首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During axonal transport, membranes travel down axons at a rapid rate, whereas the cytoskeletal elements travel in either of two slow components, SCa (with tubulin and neurofilament protein) and SCb (with actin). Clathrin, the highly ordered, structural coat protein of coated vesicles, has recently been shown to be able to interact in vitro with cytoskeletal proteins in addition to membranes. The present study examines whether clathrin travels preferentially with the membrane elements or the cytoskeletal elements when it is axonally transported. Guinea pig visual system was labeled with tritiated amino acids. Radioactive SDS-polyacrylamide gel electrophoresis profiles from the major components of transport were coelectrophoresed with clathrin. Only SCb had a band comigrating with clathrin. In addition, radioactive clathrin was purified from guinea pig brain containing only radioactive SCb polypeptides. Kinetic analysis of the putative clathrin band in SCb revealed that it travels entirely within the SCb wave. Thus we conclude that clathrin travels preferentially with the cytoskeletal proteins making up SCb, rather than with the membranes and membrane-associated proteins in the fast component.  相似文献   

2.
The organization of the axonal cytoskeleton was investigated by analyzing the solubility and transport profile of the major cytoskeletal proteins in motor axons of the rat sciatic nerve under normal and regenerating conditions. When extracted with the Triton-containing buffer at low temperature, 50% of tubulin and 30% of actin were recovered in the insoluble form resistant to further depolymerizing treatments. Most of this cold-insoluble form was transported in slow component a (SCa), the slower of the two subcomponents of slow axonal transport, whereas the cold-soluble form showed a biphasic distribution between SCa and SCb (slow component b). Changes in slow transport during regeneration were studied by injuring the nerve either prior to (experiment I) or after (experiment II) radioactive labeling. In experiment I where the transport of proteins synthesized in response to injury was examined, selective acceleration of SCb was detected together with an increase in the relative proportion of this component. In experiment II where the response of the preexisting cytoskeleton was examined, a shift from SCa to SCb of the cold-soluble form was observed. The differential distribution and response of the two forms of tubulin and actin suggest that the cold-soluble form may be more directly involved in axonal transport.  相似文献   

3.
Rises in intracellular calcium cause several events of physiological significance, including the regulated release of neuronal transmitters. In this study, the effects of divalent cations on the structural organization of cytomatrix in presynaptic terminals was examined. [35S]Methionine-radiolabeled guinea pig retinal ganglion cell cytomatrix proteins were axonally transported [in slow component b (SCb) of axonal transport] to the neuron terminals in the superior colliculus. When the peak of radiolabeled cytomatrix proteins reached the terminals, synaptosomes containing the radiolabeled cytomatrix proteins were prepared. Approximately 40% of each SCb protein was soluble after hypoosmotic lysis of the radiolabeled synaptosomes in the presence of divalent cation chelators. Lysis of synaptosomes in the presence of calcium ions over a range of concentrations, however, caused a dramatic decrease in solubility of the presynaptic SCb proteins. The cytoplasmic effects may result from a calcium-dependent condensation of cytoplasm around presynaptic terminal membrane systems. There are two major presynaptic SCb proteins (at 60 and 35 kDa), that exhibited exceptional behavior: they remained as soluble in the presence of calcium as under control conditions, suggesting that they were relatively unaffected by the mechanism causing the decrease in SCb protein solubility. Also examined were the effects of other alkaline earth and transition metal divalent cations on the presynaptic SCb proteins.  相似文献   

4.
Proteins which bind to actin filaments in macrophages were investigated by developing a procedure for the isolation of cytoplasmic gels. The gels were found to consist of five major constituents: actin, filamin and the 105-kDa, 70-kDa and 55-kDa components. Prolonged exposure of this macromolecular complex to high-ionic-strength buffer solubilized almost all the proteins, leaving behind the 55-kDa component along with a large amount of actin. Gel filtration of the solubilized extract led to the isolation of five constituents comprising actin, filamin, the 105-kDa and 70-kDa polypeptides, plus a molecular species which eluted at the position of a 280-kDa globular protein. The biochemical and immunological properties of the 105-kDa component were analogous to those of alpha-actinin. Although several attempts were made to correlate the three other constituents (280-kDa, 70-kDa and 55-kDa) with known cytoskeletal proteins, their identity remains to be established. alpha-Actinin, and the 280-kDa and 70-kDa species all exhibited the ability to co-sediment with F-actin and to pack actin filaments into bundles. The bundling activity of the 70-kDa protein was significantly decreased in the presence of micromolar concentrations of calcium, while the activity of the 280-kDa protein was not. Such a Ca2+-sensitive protein could be very important in controlling the local cytoplasmic viscosity.  相似文献   

5.
Calmodulin is a soluble, heat-stable protein which has been shown to modulate both membrane-bound and soluble enzymes, but relatively little has been known about the in vivo associations of calmodulin. A 17,000-dalton heat-stable protein was found to move in axonal transport in the guinea pig visual system with the proteins of slow component b (SCb; 2 mm/d) along with actin and the bulk of the soluble proteins of the axon. Co-electrophoresis of purified calmodulin and radioactively labeled SCb proteins in two dimensional polyacrylamide gel electrophoresis (PAGE) demonstrated the identity of the heat-stable SCb protein and calmodulin on the basis of pI, molecular weight, and anomalous migration in the presence of Ca2+-chelating agents. No proteins co-migrating with calmodulin in two-dimensional PAGE could be detected among the proteins of slow component a (SCa; 0.3 mm/d, microtubules and neurofilaments) or fast component (FC; 250 mm/d, membrane-associated proteins). We conclude that calmodulin is transported solely as part of the SCb complex of proteins, the axoplasmic matrix. Calmodulin moves in axonal transport independent of the movements of microtubules (SCa) and membranes (FC), which suggests that the interactions of calmodulin with these structures may represent a transient interaction between groups of proteins moving in axonal transport at different rates. Axonal transport has been shown to be an effective tool for the demonstration of long-term in vivo protein associations.  相似文献   

6.
Two distinct 68-kDa proteins, named 68K-I (pI 6.4) and 68K-II (pI 5.6), were solubilized from human placenta by treatment with 5 mM EGTA. On DE52 cellulose column chromatography at pH 7.4, 68K-I in the EGTA eluate was recovered in the unadsorbed fractions, whereas 68K-II was retained on the column and eluted with 0.2 M NaCl. The 68K-I protein was obtained in more than 95% purity by further hydroxylapatite and cation exchange chromatographies, while the 68K-II protein was purified further by gel filtration and hydroxylapatite chromatographies. Partial amino acid sequence data showed that 68K-I protein was a novel protein which shared the same sequences as lipocortin I and that 68K-II was the same as human p68/67-kDa calelectrin (Crompton, M. R., Owens, R. J., Totty, N. F., Moss, S. E., Waterfield, M.D., and Crumpton, M. J. (1988) EMBO J. 7, 21-27; Südhof, T. C., Slaughter, C. A., Leznicki, I., Barjon, P., and Reynolds, G. A. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 664-668). The two proteins bound to acidic phospholipids, phosphatidylserine, and/or phosphatidylinositol, but not to phosphatidylcholine, in the presence of micromolar levels of Ca2+. 68K-I bound to phosphatidylinositol preferentially to phosphatidylserine, whereas 68K-II bound only to phosphatidylserine. Both 68K-I and 68K-II inhibited phospholipase A2 activity, and the inhibition by 68K-II was detectable only in the presence of 100 mM KCl. 68K-I, but not 68K-II, was found to bind to F-actin in a Ca2+-dependent (1 mM) manner. Moreover 68K-I, but not 68K-II, was phosphorylated in vitro at tyrosine residues by fps kinase and by epidermal growth factor receptor/kinase, the latter reaction being dependent on Ca2+ and epidermal growth factor. Western blot analysis with affinity purified anti-68K-I and anti-68K-II antibodies showed that 68K-I was located in only certain tissues, especially human placenta, whereas 68K-II was present in many human and rat tissues.  相似文献   

7.
The axonal transport of the diverse isotubulins in the motor axons of the rat sciatic nerve was studied by two-dimensional polyacrylamide gel electrophoresis after intraspinal injection of [35S]methionine. 3 wk after injection, the nerve segments carrying the labeled axonal proteins of the slow components a (SCa) and b (SCb) of axonal transport were homogenized in a cytoskeleton-stabilizing buffer and two distinct fractions, cytoskeletal (pellet, insoluble) and soluble (supernatant), were obtained by centrifugation. About two-thirds of the transported-labeled tubulin moved with SCa, the remainder with SCb. In both waves, tubulin was found to be associated mainly with the cytoskeletal fraction. The same isoforms of tubulin were transported with SCa and SCb; however, the level of a neuron-specific beta-tubulin subcomponent, termed beta', composed of two related isotubulins beta'1 and beta'2, was significantly greater in SCb than in SCa, relative to the other tubulin isoforms. In addition, certain specific isotubulins were unequally distributed between the cytoskeletal and the soluble fractions. In SCa as well as in SCb, alpha'-isotubulins were completely soluble in the motor axons. By contrast, alpha' and beta'2-isotubulins, both posttranslationally modified isoforms, were always recovered in the cytoskeletal fraction and thus may represent isotubulins restricted to microtubule polymers. The different distribution of isotubulins suggests that a recruitment of tubulin isoforms, including specific posttranslational modifications of defined isoforms (such as, at least, phosphorylation of beta' and acetylation of alpha'), might be involved in the assembly of distinct subsets of axonal microtubules displaying differential properties of stability, velocity and perhaps of function.  相似文献   

8.
Slow components of axonal transport: two cytoskeletal networks   总被引:45,自引:30,他引:15       下载免费PDF全文
We have identified two slowly moving groups of axonally transported proteins in guinea pig retinal ganglion cell axons (4). The slowest group of proteins, designated slow component a (SCa), has a transport rate of 0.25 mm/d and consists of tubulin and neurofilament protein. The other slowly transported group of proteins, designated slow components b (SCb), has a transport rate of 2-3 mm/d and consists of many polypeptides, one of which is actin (4). Our analyses of the transport kinetics of the individual polypeptides of SCa and SCb indicate that (a) the polypeptides of SCa are transported coherently in the optic axons, (b) the polypeptides of SCb are also transported coherently but completely separately from the SCa polypeptides, and (c) the polypeptides of SCa differ completely from those comprising SCb. We relate these results to our general hypothesis that slow axonal transport represents the movements of structural complexes of proteins. Furthermore, it is proposed that SCa corresponds to the microtubule-neurofilament network, and that SCb represents the transport of the microfilament network together with the proteins complexed with microfilaments.  相似文献   

9.
The impairment of slow axonal transport of cytoskeletal proteins was studied in the sciatic nerves of streptozocin-diabetic rats. [35S]Methionine was unilaterally injected into the fourth lumbar ganglion and spinal cord, to label the sensory and motor axons, respectively, and then the polymerized elements of the cytoskeleton and the corresponding soluble proteins were analyzed separately. In addition, the pellet/supernatant ratio for tubulin and actin was also assessed. Our results indicate that the velocity of slow component a (SCa) of axonal transport, particularly that of neurofilaments, was strongly reduced (by 60%) in sensory axons. At the same time, a decreased pellet/supernatant ratio of tubulin, possibly owing to a depolymerization of stable microtubules, was also observed. The transport of slow component b (SCb) of axonal transport was also impaired, but the extent of this impairment could not be precisely evaluated. In contrast, motor axons showed little or no impairment of both SCa and SCb at the time studied, a result suggesting a delayed development of the neuropathy in motor axons.  相似文献   

10.
The tyrosine phosphatase SHP-1 functions as a negative regulator in hematopoietic cell development, proliferation, and receptor-mediated cellular activation. In Jurkat T cells, a major 68-kDa band and a minor 70-kDa band were immunoprecipitated by a monoclonal antibody against the SHP-1 protein-tyrosine phosphatase domain, while an antibody against the SHP-1 C-terminal 19 amino acids recognized only the 68-kDa SHP-1. The SDS-gel-purified 70-kDa protein was subjected to tryptic mapping and microsequencing, which was followed by molecular cloning. It revealed that the 70-kDa protein, termed SHP-1L, is a C-terminal alternatively spliced form of SHP-1. SHP-1L is 29 amino acids longer than SHP-1, and its 66 C-terminal amino acids are different from SHP-1. The C terminus of SHP-1L contains a proline-rich motif PVPGPPVLSP, a potential Src homology 3 domain-binding site. In contrast to SHP-1, tyrosine phosphorylation of SHP-1L is not detected upon stimulation in Jurkat T cells. This is apparently due to the lack of a single in vivo tyrosine phosphorylation site, which only exists in the C terminus of SHP-1 (Y564). COS cell-expressed glutathione S-transferase-SHP-1L can dephosphorylate tyrosine-phosphorylated ZAP70. At pH 7.4, SHP-1L was shown to be more active than SHP-1 in the dephosphorylation of ZAP70. At pH 5.4, SHP-1L and SHP-1 exhibited similar catalytic activity. It is likely that these two isoforms play different roles in the regulation of hematopoietic cell signal transduction.  相似文献   

11.
A 68-kDa protein that was tyrosine phosphorylated in the presence of Zn2+ and two proteins of 52 and 46 kDa that were tyrosine phosphorylated in the presence of Mg2+ were separated by column chromatography of a sheep platelet high speed supernatant on poly(Glu, Tyr)4:1 copolymer-Sepharose or tyrosine-Sepharose. Phosphorylation of the 68-kDa protein occurred maximally in the presence of Zn2+ while Mg2+ was ineffective. The kinases responsible for the Zn(2+)- and Mg(2+)-dependent tyrosine phosphorylation could also tyrosine phosphorylate poly(Glu, Tyr)4:1, histone, and angiotensin II with the same metal ion specificity. The two tyrosine kinase activities could be also distinguished by their differential response to polyamines and quercetin. Zn2+ stimulation did not appear to be due to the inhibition of a protein tyrosine phosphatase. Sephadex G-100 gel filtration of the fraction showing Zn(2+)-dependent tyrosine phosphorylation of the 68-kDa protein showed that the tyrosine kinase activity corresponded to a molecular mass of 68,000 and it showed a protein band of 68 kDa as detected by silver staining on sodium dodecyl sulfate-polyacrylamide gel.  相似文献   

12.
Anterograde slow and fast axonal transport was examined in rats intoxicated with 2,5-hexanedione (1 g/kg/week) for 8 weeks. Distribution of radioactivity was measured in 3-mm segments of the sciatic nerve after labelling of proteins with [35S]methionine or [3H]leucine and glycoproteins with [3H]fucose. The axonal transport of the anterograde slow components was examined after 25 (SCa) and 10 days (SCb), in motor and sensory nerves. SCa showed an increased transport velocity in motor (1.25 +/- 0.08 mm/day versus 1.01 +/- 0.05 mm/day) and in sensory nerves (1.21 +/- 0.13 mm/day versus 1.06 +/- 0.07 mm/day). The relative amount of labelled protein in the SCa wave in both fiber systems was also increased. SCb showed unchanged transport velocity in motor as well as in sensory nerves, whereas the amount of label was decreased in the motor system. Anterograde fast transport in motor nerves was examined after intervals of 3 and 5 h, whereas intervals of 2 and 4 h were used for sensory nerves. Velocities and amounts of labelled proteins of the anterograde fast component remained normal. We suggest that the increase in protein transport in SCa reflects axonal regeneration.  相似文献   

13.
We have observed that the approximately 90-kDa non-steroid-binding component of nonactivated glucocorticoid receptors purified from WEHI-7 mouse thymoma cells (which has been identified as the approximately 90-kDa heat shock protein) consistently migrates as a doublet during polyacrylamide gel electrophoresis under denaturing and reducing conditions. It has recently been reported that murine Meth A cells contain a tumor-specific transplantation antigen (TSTA) which is related or identical to the approximately 90-kDa heat shock protein (Ullrich, S.J., Robinson, E.A., Law, L.W., Willingham, M., and Appella, E. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 3121-3125). The observation that TSTA and the approximately 90-kDa heat shock protein isolated from these cells exists as two isoforms of similar molecular mass and charge has suggested to us that the doublet we observed is also due to the existence of two isoforms. However, unlike TSTA, which appears to contain the two isoforms in similar relative abundance, nonactivated glucocorticoid-receptor complexes seem to contain predominantly the lower molecular mass isoform. We have therefore conducted this study to determine whether TSTA and the approximately 90-kDa component of glucocorticoid receptors are indeed related, to establish whether the receptor preferentially binds one isoform of the approximately 90-kDa heat shock protein, and to investigate the stoichiometry of the nonactivated receptor complex. By comparing Meth A TSTA and the approximately 90-kDa component of the receptor in their reactions with the AC88 monoclonal antibody (specific for the approximately 90-kDa heat shock protein) and a polyclonal antibody directed against Meth A TSTA, we found that these two proteins are indistinguishable and probably identical. We then used the BuGR1 (directed against the steroid-binding subunit of glucocorticoid receptors) and AC88 monoclonal antibodies to purify, respectively, receptor-associated and free approximately 90-kDa heat shock protein from WEHI-7 cells grown for 48 h with [35S]methionine to metabolically label proteins to steady state. Following analysis of the proteins by polyacrylamide gel electrophoresis under denaturing and reducing conditions, the relative amounts of the two isoforms in each sample were determined from the 35S counts and the known methionine content of each isoform. We found that approximately three-quarters of both the receptor-associated and the free approximately 90-kDa heat shock protein is present as the lower molecular weight isoform, indicating no preferential binding of either isoform in the receptor. The long-term metabolic labeling approach has also enabled us to direc  相似文献   

14.
A diverse range of organisms respond to a variety of chemical, physiological and temperature-associated stresses by a rapid and transient increase in the synthesis of heat shock proteins. We immunoscreened a Uni-ZAP XR cDNA library, prepared from mRNA isolated from the Philippine strain of the Asian bloodfluke, Schistosoma japonicum, using hyperimmune rabbit sera raised against soluble adult S. japonicum proteins. Six 70-kDa heat shock protein-encoding cDNA clones were identified which, upon further analysis, were separated into two distinct protein groups within the 70-kDa heat shock protein family, the 70-kDa heat shock proteins and the immunoglobulin heavy chain-binding proteins/glucose-related proteins (Grp78). A representative from both groups was fully sequenced and compared with homologous sequences available in the GenBank/EMBL database as the first stage in determining the role of their expression products in the regulation of S. japonicum development, in the induction of immunity, and whether they act as molecular chaperones capable of modulating the correct folding or repair of proteins within this species of schistosome.  相似文献   

15.
Abstract: Axonal transport of microtubule-associated protein τ was studied in the motor fibers of the rat sciatic nerve 1–4 weeks after labeling of the spinal cord with [35S]methionine. As 60–70% of low molecular weight τ in this system was found to be insoluble in 1% Triton-containing buffer, labeled proteins in 6-mm consecutive nerve segments were first separated into Triton-soluble and insoluble fractions. Two-dimensional gel electrophoresis and immunoblotting with anti-tau antibody confirmed the presence of τ among labeled, transported proteins in both fractions. Isoform composition of labeled τ was similar to that of bulk axonal τ, the most acidic species with apparent molecular mass of 66 kDa being the major component. Transport profiles obtained by measuring radioactivities associated with this major isoform showed that soluble and insoluble τ were transported at different rates. Insoluble τ, which contained the majority of τ-associated radioactivity, was transported at 1.7 mm/day in slow component a (SCa), whereas soluble τ was transported faster, at 3 mm/day, corresponding to the rate of slow component b (SCb). Cotransport of insoluble τ with insoluble tubulin in SCa suggests its association with stable microtubules.  相似文献   

16.
A protein of Mr 43,000 (43-kDa protein) occurs on the postsynaptic membrane in close association with the acetylcholine receptor and comprises a major part of the postsynaptic cytoskeletal apparatus. We have devised an immunological assay for the 43-kDa protein to determine if it is confined to receptor-specific sites or if it, like general cytoskeletal proteins, has a more widespread tissue distribution. The assay utilizes monoclonal antibodies (Mab) to the 43-kDa protein that recognize two spatially separate epitopes. One Mab, attached to the well of a microtiter plate, binds the antigen which is then available to bind the biotin-derivatized second Mab. Bound second antibody is detected with either avidin-alkaline phosphatase or a more elaborate system using avidin, rabbit anti-avidin, and anti-rabbit IgG-alkaline phosphatase conjugate. A similar assay was developed for the receptor. The 43-kDa protein and the receptor are found in electric organ and, in 500-fold lower concentrations, in skeletal muscle but are not detectable in heart, liver, pancreas, or brain. In electric organ, the receptor and the 43-kDa protein are present in approximately equimolar concentrations. These results indicate that the 43-kDa protein is not a general membrane-associated cytoskeletal element and that its occurrence, and possibly also its function, is related to the acetylcholine receptor.  相似文献   

17.
Abstract: The effects of enzymatic dephosphorylation on neurofilament interaction with two calcium-binding proteins, calpain and calmodulin, were examined. Dephosphorylation increased the rate and extent of 200-kDa neurofilament protein proteolysis by calpain. In contrast, dephosphorylation of the 160-kDa neurofilament protein did not alter the rate or extent of calpain proteolysis. However, the calpain-induced breakdown products of native and dephosphorylated 160-kDa neurofilament protein were different. Dephosphorylation did not change the proteolytic rate, extent, or breakdown products of the 68-kDa neurofilament protein. Calmodulin binding to the purified individual 160- and 200-kDa neurofilament proteins was increased following dephosphorylation. These results suggest that phosphorylation may regulate the metabolism and function of neurofilaments by modulating interactions with the calcium-activated proteins calpain and calmodulin.  相似文献   

18.
A calcium-dependent protease fully active with 0.2 mM Ca2+ was found associated with the neurofilament-enriched cytoskeleton of the rat spinal cord prepared by the treatment with Triton X-100. The enzyme preferentially degrades the 160-kDa component of the neurofilament triplet. In addition, a soluble calcium-dependent protease activity was found in the supernatant from the spinal cord, which degraded a variety of cytoskeletal proteins including the neurofilament triplet, glial fibrillary acidic (GFA) protein, actin, tubulin, and a high molecular weight protein associated with microtubules. The possibility that the cytoskeleton-bound activity is an artefactual association of the soluble enzyme to the cytoskeleton seems to be negated on the basis of the following dissociation and reassociation experiments. The protease activity remained associated with the cytoskeleton in the physiological ionic strength, and was not completely dissociated from it until the KC1 concentration was raised to 0.6 M. When the 0.6 M KCl-extract was dialysed against salt-free buffer to remove KC1, and added back to the protease-free cytoskeletal pellet, proteolytic activity was partially restored. Full activity returned only when the extract and the protease-free cytoskeletal pellet were first combined in the presence of 0.6 M KC1, and then slowly reassociated by dialysis against salt-free buffer. Dissociated enzyme was rapidly inactivated at 37 degrees C in the presence of Ca2+. These results suggest the structural association of the protease with the cytoskeleton under the physiological condition.  相似文献   

19.
A method has been devised to study the influence of Ca2+ on the in vitro formation of actin gel networks. Under appropriate conditions low-Ca2+ cytosolic extracts (less than 1 nM) from macrophages rapidly formed a macromolecular complex composed of actin, filamin, alpha-actinin and two new proteins of 70 kDa and 55 kDa. [Pacaud, M. (1986) Eur. J. Biochem. 156, 521-530]. Increasing concentrations of free Ca2+ to 1-2 microM resulted in complete inhibition of the association of 70-kDa protein, a protein which associates actin filaments into parallel arrays. Concentrations of Ca2+ greater than 3 microM caused incorporation of two additional proteins, gelsolin and a 18-kDa polypeptide, with no change in either the actin or alpha-actinin content of the cytoskeletal structures. Use of a polyacrylamide gel overlay technique with 125I-calmodulin revealed that a high-Mr calmodulin-binding protein analogous to spectrin was also associated with these structures when micromolar Ca2+ was present. Similar assays with 45CaCl2 indicated that the 70-kDa protein binds Ca2+ with high affinity. It is thus suggested that Ca2+ might regulate the dynamic assembly of microfilaments through several target proteins, gelsolin, the 70-kDa protein and calmodulin.  相似文献   

20.
We have previously shown that a nerve conditioning lesion (CL) made 2 weeks prior to amputation results in an earlier onset of limb regeneration in newts. Studies in fish and mammals demonstrate that when a CL precedes a nerve testing lesion, slow component b (SCb) of axonal transport is increased compared to axons that had not received a CL. We wanted to know whether the earlier initiation of limb regeneration after a CL was associated with an increase in SCb transport. The transport of [35S]methionine labeled SCb proteins was measured by using SDS-PAGE, fluorography, and scintillation counting. The rate of transport and quantity of SCb proteins was determined at 7, 14, 21, and 28 days after injection of [35S]methionine into the motor columns of normal; single lesioned (i.e., transection axotomy, amputation axotomy, or sham CL followed by amputation); and double-lesioned limb axons (i.e., nerve transection CL followed 2 weeks later by amputation axotomy). The rate of SCb transport in axons of unamputated newt limbs was 0.19 mm/day. There was an increase in the amount of labeled SCb proteins transported in axons regenerating as the result of a single lesion but no acceleration in the rate of SCb transport, which was 0.21 mm/day in axons that received a sham CL followed by limb amputation. The rate of SCb transport doubled (0.40 mm/day) and the amount of labeled SCb proteins being transported was increased when amputation was preceded by a CL. This study demonstrates that the earlier onset of limb regrowth, seen when amputation follows a CL, is associated with an increased transport of SCb proteins. This suggests that limb regeneration is, in part, regulated by axonal regrowth. We propose that the blastema requires a minimum quantity of innervation before progressing to the next stage of limb regeneration, and that the transport of SCb proteins determines when that quantity will be available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号