. (1981) J. Am. Chem. Soc. 103, 7374-7376) and the isomeric 5-membered lactam 2, which contains an internal pyroglutamyl (Glp) residue. Under physiologic conditions (phosphate-buffered saline, pH 7.3, 37 degrees C), thiolactone 1 and lactam 2 exist in dynamic equilibrium. Since the molar ratio of 2/1 is 11:1 at equilibrium, lactam 2 is 15 kcal/mol more stable than thiolactone 1. The activation energy for isomerization of 1 into 2 is 18 kcal/mol, which is about 5 kcal/mol lower than that for hydrolysis of the acyclic thiolester N,S-diacetyl-L-cysteine methylamide. Part of the chemistry of the metastable binding sites can be explained by an analogous equilibrium between protein structures A and B. Lactam B may be a key intermediate in the biosynthesis of thiolactone A. Under denaturating conditions, thiolactone A could either bind covalently to a receptive surface or isomerize into lactam B, which could undergo spontaneous hydrolysis of the Glu-Glp peptide bond.  相似文献   

7.
Although the initiating complex of lectin pathway (called M1 in this study) generates C3/C5 convertases similar to those assembled by the initiating complex (C1) of the classical pathway, activation of complement component C5 via the lectin pathway has not been examined. In the present study kinetic analysis of lectin pathway C3/C5 convertases assembled on two surfaces (zymosan and sheep erythrocytes coated with mannan (E(Man))) revealed that the convertases (ZymM1,C4b,C2a and E(Man)M1,C4b,C2a) exhibited a similar but weak affinity for the substrate, C5 indicated by a high K(m) (2.73-6.88 microm). Very high affinity C5 convertases were generated when the low affinity C3/C5 convertases were allowed to deposit C3b by cleaving native C3. These C3b-containing convertases exhibited K(m) (0.0086-0.0075 microm) well below the normal concentration of C5 in blood (0.37 microm). Although kinetic parameters, K(m) and k(cat), of the lectin pathway C3/C5 convertases were similar to those reported for classical pathway C3/C5 convertases, studies on the ability of C4b to bind C2 indicated that every C4b deposited on zymosan or E(Man) was capable of forming a convertase. These findings differ from those reported for the classical pathway C3/C5 convertase, where only one of four C4b molecules deposited formed a convertase. The potential for four times more amplification via the lectin pathway than the classical pathway in the generation of C3/C5 convertases and production of pro-inflammatory products, such as C3a, C4a, and C5a, implies that activation of complement via the lectin pathway might be a more prominent contributor to the pathology of inflammatory reactions.  相似文献   

8.
Complement activation plays an important role in local and remote tissue injury associated with gastrointestinal ischemia-reperfusion (GI/R). The role of the classical and lectin complement pathways in GI/R injury was evaluated using C1q-deficient (C1q KO), MBL-A/C-deficient (MBL-null), complement factor 2- and factor B-deficient (C2/fB KO), and wild-type (WT) mice. Gastrointestinal ischemia (20 min), followed by 3-h reperfusion, induced intestinal and lung injury in C1q KO and WT mice, but not in C2/fB KO mice. Addition of human C2 to C2/fB KO mice significantly restored GI/R injury, demonstrating that GI/R injury is mediated via the lectin and/or classical pathway. Tissue C3 deposition in C1q KO and WT, but not C2/fB KO, mice after GI/R demonstrated that complement was activated in C1q KO mice. GI/R significantly increased serum alanine aminotransferase, gastrointestinal barrier dysfunction, and neutrophil infiltration into the lung and gut in C1q KO and WT, but not C2/fB KO, mice. MBL-null mice displayed little gut injury after GI/R, but lung injury was present. Addition of recombinant human MBL (rhuMBL) to MBL-null mice significantly increased injury compared with MBL-null mice after GI/R and was reversed by anti-MBL mAb treatment. However, MBL-null mice were not protected from secondary lung injury after GI/R. These data demonstrate that C2 and MBL, but not C1q, are necessary for gut injury after GI/R. Lung injury in mice after GI/R is MBL and C1q independent, but C2 dependent, suggesting a potential role for ficolins in this model.  相似文献   

9.
Subcellular membrane and granule fractions derived from human platelets contain immunologically identifiable alpha2-macroglobulin and alpha1-antitrypsin. These platelet-derived inhibitors show a reaction of immunologic identity when compared to alpha2-macroglobulin and alpha1-antitrypsin purified from human plasma. Further, the platelet protease inhibitors possessed a similar subunit polypeptide chain structure to their plasma counterparts as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis. Studies of the binding of radiolabeled trypsin to the various solubilized platelet subcellular fractions suggest that the granule-associated alpha2-macroglobulin and alpha1-antitrypsin, as well as membrane-associated alpha2-macroglobulin were functionally active. Quantitatively, circulating platelets contain relatively small concentrations of these inhibitors as compared to platelet-associated fibrinogen and factor VIIIAGN. Platelet protease inhibitors may modulate the protease-mediated events involved in the formation of hemostatic plugs and thrombi.  相似文献   

10.
Human alpha2M (alpha2-macroglobulin) and the complement components C3 and C4 are thiol ester-containing proteins that evolved from the same ancestral gene. The recent structure determination of human C3 has allowed a detailed prediction of the location of domains within human alpha2M to be made. We describe here the expression and characterization of three alpha(2)M domains predicted to be involved in the stabilization of the thiol ester in native alpha2M and in its activation upon bait region proteolysis. The three newly expressed domains are MG2 (macroglobulin domain 2), TED (thiol ester-containing domain) and CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain. Together with the previously characterized RBD (receptor-binding domain), they represent approx. 42% of the alpha2M polypeptide. Their expression as folded domains strongly supports the predicted domain organization of alpha2M. An X-ray crystal structure of MG2 shows it to have a fibronectin type-3 fold analogous to MG1-MG8 of C3. TED is, as predicted, an alpha-helical domain. CUB is a spliced domain composed of two stretches of polypeptide that flank TED in the primary structure. In intact C3 TED interacts with RBD, where it is in direct contact with the thiol ester, and with MG2 and CUB on opposite, flanking sides. In contrast, these alpha2M domains, as isolated species, show negligible interaction with one another, suggesting that the native conformation of alpha2M, and the consequent thiol ester-stabilizing domain-domain interactions, result from additional restraints imposed by the physical linkage of these domains or by additional domains in the protein.  相似文献   

11.
Complement activation contributes directly to health and disease. It neutralizes pathogens and stimulates immune processes. Defects lead to immunodeficiency and autoimmune diseases, whereas inappropriate activation causes self-damage. In the lectin and classical pathways, complement is triggered upon recognition of a pathogen by an activating complex. Here we present the first structure of such a complex in the form of the collagen-like domain of mannan-binding lectin (MBL) and the binding domain of its associated protease (MASP-1/-3). The collagen binds within a groove using a pivotal lysine side chain that interacts with Ca(2+)-coordinating residues, revealing the essential role of Ca(2+). This mode of binding is prototypic for all activating complexes of the lectin and classical pathways, and suggests a general mechanism for the global changes that drive activation. The structural insights reveal a new focus for inhibitors and we have validated this concept by targeting the binding pocket of the MASP.  相似文献   

12.
A new mannose-specific plant lectin (GNA) isolated from the snowdrop bulb was immobilized on Sepharose 4B and employed for the purification of certain glycoproteins with high-mannose type glycan chains. Murine IgM bound tightly to this column and was eluted with 0.1 M methyl alpha-D-mannoside whereas bovine and murine IgG were not bound. When a murine hybridoma serum containing IgM monoclonal antibody was applied to this column, highly purified IgM antibody was obtained after elution with methyl alpha-D-mannoside. On the contrary, human IgM was not bound by this column despite reports that it contains high-mannose type glycan chains. alpha 2-Macroglobulin was the sole glycoprotein present in human serum which was bound by the immobilized snowdrop lectin column. It appears that only glycoproteins containing multiple Man(alpha 1,3)Man units are bound to the immobilized lectin.  相似文献   

13.
Regulation of the TAK1 signaling pathway by protein phosphatase 2C   总被引:8,自引:0,他引:8  
Protein phosphatase 2C (PP2C) is implicated in the negative regulation of stress-activated protein kinase cascades in yeast and mammalian cells. In this study, we determined the role of PP2Cbeta-1, a major isoform of mammalian PP2C, in the TAK1 signaling pathway, a stress-activated protein kinase cascade that is activated by interleukin-1, transforming growth factor-beta, or stress. Ectopic expression of PP2Cbeta-1 inhibited the TAK1-mediated mitogen-activated protein kinase kinase 4-c-Jun amino-terminal kinase and mitogen-activated protein kinase kinase 6-p38 signaling pathways. In vitro, PP2Cbeta-1 dephosphorylated and inactivated TAK1. Coimmunoprecipitation experiments indicated that PP2Cbeta-1 associates with the central region of TAK1. A phosphatase-negative mutant of PP2Cbeta-1, PP2Cbeta-1 (R/G), acted as a dominant negative mutant, inhibiting dephosphorylation of TAK1 by wild-type PP2Cbeta-1 in vitro. In addition, ectopic expression of PP2Cbeta-1(R/G) enhanced interleukin-1-induced activation of an AP-1 reporter gene. Collectively, these results indicate that PP2Cbeta negatively regulates the TAK1 signaling pathway by direct dephosphorylation of TAK1.  相似文献   

14.
The serum lectin, mannan binding protein (MBP), was isolated in a yield of 40 micrograms/liter from pooled normal human serum by affinity chromatography on mannan-Sepharose, followed by gel-filtration and ion-exchange chromatography and finally by passage down an anti-IgM Sepharose column. A rabbit antiserum was prepared against the purified MBP and an enzyme-linked immunoassay developed that used both the specificity of the polyclonal antibody and the Ca+(+)-dependent carbohydrate binding property of MBP. Assay of the sera from 103 blood-donors showed a wide range of MBP levels, ranging from 0 to 870 micrograms/liter. MBP, after interaction with zymosan, caused efficient activation of a C1r2 125I-C1s2 complex that was prepared by incubation of 125I-C1s2 with serum, from a patient with a complete genetic deficiency of C1q, followed by gel-filtration on Sepharose 6B. The purified MBP is composed of a mixture of trimers, tetramers, pentamers, and hexamers of an approximate 90-kDa structural unit as judged by chromatography, SDS-PAGE and electron microscopy studies. Only the molecules in the pentamer/hexamer fraction, which have a similar overall structure to that of C1q, appeared to cause efficient, zymosan-dependent, activation of C1s within the C1r2C1s2 complex. The pentamer/hexamer form of MBP may therefore play an important role in antibody-independent activation of the C system during the early stages of certain infections.  相似文献   

15.
In this study, the role of interdomain interactions involving the C1 and C2 domains in the mechanism of activation of PKC was investigated. Using an in vitro assay containing only purified recombinant proteins and the phorbol ester, 4 beta-12-O-tetradecanoylphorbol-13-acetate (TPA), but lacking lipids, it was found that PKC alpha bound specifically, and with high affinity, to a alpha C1A-C1B fusion protein of the same isozyme. The alpha C1A-C1B domain also potently activated the isozyme in a phorbol ester- and diacylglycerol-dependent manner. The level of this activity was comparable with that resulting from membrane association induced under maximally activating conditions. Furthermore, it was found that alpha C1A-C1B bound to a peptide containing the C2 domain of PKC alpha. The alpha C1A-C1B domain also activated conventional PKC beta I, -beta II, and -gamma isoforms, but not novel PKC delta or -epsilon. PKC delta and -epsilon were each activated by their own C1 domains, whereas PKC alpha, -beta I, -beta II, or -gamma activities were unaffected by the C1 domain of PKC delta and only slightly activated by that of PKC epsilon. PKC zeta activity was unaffected by its own C1 domain and those of the other PKC isozymes. Based on these findings, it is proposed that the activating conformational change in PKC alpha results from the dissociation of intra-molecular interactions between the alpha C1A-C1B domain and the C2 domain. Furthermore, it is shown that PKC alpha forms dimers via inter-molecular interactions between the C1 and C2 domains of two neighboring molecules. These mechanisms may also apply for the activation of the other conventional and novel PKC isozymes.  相似文献   

16.
The signal transduction pathwaysconnecting cell surface receptors to the activation of muscle-specificpromoters and leading to myogenesis are still largely unknown.Recently, a contribution of the p38 mitogen-activated protein kinase(MAPK) pathway to this process was evoked through the use ofpharmacological inhibitors. We used several mutants of the kinasescomposing this pathway to modulate the activity of the muscle-specificmyosin light chain and myogenin promoters in C2C12 cells by transienttransfections. In addition, we show for the first time, using a stableC2C12 cell line expressing a dominant-negative form of the p38activator MAPK kinase (MKK)3, that a functional p38 MAPK pathway isindeed required for terminal muscle cell differentiation. The mostobvious phenotype of this cell line, besides the inhibition of theactivation of p38, is its inability to undergo terminaldifferentiation. This phenotype is accompanied by a drastic inhibitionof cell cycle and myogenesis markers such as p21, p27, MyoD, andtroponin T, as well as a profound disorganization of the cytoskeleton.

  相似文献   

17.
Regulation of the alternative pathway of complement by pH   总被引:2,自引:0,他引:2  
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hemolytic anemia. The abnormal PNH erythrocytes are highly susceptible to complement-mediated lysis in vitro, especially at pH 6.4. Lysis has been shown to be due to alternative pathway activation. The purpose of this study was to determine why lysis of PNH erythrocytes is increased at acidic pH. The results presented demonstrate that at pH 6.4: binding of C5 and Factor B to C3b deposited on human erythrocytes is markedly enhanced; generation of the two C3 convertases, C3(H2O), Bb and C3b,Bb is increased; and control of C3b on human erythrocytes by CR1 and Factor I is diminished. In addition, it was found that rabbit erythrocytes, which activate the human alternative pathway, are also lysed much better at pH 6.4 than at pH 7.4. These results indicate that the optimal pH for the initiation and amplification of the alternative complement pathway, and probably also for the activation of the membrane attack complex, is 6.4.  相似文献   

18.
Carbohydrate chains of C1-inhibitor were identified with a binding assay using different lectins. Lectins from Sambucus nigra (SNA) and Maackia amurensis (MAA) that are specific for sialic acids bound to C1-inhibitor. Lectin from Datura stramonium (DSA) reacted also with the inhibitor indicating complex and hybrid sugar structures. C1-inhibitor was enzymatically desialylated and reexamined for lectin binding. SNA and MAA did not react anymore, but in addition to DSA, peanut agglutinin, which can bind to carbohydrate chains after sialic acids are removed, bound to desialylated C1-inhibitor. C1-inhibitor contains about 30 sialic acid residues per molecule. SDS-polyacrylamide gel electrophoresis showed that desialylated C1-inhibitor had a faster mobility than native C1-inhibitor. The N-terminal sequence of desialylated C1-inhibitor was the same as of native C1-inhibitor and no change in the inhibition of human plasma kallikrein was observed.  相似文献   

19.
The alpha polypeptide chain of the complement protein C3 splits into two fragments of 74 000 and 46 000 apparent mol.wt. under certain conditions used to prepare the protein for SDS (sodium dodecyl sulphate)/polyacrylamide-gel electrophoresis. The cleavage reaction occurs over a wide range of temperatures and from pH 4.6 to 10.6 in the presence of denaturants such as urea, SDS and guanidine hydrochloride. It is also induced by heat-denaturation of C3 in the absence of chemical denaturants. The reaction occurs only with haemolytically active C3, and is not observed with hydroxylamine-inactivated C3 or with C3b. A similar cleavage of the alpha-chain of complement component C4 occurs under the same conditions, forming fragments of 53 000 and 41 000 apparent mol.wt. This reaction is again specific for haemolytically active C4, and does not occur with C4b or hydroxylamine-inactivated C4. The complement component C5, although structurally similar to C3 and C4, does not undergo a reaction of this type. The characteristics of the denaturation-induced cleavage of C3 and C4 match those described for the 'heat-induced' cleavage of alpha 2-macroglobulin [Harpel, Hayes & Hugli (1979) J. Biol. Chem. 254, 8669-8678]. Cleavage of alpha 2-macroglobulin is also specific for the active form of the protein, and does not occur with chemically inactivated or proteinase-cleaved forms. The unusual conditions and specificity of the peptide-bond cleavage in all three proteins suggest that it is an autolytic process rather than being the result of trace proteinase contamination. The active forms of C3, C4 and alpha 2-macroglobulin have the transient ability to form covalent bonds after activation. The autolytic cleavage reaction is likely to be related to the covalent-bond-forming reactions of these proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号