首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Lumen formation is essential for mammary morphogenesis and requires proliferative suppression and apoptotic clearance of the inner cells within developing acini. Previously, we showed that knockdown of p53 or p73 leads to aberrant mammary acinus formation accompanied with decreased expression of p53 family targets PUMA and p21, suggesting that PUMA, an inducer of apoptosis, and p21, an inducer of cell cycle arrest, directly regulate mammary morphogenesis. To address this, we generated multiple MCF10A cell lines in which PUMA, p21, or both were stably knocked down. We found that morphogenesis of MCF10A cells was altered modestly by knockdown of either PUMA or p21 alone but markedly by knockdown of both PUMA and p21. Moreover, we found that knockdown of PUMA and p21 leads to loss of E-cadherin expression along with increased expression of epithelial-to-mesenchymal transition (EMT) markers. Interestingly, we found that knockdown of ΔNp73, which antagonizes the ability of wide-type p53 and TA isoform of p73 to regulate PUMA and p21, mitigates the abnormal morphogenesis and EMT induced by knockdown of PUMA or p21. Together, our data suggest that PUMA cooperates with p21 to regulate normal acinus formation and EMT.  相似文献   

4.
5.
MAPK signaling is required for retinoic acid (RA)-triggered G(0) cell cycle arrest and cell differentiation, but the mechanism is not well defined. In this study, RA is found to cause MAPK activation with sustained association of RAF to MEK or ERK, leading to a MAPK-dependent accumulation of p21(Waf1/Cip1) and binding to CDK2 blocking G(1)/S transition. BLR1, a chemokine receptor, was found to function as a critical component of RA-triggered MAPK signaling. Unlike wild-type parental cells, RA-treated BLR1 knock-out cells failed to show RAF and consequential MEK and ERK phosphorylation, failed to accumulate CDK inhibitors that control G(1)/S transition, and failed to differentiate and arrest in response to RA, whereas ectopically overexpressing BLR1 enhanced MAPK signaling and caused accelerated RA-induced differentiation and arrest. Ectopic overexpression of RAF enhanced BLR1 expression in response to RA, whereas inhibition of RAF or MEK by inhibitors or knockdown of RAF by short interfering RNA diminished RA-induced BLR1 expression and attenuated differentiation and growth arrest. Ectopic expression of the RAF CR3, the catalytically active domain, in the BLR1 knock-out restored RA-induced MAPK activation and the ability to differentiate and arrest, indicating that RAF effects MAPK signaling by BLR1 to propel differentiation/arrest. Taken together, RA induces cell differentiation and growth arrest through activation of a novel MAPK pathway with BLR1 as a critical component in a positive feedback mechanism that may contribute to the prolonged MAPK signaling propelling RA-induced cell cycle arrest and differentiation.  相似文献   

6.
The mechanism of TNF-α-induced insulin resistance has remained unresolved with evidence for down-regulation of insulin effector targets effects or blockade of proximal as well as distal insulin signaling events depending upon the dose, time, and cell type examined. To address this issue we examined the acute actions of TNF-α in differentiated 3T3L1 adipocytes. Acute (5-15 min) treatment with 20 ng/ml (~0.8 nm) TNF-α had no significant effect on IRS1-associated phosphatidylinositol 3-kinase. In contrast, TNF-α increased insulin-stimulated cyclin-dependent kinase-5 (CDK5) phosphorylation on tyrosine residue 15 through an Erk-dependent pathway and up-regulated the expression of the CDK5 regulator protein p35. In parallel, TNF-α stimulation also resulted in the phosphorylation and GTP loading of the Rho family GTP-binding protein, TC10α. TNF-α enhanced the depolymerization of cortical F-actin and inhibited insulin-stimulated glucose transporter-4 (GLUT4) translocation. Treatment with the MEK inhibitor, PD98059, blocked the TNF-α-induced increase in CDK5 phosphorylation and the depolymerization of cortical F-actin. Conversely, siRNA-mediated knockdown of CDK5 or treatment with the MEK inhibitor restored the impaired insulin-stimulated GLUT4 translocation induced by TNF-α. Furthermore, siRNA-mediated knockdown of p44/42 Erk also rescued the TNF-α inhibition of insulin-stimulated GLUT4 translocation. Together, these data demonstrate that TNF-α-mediated insulin resistance of glucose uptake can occur through a MEK/Erk-dependent activation of CDK5.  相似文献   

7.
8.
9.
We investigated the cytoprotective effect of desipramine (DMI) during in vitro simulated ischemia/reperfusion (I/R) of rat hepatocytes. Primary hepatocytes isolated from male Sprague-Dawley rats were subjected to 4 h of anoxia at pH 6.2 followed by normoxia at pH 7.4 for 2 h to simulate ischemia and reperfusion, respectively. During simulated reperfusion, some hepatocytes were reoxygenated using media containing 5 μM DMI. Necrotic cell death and the onset of mitochondrial permeability transition (MPT) were assessed using fluorometry and confocal microscopy. Changes in autophagic flux and autophagy-related proteins (ATGs) were analyzed by immunoblotting. DMI was shown to substantially delay MPT onset and suppress I/R related cell damage. Mechanistically, DMI treatment during reperfusion increased the expression level of the microtubule-associated protein 1A/1B-light chain 3 (LC3) processing enzymes, ATG4B and ATG7. Genetic knockdown of ATG4B abolished the cytoprotective effect of DMI. Together, these results indicate that DMI is a unique agent which enhances LC3 processing in an ATG4B-dependent way.  相似文献   

10.
Statins inhibit the proximal steps of cholesterol biosynthesis, and are linked to health benefits in various conditions, including cancer and lung disease. We have previously investigated apoptotic pathways triggered by statins in airway mesenchymal cells, and identified reduced prenylation of small GTPases as a primary effector mechanism leading to p53-mediated cell death. Here, we extend our studies of statin-induced cell death by assessing endpoints of both apoptosis and autophagy, and investigating their interplay and coincident regulation. Using primary cultured human airway smooth muscle (HASM) and human airway fibroblasts (HAF), autophagy, and autophagosome formation and flux were assessed by transmission electron microscopy, cytochemistry (lysosome number and co-localization with LC3) and immunoblotting (LC3 lipidation and Atg12-5 complex formation). Chemical inhibition of autophagy increased simvastatin-induced caspase activation and cell death. Similarly, Atg5 silencing with shRNA, thus preventing Atg5-12 complex formation, increased pro-apoptotic effects of simvastatin. Simvastatin concomitantly increased p53-dependent expression of p53 up-regulated modulator of apoptosis (PUMA), NOXA, and damage-regulated autophagy modulator (DRAM). Notably both mevalonate cascade inhibition-induced autophagy and apoptosis were p53 dependent: simvastatin increased nuclear p53 accumulation, and both cyclic pifithrin-α and p53 shRNAi partially inhibited NOXA, PUMA expression and caspase-3/7 cleavage (apoptosis) and DRAM expression, Atg5-12 complex formation, LC3 lipidation, and autophagosome formation (autophagy). Furthermore, the autophagy response is induced rapidly, significantly delaying apoptosis, suggesting the existence of a temporally coordinated p53 regulation network. These findings are relevant for the development of statin-based therapeutic approaches in obstructive airway disease.  相似文献   

11.
Melanoma cells expressing mutant B-RAF V600E are susceptible to treatment with the combination of a B-RAF inhibitor and a MEK1/2 inhibitor. We investigated the impact of the ERBB family and MAP4K inhibitor neratinib on the biology of PDX isolates of cutaneous melanoma expressing B-RAF V600E. Neratinib synergized with HDAC inhibitors to kill melanoma cells at their physiologic concentrations. Neratinib activated ATM, AMPK, ULK1, and PERK and inactivated mTORC1/2, ERK1/2, eIF2 alpha, and STAT3. Neratinib increased expression of Beclin1, ATG5, CD95, and FAS-L and decreased levels of multiple toxic BH3 domain proteins, MCL1, BCL-XL, FLIP-s, and ERBB1/2/4. ATG13 S318 phosphorylation and autophagosome formation was dependent upon ATM, and activation of ATM was dependent on reactive oxygen species. Reduced expression of ERBB1/2/4 required autophagosome formation and reduced MCL1/BCL-XL levels required eIF2 alpha phosphorylation. Maximal levels of eIF2 alpha phosphorylation required signaling by ATM-AMPK and autophagosome formation. Knock down of eIF2 alpha, CD95, FAS-L, Beclin1, and ATG5 or over-expression of FLIP-s significantly reduced killing. Combined knock down of Beclin1 and CD95 abolished cell death. Our data demonstrate that PDX melanoma cells expressing B-RAF V600E are susceptible to being killed by neratinib and more so when combined with HDACi.  相似文献   

12.
13.
Sorafenib is a multikinase inhibitor that induces apoptosis in human leukemia and other malignant cells. Recently, we demonstrated that sorafenib diminishes Mcl-1 protein expression by inhibiting translation through a MEK1/2-ERK1/2 signaling-independent mechanism and that this phenomenon plays a key functional role in sorafenib-mediated lethality. Here, we report that inducible expression of constitutively active MEK1 fails to protect cells from sorafenib-mediated lethality, indicating that sorafenib-induced cell death is unrelated to MEK1/2-ERK1/2 pathway inactivation. Notably, treatment with sorafenib induced endoplasmic reticulum (ER) stress in human leukemia cells (U937) manifested by immediate cytosolic-calcium mobilization, GADD153 and GADD34 protein induction, PKR-like ER kinase (PERK) and eukaryotic initiation factor 2alpha (eIF2alpha) phosphorylation, XBP1 splicing, and a general reduction in protein synthesis as assessed by [35S]methionine incorporation. These events were accompanied by pronounced generation of reactive oxygen species through a mechanism dependent upon cytosolic-calcium mobilization and a significant decline in GRP78/Bip protein levels. Interestingly, enforced expression of IRE1alpha markedly reduced sorafenib-mediated apoptosis, whereas knockdown of IRE1alpha or XBP1, disruption of PERK activity, or inhibition of eIF2alpha phosphorylation enhanced sorafenib-mediated lethality. Finally, downregulation of caspase-2 or caspase-4 by small interfering RNA significantly diminished apoptosis induced by sorafenib. Together, these findings demonstrate that ER stress represents a central component of a MEK1/2-ERK1/2-independent cell death program triggered by sorafenib.  相似文献   

14.
The cyclin-dependent kinase (CDK) inhibitor p21CDKN1A is known to induce cell cycle arrest by inhibiting CDK activity and by interfering with DNA replication through binding to proliferating cell nuclear antigen. Although the molecular mechanisms have been elucidated, the temporal dynamics, as well as the intracellular sites of the activity of p21 bound to cyclin/CDK complexes during cell cycle arrest, have not been fully investigated. In this study we have induced the expression of p21CDKN1A fused to green fluorescent protein (GFP) in HeLa cells, in order to visualize the intracellular localization of the inhibitor during the cell cycle arrest. We show that p21-GFP is preferentially expressed in association with cyclin E in cells arrested in G1 phase, and with cyclin A more than with cyclin B1 in cells arrested in the G2/M compartment. In addition, we show for the first time that p21-GFP colocalizes with cyclin E in the nucleolus of HeLa cells during the G1 phase arrest.O. Cazzalini and P. Perucca contributed equally to this work  相似文献   

15.
16.
Although the BCL-2 family constitutes a crucial checkpoint in apoptosis, the intricate interplay between these family members remains elusive. Here, we demonstrate that BIM and PUMA, similar to truncated BID (tBID), directly activate BAX-BAK to release cytochrome c. Conversely, anti-apoptotic BCL-2-BCL-X(L)-MCL-1 sequesters these 'activator' BH3-only molecules into stable complexes, thus preventing the activation of BAX-BAK. Extensive mutagenesis of BAX-BAK indicates that their activity is not kept in check by BCL-2-BCL-X(L)-MCL-1. Anti-apoptotic BCL-2 members are differentially inactivated by the remaining 'inactivator' BH3-only molecules including BAD, NOXA, BMF, BIK/BLK and HRK/DP5. BAD displaces tBID, BIM or PUMA from BCL-2-BCL-X(L) to activate BAX-BAK, whereas NOXA specifically antagonizes MCL-1. Coexpression of BAD and NOXA killed wild-type but not Bax, Bak doubly deficient cells or Puma deficient cells with Bim knockdown, indicating that activator BH3-only molecules function downstream of inactivator BH3-only molecules to activate BAX-BAK. Our data establish a hierarchical regulation of mitochondrion-dependent apoptosis by various BCL-2 subfamilies.  相似文献   

17.
18.
19.
Melanoma differentiation associated gene-7/interleukin 24 (mda-7/IL-24) is a novel cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The studies by Yacoub et al. (Mol Cancer Ther 2008; 7:314-29) further defines the mechanism(s) by which a GST-MDA-7 fusion protein inhibits cell survival of primary human glioma cells in vitro. GST-MDA-7 killed glioma cells with diverse genetic characteristics that were dependent on activation of JNK1-3 with subsequent activation of BAX and the induction of mitochondrial dysfunction. Activation of JNK1-3 was dependent upon protein kinase R-like endoplasmic reticulum kinase (PERK) and GST-MDA-7 lethality was suppressed in PERK(-/-) cells. GST-MDA-7 caused PERK-dependent vacuolization of LC3-expressing endosomes whose formation was suppressed by incubation with 3-methyladenine, expression of HSP70 or of BiP/GRP78, or by knockdown of ATG5 or Beclin 1 expression, but not by inhibition of the JNK1-3 pathway. Knockdown of ATG5 or Beclin 1 expression or overexpression of HSP70 reduced GST-MDA-7 lethality. Our data demonstrate that GST-MDA-7 induces an ER stress response that, via the induction of autophagy, is causal in the activation of pro-apoptotic pathways that converge on the mitochondrion and ultimately culminate in decreased glioma cell survival.  相似文献   

20.
Previous studies have argued that enhanced activity of the epidermal growth factor receptor (EGFR) and the mitogen-activated protein kinase (MAPK) pathway can promote tumor cell survival in response to cytotoxic insults. In this study, we examined the impact of MAPK signaling on the survival of primary hepatocytes exposed to low concentrations of deoxycholic acid (DCA, 50 microM). Treatment of hepatocytes with DCA caused MAPK activation, which was dependent upon ligand independent activation of EGFR, and downstream signaling through Ras and PI(3) kinase. Neither inhibition of MAPK signaling alone by MEK1/2 inhibitors, nor exposure to DCA alone, enhanced basal hepatocyte apoptosis, whereas inhibition of DCA-induced MAPK activation caused approximately 25% apoptosis within 6 h. Similar data were also obtained when either dominant negative EGFR-CD533 or dominant negative Ras N17 were used to block MAPK activation. DCA-induced apoptosis correlated with sequential cleavage of procaspase 8, BID, procaspase 9, and procaspase 3. Inhibition of MAPK potentiated bile acid-induced apoptosis in hepatocytes with mutant FAS-ligand, but did not enhance in hepatocytes that were null for FAS receptor expression. These data argues that DCA is causing ligand independent activation of the FAS receptor to stimulate an apoptotic response, which is counteracted by enhanced ligand-independent EGFR/MAPK signaling. In agreement with FAS-mediated cell killing, inhibition of caspase function with the use of dominant negative Fas-associated protein with death domain, a caspase 8 inhibitor (Ile-Glu-Thr-Asp-p-nitroanilide [IETD]) or dominant negative procaspase 8 blocked the potentiation of bile acid-induced apoptosis. Inhibition of bile acid-induced MAPK signaling enhanced the cleavage of BID and release of cytochrome c from mitochondria, which were all blocked by IETD. Despite activation of caspase 8, expression of dominant negative procaspase 9 blocked procaspase 3 cleavage and the potentiation of DCA-induced apoptosis. Treatment of hepatocytes with DCA transiently increased expression of the caspase 8 inhibitor proteins c-FLIP-(S) and c-FLIP-(L) that were reduced by inhibition of MAPK or PI(3) kinase. Constitutive overexpression of c-FLIP-(s) abolished the potentiation of bile acid-induced apoptosis. Collectively, our data argue that loss of DCA-induced EGFR/Ras/MAPK pathway function potentiates DCA-stimulated FAS-induced hepatocyte cell death via a reduction in the expression of c-FLIP isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号