首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Geobacter sulfurreducens is a δ-proteobacterium bacteria that has biotechnological applications in bioremediation and as biofuel cells. Development of these applications requires stabilization and preservation of the bacteria in thin porous coatings on electrode surfaces and in flow-through bioreactors. During the manufacturing of these coatings the bacteria are exposed to hyperosmotic stresses due to dehydration and the presence of carbohydrates in the medium. In this study we focused on quantifying the response of G. sulfurreducens to hyperosmotic shock and slow dehydration to understand the hyperosmotic damage mechanisms and to develop the methodology to maximize the survival of the bacteria. We employed FTIR spectroscopy to determine the changes in the structure and the phase transition behavior of the cell membrane. Hyperosmotic shock resulted in greatly decreased membrane lipid order in the gel phase and a less cooperative membrane phase transition. On the other hand, slow dehydration resulted in increased membrane phase transition temperature, less cooperative membrane phase transition and a small decrease in the gel phase lipid order. Both hyperosmotic shock and slow dehydration were accompanied by a decrease in viability. However, we identified that in each case the membrane damage mechanism was different. We have also shown that the post-rehydration viability could be maximized if the lyotropic phase change of the cell membrane was eliminated during dehydration. On the other hand, lyotropic phase change during re-hydration did not affect the viability of G. sulfurreducens. This study conclusively shows that the cell membrane is the primary site of injury during hyperosmotic stress, and by detailed analysis of the membrane structure as well as its thermodynamic transitions it is indeed possible to develop methods in a rational fashion to maximize the survival of the bacteria during hyperosmotic stress.  相似文献   

2.
The structure of the core part of the LPS from Geobacter sulfurreducens was analysed. The LPS contained no O-specific polysaccharide (O-side chain) and upon mild hydrolysis gave a core oligosaccharide, which was isolated by gel chromatography. It was studied by chemical methods, NMR and mass spectrometry, and the following structure was proposed. [carbohydrate structure: see text] where Q = 3-O-Me-alpha-L-QuiNAc-(1-->or H (approximately 3:2).  相似文献   

3.
The c-type cytochrome (OmcB) and the multicopper protein (OmpB) required for Fe(III) oxide reduction by Geobacter sulfurreducens were predicted previously to be outer membrane proteins, but it is not clear whether they are positioned in a manner that permits the interaction with Fe(III). Treatment of whole cells with proteinase K inhibited Fe(III) reduction, but had no impact on the inner membrane-associated fumarate reduction. OmcB was digested by protease, resulting in a smaller peptide. However, immunogold labeling coupled with transmission electron microscopy did not detect OmcB, suggesting that it is only partially exposed on the cell surface. In contrast, OmpB was completely digested with protease. OmpB was loosely associated with the cell surface as a substantial portion of it was recovered in the culture supernatant. Immunogold labeling demonstrated that OmpB associated with the cell was evenly distributed on the cell surface rather than localized to one side of the cell like the conductive pili. Although several proteins required for Fe(III) oxide reduction are shown to be exposed on the outer surface of G. sulfurreducens, the finding that OmcB is also surface exposed is the first report of a protein required for optimal Fe(III) citrate reduction at least partially accessible on the cell surface.  相似文献   

4.
Geobacter sulfurreducens, an Fe(III)-reducing deltaproteobacterium found in anoxic subsurface environments, contains 4 NiFe hydrogenases. Hyb, a periplasmically oriented membrane-bound NiFe hydrogenase, is essential for hydrogen-dependent growth. The functions of the three other hydrogenases are unknown. We show here that the other periplasmically oriented membrane-bound NiFe hydrogenase, Hya, is necessary for growth after exposure to oxidative stress when hydrogen or a highly limiting concentration of acetate is the electron source. The beneficial impact of Hya on growth was dependent on the presence of H(2) in the atmosphere. Moreover, the Hya-deficient strain was more sensitive to the presence of superoxide or hydrogen peroxide. Hya was also required to safeguard Hyb hydrogen oxidation activity after exposure to O(2). Overexpression studies demonstrated that Hya was more resistant to oxidative stress than Hyb. Overexpression of Hya also resulted in the creation of a recombinant strain better fitted for exposure to oxidative stress than wild-type G. sulfurreducens. These results demonstrate that one of the physiological roles of the O(2)-resistant Hya is to participate in the oxidative stress defense of G. sulfurreducens.  相似文献   

5.
Geobacter sulfurreducens exists in the subsurface and has been identified in sites contaminated with radioactive metals, consistent with its ability to reduce metals under anaerobic conditions. The natural state of organisms in the environment is one that lacks access to high concentrations of nutrients, namely electron donors and terminal electron acceptors (TEAs). Most studies have investigated G. sulfurreducens under high-nutrient conditions or have enriched for it in environmental systems via acetate amendments. We replicated the starvation state through long-term batch culture of G. sulfurreducens, where both electron donor and TEA were scarce. The growth curve revealed lag, log, stationary, death, and survival phases using acetate as electron donor and either fumarate or iron(III) citrate as TEA. In survival phase, G. sulfurreducens persisted at a constant cell count for as long as 23 months without replenishment of growth medium. Geobacter sulfurreducens demonstrated an ability to acquire a growth advantage in stationary-phase phenotype (GASP), with strains derived from subpopulations from death- or survival phase being able to out-compete mid-log-phase populations when co-cultured. The molecular basis for GASP was not because of any detectable mutation in the rpoS gene (GSU1525) nor because of a mutation in a putative homolog to Escherichia coli lrp, GSU3370.  相似文献   

6.
7.
The present study is the first report on the ability of Geobacter sulfurreducens PCA to reduce Pd(II) and produce Pd(0) nano-catalyst, using acetate as electron donor at neutral pH (7.0?±?0.1) and 30 °C. The microbial production of Pd(0) nanoparticles (NPs) was greatly enhanced by the presence of the redox mediator, anthraquinone-2,6-disulfonate (AQDS) when compared with controls lacking AQDS and cell-free controls. A cell dry weight (CDW) concentration of 800 mg/L provided a larger surface area for Pd(0) NPs deposition than a CDW concentration of 400 mg/L. Sample analysis by transmission electron microscopy revealed the formation of extracellular Pd(0) NPs ranging from 5 to 15 nm and X-ray diffraction confirmed the Pd(0) nature of the nano-catalyst produced. The present findings open the possibility for a new alternative to synthesize Pd(0) nano-catalyst and the potential application for microbial metal recovery from metal-containing waste streams.  相似文献   

8.
Bacteria able to transfer electrons to conductive surfaces are of interest as catalysts in microbial fuel cells, as well as in bioprocessing, bioremediation, and corrosion. New procedures for immobilization of Geobacter sulfurreducens on graphite electrodes are described that allow routine, repeatable electrochemical analysis of cell-electrode interactions. Immediately after immobilizing G. sulfurreducens on electrodes, electrical current was obtained without addition of exogenous electron shuttles or electroactive polymers. Voltammetry and impedance analysis of pectin-immobilized bacteria transferring electrons to electrode surfaces could also be performed. Cyclic voltammetry of immobilized cells revealed voltage-dependent catalytic current similar to what is commonly observed with adsorbed enzymes, with catalytic waves centered at -0.15 V (vs. SHE). Electrodes maintained at +0.25 V (vs. SHE) initially produced 0.52 A/m(2) in the presence of acetate as the electron donor. Electrical Impedance Spectroscopy of coatings was also consistent with a catalytic mechanism, controlled by charge transfer rate. When electrodes were maintained at an oxidizing potential for 24 h, electron transfer to electrodes increased to 1.75 A/m(2). These observations of electron transfer by pectin-entrapped G. sulfurreducens appear to reflect native mechanisms used for respiration. The ability of washed G. sulfurreducens cells to immediately produce electrical current was consistent with the external surface of this bacterium possessing a pathway linking oxidative metabolism to extracellular electron transfer. This electrochemical activity of pectin-immobilized bacteria illustrates a strategy for preparation of catalytic electrodes and study of Geobacter under defined conditions.  相似文献   

9.
10.
11.
12.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

13.
Gs (Geobacter sulfurreducens) can transfer electrons to the exterior of its cells, a property that makes it a preferential candidate for the development of biotechnological applications. Its genome encodes over 100 cytochromes and, despite their abundance and key functional roles, to date there is no structural information for these proteins in solution. The trihaem cytochrome PpcA might have a crucial role in the conversion of electronic energy into protonmotive force, a fundamental step for ATP synthesis in the presence of extracellular electron acceptors. In the present study, 15N-labelled PpcA was produced and NMR spectroscopy was used to determine its solution structure in the fully reduced state, its backbone dynamics and the pH-dependent conformational changes. The structure obtained is well defined, with an average pairwise rmsd (root mean square deviation) of 0.25?? (1??=0.1?nm) for the backbone atoms and 0.99?? for all heavy atoms, and constitutes the first solution structure of a Gs cytochrome. The redox-Bohr centre responsible for controlling the electron/proton transfer was identified, as well as the putative interacting regions between PpcA and its redox partners. The solution structure of PpcA will constitute the foundation for studies aimed at mapping out in detail these interacting regions.  相似文献   

14.
Microorganisms respiring Fe(III) in the environment face a range of redox potentials of the prospective terminal ferric electron acceptors, because Fe(III) can be present in different minerals or organic complexes. We investigated the adaptation of Geobacter sulfurreducens to this range by exposing the bacteria to different redox potentials between the electron donor acetate and solid, extracellular anodes in a microbial fuel-cell set-up. Over a range of anode potentials from ?0.105 to +0.645 V versus standard hydrogen electrode, G. sulfurreducens produced identical amounts of biomass per electron respired. This indicated that the organism cannot utilize higher available energies for energy conservation to ATP, and confirmed recent studies. Either the high potentials cannot be used due to physiological limitations, or G. sulfurreducens decreased its metabolic efficiency, and less biomass per unit of energy was produced. In this case, G. sulfurreducens “wasted” energy at high-potential differences, most likely as heat to fuel growth kinetics.  相似文献   

15.
The iron(III) reductase activity of Geobacter sulfurreducens was determined with the electron donor NADH and the artificial electron donor horse heart cytochrome c. The highest reduction rates were obtained with Fe(III) complexed by nitrilotriacetic acid as an electron acceptor. Fractionation experiments indicated that no iron(III) reductase activity was present in the cytoplasm, that approximately one-third was found in the periplasmic fraction, and that two-thirds were associated with the membrane fraction. Sucrose gradient separation of the outer and cytoplasmic membranes showed that about 80% of the iron(III) reductase was present in the outer membrane. The iron(III) reductase could be solubilized from the membrane fraction with 0.5 M KCl showing that the iron(III) reductase was weakly bound to the membranes. In addition, solubilization of the iron(III) reductase from whole cells with 0.5 M KCl, without disruption of cells, indicated that the iron(III) reductase is a peripheral protein on the outside of the outer membrane. Redox difference spectra of KCl extracts showed the presence of c-type cytochromes which could be oxidized by ferrihydrite. Only one activity band was observed in native polyacrylamide gels stained for the iron(III) reductase activity. Excision of the active band from a preparative gel followed by extraction of the proteins and sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of high-molecular-mass, cytochrome-containing proteins in this iron(III) reductase activity band. From these experimental data it can be hypothesized that the iron(III) reductase of G. sulfurreducens is a peripheral outer membrane protein that might contain a c-type cytochrome.  相似文献   

16.
Previous model-based analysis of the metabolic network of Geobacter sulfurreducens suggested the existence of several redundant pathways. Here, we identified eight sets of redundant pathways that included redundancy for the assimilation of acetate, and for the conversion of pyruvate into acetyl-CoA. These equivalent pathways and two other sub-optimal pathways were studied using 5 single-gene deletion mutants in those pathways for the evaluation of the predictive capacity of the model. The growth phenotypes of these mutants were studied under 12 different conditions of electron donor and acceptor availability. The comparison of the model predictions with the resulting experimental phenotypes indicated that pyruvate ferredoxin oxidoreductase is the only activity able to convert pyruvate into acetyl-CoA. However, the results and the modeling showed that the two acetate activation pathways present are not only active, but needed due to the additional role of the acetyl-CoA transferase in the TCA cycle, probably reflecting the adaptation of these bacteria to acetate utilization. In other cases, the data reconciliation suggested additional capacity constraints that were confirmed with biochemical assays. The results demonstrate the need to experimentally verify the activity of key enzymes when developing in silico models of microbial physiology based on sequence-based reconstruction of metabolic networks.  相似文献   

17.
Geobacter bacteria efficiently oxidize acetate into electricity in bioelectrochemical systems, yet the range of fermentation products that support the growth of anode biofilms and electricity production has not been thoroughly investigated. Here, we show that Geobacter sulfurreducens oxidized formate and lactate with electrodes and Fe(III) as terminal electron acceptors, though with reduced efficiency compared to acetate. The structure of the formate and lactate biofilms increased in roughness, and the substratum coverage decreased, to alleviate the metabolic constraints derived from the assimilation of carbon from the substrates. Low levels of acetate promoted formate carbon assimilation and biofilm growth and increased the system's performance to levels comparable to those with acetate only. Lactate carbon assimilation also limited biofilm growth and led to the partial oxidization of lactate to acetate. However, lactate was fully oxidized in the presence of fumarate, which redirected carbon fluxes into the tricarboxylic acid (TCA) cycle, and by acetate-grown biofilms. These results expand the known ranges of electron donors for Geobacter-driven fuel cells and identify microbial constraints that can be targeted to develop better-performing strains and increase the performance of bioelectrochemical systems.  相似文献   

18.
Few studies have examined the molecular to micron-scale interactions between dissimilatory Fe(III)-reducing bacteria and poorly crystalline Fe(III) phases which are frequently the most bioavailable Fe(III) sources in the subsurface. Here we describe methods for analysing these interactions using a range of chemical and spectroscopic techniques. Glass slides were coated with a synthetic poorly crystalline Fe(III) phase and then incubated in the presence of the Fe(III)-reducing bacterium Geobacter sulfurreducens and a suitable growth medium. Growth on the Fe(III)-coating was observed via cell staining and environmental scanning electron microscopy while microbial Fe(III) reduction was quantified using a colorimetric assay. However, following microbial reduction, Fe(II) could not be detected on the slide surface using X-ray photoelectron spectroscopy. Fe(II)-coated control slides showed that the mineral surface was not re-oxidised during handling or analysis. Further experiments intended to demonstrate removal of Tc(VII) and Cr(VI) from solution via abiotic reduction mediated by biogenic Fe(II) on the slide surface resulted in far lower levels of Tc(VII) and Cr(VI) reduction than expected. These data may indicate that the electrons transferred from G. sulfurreducens to poorly crystalline Fe(III) involves the deeper mineral structure, so that Fe(II) phases are not detectable on the surface. The environmental implications of this hypothesis are discussed.  相似文献   

19.
The effect of different solvents and pollutants on the cellular fatty acid composition of three bacterial strains: Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans, representatives of diverse predominant anaerobic metabolisms was investigated. As the prevailing adaptive mechanism in cells of T. aromatica and G. sulfurreducens whose cellular fatty acids patterns were dominated by palmitic acid (C16:0) and palmitoleic acid (C16:1cis), the cells reacted by an increase in the degree of saturation of their membrane fatty acids when grown in the presence of sublethal concentrations of the chemicals. Next to palmitic acid C16:0, the fatty acid pattern of D. multivorans was dominated by anteiso-branched fatty acids which are characteristic for several sulfate-reducing bacteria. The cells responded to the solvents with an increase in the ratio of straight-chain saturated (C14:0, C16:0, C18:0) to anteiso-branched fatty acids (C15:0anteiso, C17:0anteiso, C17:1anteisoΔ9cis). The results show that anaerobic bacteria react with similar mechanisms like aerobic bacteria in order to adapt their membrane to toxic organic solvents. The observed adaptive modifications on the level of membrane fatty acid composition can only be carried out with de novo synthesis of the fatty acids which is strictly related to cell growth. As the growth rates of anaerobic bacteria are generally much lower than in the so far investigated aerobic bacteria, this adaptive response needs more time in anaerobic bacteria. This might be one explanation for the previously observed higher sensitivity of anaerobic bacteria when compared with aerobic ones.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号