首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
##正## Poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) composite hydrogel specimens were prepared with 15% PVA and 1%,2%, 3%, 4% and 5% HA by repeated freezing-thawing. The tests of static and dynamic mechanical properties were carried out todiscuss the influence of different contents of HA and freezing-thawing cycles on the mechanical properties of PVA/HA compositehydrogel. The results of static mechanical tests showed that the PVA/HA composite hydrogel with 3% HA and ninefreezing-thawing cycles had excellent stress relaxation properties, higher relaxation ratio, lower stress equilibrium value andpresented better properties of creep and recovery. The results of dynamic mechanical test showed that the PVA/HA compositehydrogel with nine freezing-thawing cycles had higher storage modulus and loss modulus, so was the PVA/HA compositehydrogel with 3% HA.  相似文献   

2.
PVA-HA-Silk composite hydrogel was synthesized with polyvinyl alcohol (PVA),nano-hydroxyapatite (HA) and natural silk by using the method of repeated freezing and thawing.A series of tests were performed to study water content,stress relaxation behavior,elastic modulus,and creep characteristics of PVA-HA-Silk composite hydrogel.Orthogonal experimental design method was used to analyze the influence degree of PVA,HA and silk (three kinds of raw materials) on mechanical properties and water content of the PVA-HA-Silk composite hydrogel to select the best material ratio according to their overall performance.The results demonstrate that the mass percentage of PVA has the greatest impact on the water content,followed by HA and silk.Compression stress-strain variation of PVA-HA-Silk composite hydrogel presents a nonlinear relationship,which proves that it is a typical viscoelastic material.Comparing the mechanical properties of 16 formulas,the formula of PVA-HA-silk composite hydrogel with mass percentage of PVA 15%,HA 2.0% and silk 1.0% is the best.  相似文献   

3.
目的:考察PVA/葡聚糖/羧甲基纤维素钠复合水凝胶外用膜剂的制备方法,并与纯PVA水凝胶贴膜进行对比,考察本膜剂在物理性能和药物体系的体外释放行为上所具备的优越性。方法:利用冷冻-解冻物理交联方法制备水凝胶装载胰岛素模型药物的外用膜剂,通过万能拉力机和差示扫描量热法考察膜剂的物理性能,利用高效液色谱法考察该膜剂的体外释放行为。结果:PVA复合水凝胶外用贴膜相较于纯PVA水凝胶贴膜的韧性减小、刚性增加,体外释放变好。结论:通过将具有材料友好性的PVA和多糖葡聚糖、羧甲基纤维素钠合并使用制备胰岛素复合水凝胶贴膜,既能保证贴膜具有良好的物理性能,又具有较好地释放行为,优于目前文献报道的纯PVA水凝胶贴膜性能,有望继续研究优化性能。  相似文献   

4.
In order to utilize polyvinyl alcohol (PVA) as a gel matrix for the immobilization of microorganisms, PVA was subjected to iterative freezing-thawing. The effects of the procedure on the mechanical characteristics of the PVA hydrogel and the stability of the immobilized microorganisms were investigated. PVA showed rubber-like elasticity after iterative freezing-thawing. Gel strength increased with the iteration number of freezing-thawing until seven iterations. Although the activities of both the free and immobilized cells decreased during the iteration of freezing-thawing, addition of cryoprotectants such as glycerol and skim milk was effective for preventing the decrease in activity.  相似文献   

5.
A new methodology is developed to conjugate hyaluronic acid (HA) hydrogel with novel nano-fibrous architectures via non-covalent assembly that specifically allows for targeted adipose-derived stem cells (ASCs) differentiation and soft tissue engineering. The assembly of non-covalently associated hydrogel network produced via the interaction of a low molecular weight heparin (LMWH) modified HA derivative and heparin interacting protein (HIP). The multifunctional star poly(ethylene glycol) (PEG) and HIP copolymer has the capability to mediate the non-covalent assembly of nano-fibrous HA hydrogel networks via affinity interactions with LMWH. The effect of the HIP mediation on in vitro gelation, rheological characteristics, degradation, equilibrium swelling, adipose-derived stem cells (ASCs) proliferation and differentiation of nano-fibrous hydrogel is examined. The results suggest the potential utility of this unique design of the bioactive nano-fibrous HA hydrogel in directing the differentiation of ASCs and adipogenesis in ECM-mimetic scaffolds in vitro. These studies demonstrate that this nano-fibrous HA hydrogel can render the formulation of a therapeutically effective platform for in vitro adipogenesis applications.  相似文献   

6.
Hydrogels that undergo deformation upon appropriate changes in pH or temperature have considerable promise as drug delivery vehicles. Drug uptake in swelling and nonswelling cylindrical hydrogels and drug release from these into a target fluid are investigated here. A mathematical model for hydrogel-solution composite, a composite of a distributed parameter system (cylindrical hydrogel) and a lumped parameter system (surrounding solution), is developed. The polymer network displacement in a swelling/deswelling hydrogel is described by a stress diffusion coupling model. The analytical solution for network displacement is used to predict solvent intake by swelling hydrogels, solvent efflux from deswelling hydrogels, and changes in pressure, porosity, and effective drug diffusivity. These in turn influence drug uptake during and after hydrogel swelling and drug release from hydrogel during and after deswelling. Numerical results illustrate benefits of hydrogel swelling for drug loading and merits of different modes of drug release. Drug uptake and drug release by temperature-responsive hydrogels are compared with those by hydrogels not subject to deformation.  相似文献   

7.
Hydrogel has been extensively studied as an articular cartilage repair and replacement material. PVA-HA-Silk composite hydrogel was prepared by freezing-thawing method in this paper. Mechanical properties were determined by experiments and the friction coefficient of PVA-HA-Silk composite hydrogel against steel ball was verified using micro-tribometer. Finite Element Method (FEM) was used to study the lubrication mechanism of PVA-HA-Silk composite hydrogel and the relation between the interstitial fluid load support and the start-up friction resistance. The results show that the elastic modulus and the permeability are 2.07 MPa and 10^-15m^4N^-1s^-1, respectively, and the start-up friction coefficients of PVA-HA-Silk composite hydrogel are in the range of 0.154).2 at different contact loads, contact time and sliding speeds. The start-up friction resistance of PVA-HA-Silk composite hydrogel increases with the contact load and contact time. With the increase in sliding speed, the start-up friction resistance of PVA-HA-Silk composite hydrogel decreases. There is an inverse relation between the start-up friction resistance and the interstitial fluid load support. The change of fluid flow with the increase in sliding displacement has an important effect on the interstitial fluid load support and friction resistance. The interstitial fluid load support decreases with the increase in contact load and contact time, while the interstitial fluid load support reinforces with the increase in sliding speed. Moreover, PVA-HA-Silk composite hydrogel has mechanical properties of recovery and self-lubricating.  相似文献   

8.
A series of excellent hydrogels were prepared from poly(vinyl alcohol) (PVA) and carboxymethylated chitosan (CM-chitosan) with electron beam irradiation (EB) at room temperature. Electron spectroscopy analysis of the blend hydrogels revealed that good miscibility was sustained between CM-chitosan and PVA. The properties of the prepared hydrogels, such as the mechanical properties, gel fraction and swelling behavior were investigated. The mechanical properties and equilibrium degree of swelling improved obviously after adding CM-chitosan into PVA hydrogels. The gel fraction determined gravimetrically showed that a part of CM-chitosan was immobilized onto PVA hydrogel. The further analyses of FTIR and DSC spectra of the prepared gels after extracting sol manifested that there was a grafting interaction between PVA and CM-chitosan molecules under irradiation. The antibacterial activity of the hydrogels against Escherichia coli was also measured via optical density method. The blend hydrogels exhibited satisfying antibacterial activity against E. coli, even when the CM-chitosan concentration was only 3 wt%.  相似文献   

9.
Choh SY  Cross D  Wang C 《Biomacromolecules》2011,12(4):1126-1136
Injectable hyaluronic acid (HA) hydrogels cross-linked via disulfide bond are synthesized using a thiol-disulfide exchange reaction. The production of small-molecule reaction product, pyridine-2-thione, allows the hydrogel formation process to be monitored quantitatively in real-time by UV spectroscopy. Rheological tests show that the hydrogels formed within minutes at 37 °C. Mechanical properties and equilibrium swelling degree of the hydrogels can be controlled by varying the ratio of HA pyridyl disulfide and macro-cross-linker PEG-dithiol. Degradation of the hydrogels was achieved both enzymatically and chemically by disulfide reduction with distinctly different kinetics and profiles. In the presence of hyaluronidase, hydrogel mass loss over time was linear and the degradation was faster at higher enzyme concentrations, suggesting surface-limited degradation. The kinetics of hydrogel erosion by glutathione was not linear, nor did the erosion rate correlate linearly with glutathione concentration, suggesting a bulk erosion mechanism. A cysteine-containing chemokine, stromal cell-derived factor 1α, was successfully encapsulated in the hydrogel and released in vitro without chemical alteration. Several different cell types, including fibroblasts, endothelial cells, and mesenchymal stem cells, were successfully encapsulated in the hydrogels with high cell viability during and after the encapsulation process. Substantial cell viability in the hydrogels was maintained up to 7 days in culture despite the lack of adhesion between the HA matrix and the cells. The facile synthesis of disulfide-cross-linked, dual-responsive degradable HA hydrogels may enable further development of bioactive matrices potentially suitable for tissue engineering and drug delivery applications.  相似文献   

10.
Hyaluronic acid (HA) hydrogel beads were prepared by photopolymerization of methacrylated HA and N-vinylpyrrolidone using alginate as a temporal spherical mold. Various fabrication conditions for preparing the hydrogel beads, such as the concentration of methacrylated HA and UV irradiation time, were optimized to control swelling properties and enzymatic degradability. A new concept for cell encapsulation is proposed in this paper. Viable cells were directly injected into the hydrogel beads using a microinjection technique. When bovine articular chondrocytes were injected into HA hydrogel beads and cultivated for 1 week, the cells could proliferate well within the HA beads. HA hydrogel beads could be potentially used as injectable cell delivery vehicles for regenerating tissue defects.  相似文献   

11.
王磊  刘华杰  吴清凤 《菌物学报》2014,33(3):680-689
冻融交替是我国北方常见气候现象,其对地衣光合作用的影响尚不清楚。研究了采自雾灵山的卷叶点黄梅Flavopunctelia soredica和平盘软地卷Peltigera elisabethae的光合活性(以净光合速率表示,net photosynthetic rate,Pn)对冻融处理的响应及其与地衣体含水量(干冻组:含水量<20%干重;湿冻组:含水量>200%)和物种的关系。结果显示卷叶点黄梅的干冻组Pn经5次冻融后下降至对照的21%,湿冻组经3次冻融后下降至负值,平盘软地卷的干冻组和湿冻组在5次冻融后Pn均为负值;相对净光合速率(relative net photosynthetic rate,Rpn)与冻融次数的线性回归分析表明,卷叶点黄梅湿冻组的斜率绝对值(58.06)>平盘软地卷湿冻组(41.01)>平盘软地卷干冻组(32.27)>卷叶点黄梅干冻组(11.44)。结果表明冻融胁迫可显著抑制两种地衣的光合活性,这种抑制作用具有物种差异且和地衣体内水分含量有关:水分含量的增高将增强冻融胁迫对地衣光合活性的抑制作用;干燥状态下,卷叶点黄梅的低温耐性远高于平盘软地卷,但在湿润状态下则低于后者。两种地衣对冻融循环的光合响应的物种差异与其微生境气候有关:生长于较干燥开阔地带的卷叶点黄梅与生于阴湿生境中的平盘软地卷相比,可能已形成了更强的低温干燥适应能力,其低温湿润适应能力则较弱。全球气候变化可能会通过冻融事件的时空格局的改变而对地衣的光合作用和分布造成负面影响。  相似文献   

12.
Temperature and pH-responsive hydrogels based on chitosan grafted with poly acrylic acid (PAAc), poly hydroxy propyl methacrylate (PHPMA), poly (vinyl alcohol) (PVA) and gelatin were prepared for controlled drug delivery. These stimuli-responsive hydrogels were synthesized by gamma irradiation technique. The degree of gelation was over 90% and increased as chitosan, AAc and PVA content increased, while the degree of gelation decrease with the increase of gelatin content. The equilibrium swelling studies of hydrogels prepared in various conditions were carried out in an aqueous solution, and the pH sensitivity in the range of 2–9 was investigated. An increase of swelling degree with an increase in the pH was noticed and showed the highest value at pH 9. Also antibiotic drug Oxttetracycline was loaded into the hydrogels and the release studies were carried out at different pH and temperature. The in vitro release profiles of the drug showed that, the release of the drug increased as the time, temperature and pH increased and reached to maximum after 48 h at pH 9. The prepared hydrogels were characterized by using SEM, FTIR, and DSC.  相似文献   

13.
Bacterial infected environments and resulting bacterial infections have been threatening the human health globally. Due to increased bacterial resistance caused by improper and excessive use of antibiotics, antibacterial biomaterials are being developed as alternatives to antibiotics in some cases. Herein, an advanced multifunctional hydrogel with excellent antibacterial properties, enhanced mechanical properties, biocompatibility and self-healing performance, was designed through freezing-thawing method. This hydrogel network is composed of polyvinyl alcohol (PVA), carboxymethyl chitosan (CMCS), protocatechualdehyde (PA), ferric iron (Fe) and an antimicrobial cyclic peptide actinomycin X2 (Ac.X2). The double dynamic bonds among protocatechualdehyde (PA), ferric iron (Fe) and carboxymethyl chitosan containing coordinate bond (catechol-Fe) as well as dynamic Schiff base bonds and hydrogen bonds endowed the hydrogel with enhanced mechanical properties. Successful formation of hydrogel was confirmed through ATR-IR and XRD, and structural evaluation through SEM analysis, whereas mechanical properties were tested with electromechanical universal testing machine. The resulting PVA/CMCS/Ac.X2/PA@Fe (PCXPA) hydrogel has favorable biocompatibility and excellent broad-spectrum antimicrobial activity against both S. aureus (95.3 %) and E. coli (90.2 %) compared with free-soluble Ac.X2, which exhibited subpar performance against E. coli reported in our previous studies. This work provides a new insight on preparing multifunctional hydrogels containing antimicrobial peptides as antibacterial material.  相似文献   

14.
Tuning the degradation profiles of polymer cell carriers to match cell and tissue growth is an important design parameter for (cartilage) tissue engineering. In this study, degradable hydrogels were fabricated from divinyl, tetrafunctional poly(ethylene glycol) (PEG) and multivinyl, multifunctional poly(vinyl alcohol) (PVA) macromers to form homopolymer and copolymer gels. These gels were characterized by their volumetric swelling ratio and mass loss profiles as a function of degradation time. By variation of the macromer chemistry and functionality, the degradation time changed from less than 1 day for homopolymer PVA gels to 34 days for pure PEG gels. Furthermore, the degrading medium influenced mass loss, and a marked decrease in degradation time, from 34 to 12 days, was observed with the PEG gels when a chondrocyte-specific medium containing fetal bovine serum was employed. Interestingly, when copolymer gels of PEG and PVA were formed, PVA was released throughout the degradation (as determined by gel permeation chromatography) suggesting that covalent cross-linking of the PVA in the network was facilitated by copolymerizing with the PEG macromer. To assess these novel gels for cartilage tissue engineering applications, chondrocytes were photoencapsulated in the copolymer networks and cultured in vitro for up to 6 weeks. DNA, glycosaminoglycan (GAG), and total collagen contents increased with culture time, and the resulting neocartilaginous tissue at 6 weeks was homogeneously distributed as seen histologically. Biochemical analysis revealed that the constructs were comprised of 0.66 +/- 0.04 microg of DNA/mg wet weight (ww), 1.0 +/- 0.05% GAG/ww, and 0.29 +/- 0.07% total collagen/ww at 6 weeks. Furthermore, the compressive modulus increased during culture from 7 to 97 kPa as the neocartilaginous tissue evolved and the gel degraded. In summary, fabricating hydrogels through the copolymerization of PEG and PVA macromers is an effective tool for encapsulating chondrocytes, controlling gel degradation profiles, and generating cartilaginous tissue.  相似文献   

15.
Hu X  Li D  Gao C 《Biotechnology journal》2011,6(11):1388-1396
Composite hydrogels can be used as a scaffolding material for chondrogenesis, which requires a biomimetic environment to maintain chondrocyte morphology and phenotype. In this study, gelatin molecules were loaded into a hydrogel polymerized from a chitosan derivative (CML) to form a semi-interpenetrating polymer network. While the porous structure of the hydrogels in the dry state was not dependent on the gelatin content, the collapse extent and pore size decreased as the gelatin content increased. The gelatin loading also reduced the swelling ratio of the CML hydrogel and enhanced the hydrogel strength at 20°C due to gelation of the gelatin. The release behavior of the gelatin from the CML hydrogel could be controlled by many factors, such as the amount of gelatin, temperature, and solution pH. The weight loss of the composite hydrogel was expedited after gelatin loading and showed a positive relationship with the gelatin content. The results of in vitro cell culture in the hydrogels revealed that gelatin loading improved cell viability and promoted proliferation and glycosaminoglycans secretion of chondrocytes. This new scaffold production technology for chondrocyte encapsulation provides a further step towards CML applications in tissue engineering and other biomedical areas.  相似文献   

16.
Construction of a new artificial biomineralization system   总被引:1,自引:0,他引:1  
Hydroxyapatite (HAP) was mineralized in poly(vinyl alcohol) (PVA)/poly(acrylic acid) (PAA) complex hydrogel immersed in a salt solution containing PAA. The transparent HAP/polymer composite swelled in water depending on the HAP content; high HAP content gave small swelling and vice versa. The HAP content reached about 80 wt % at most. Observation of the cross section of the composite by energy-dispersive analysis of X-ray (EDAX) revealed that the composite consisted of two phases, i.e., a hard HAP-rich phase and a soft polymer-rich phase. In the HAP-rich phase, the space inside the hydrogel was occupied by HAP, while HAP was not mineralized in the polymer-rich phase. The nucleation seemed to take place, at first, at the middle depth of the hydrogel where the HAP-rich phase was formed. The HAP-rich phase grew its size toward the surface of the hydrogel at the cost of the polymer-rich phase. The presence of phosphorus, P, in the polymer-rich phase indicated the adsorption of HPO(4)(2-) on the polymer chain of the hydrogel via hydrogen bonding, accompanied with Ca(2+) because of electrostatic constraints. This adsorption of ions in addition to Donnan distribution of ions leads to the formation of a hypercomplex that can be regarded as a precursor of the HAP-rich phase. The change of the hypercomplex into the HAP-rich phase is discontinuous and hence concluded as a phase transition. By comparison of our mineralization system with the biomineralization system of HAP and CaCO(3), the physicochemical mechanism of the mineralization process in the present system was found to be similar to that in biological systems. In this sense, we termed the present system an artificial biomineralization system.  相似文献   

17.
为探究明胶(G)、海藻酸钠(SA),沙蒿胶(ASKG)对复合水凝胶的力学性能、溶胀和保湿性能的影响,采用共混-离子交联法制备海藻酸钠/明胶/沙蒿胶复合水凝胶,并对制得的水凝胶进行结构表征和溶血率测试。结果表明:当G质量分数为2.5%,SA为1.5%,ASKG为0.7%时,复合水凝胶压缩强度达到427.2 kPa,拉伸强度达到563.449 kPa,断裂伸长率为117%,溶胀率为744%,且具有较好的保湿性能。红外光谱表明,由于沙蒿胶中存在大量羟基,因此加入沙蒿胶后在3 300 cm-1~3 600 cm-1羟基峰形变宽。G/SA/ASKG复合水凝胶溶血率低于5%,具有较好的网络孔结构和血液相容性,为复合水凝胶在医用敷料方面的应用提供一定的参考价值。  相似文献   

18.
Various interpenetrating polymer network (IPN) hydrogels with sensitivity to temperature and pH were prepared by introducing the pH-sensitive polymer polyaspartic acid (PASP) hydrogel, into the poly(N-isopropylacrylamide) (PNIPAAm) hydrogel system for the purpose of improving its response rate to temperature. The morphologies and thermal behavior of the prepared IPN hydrogels were studied by both scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The IPN hydrogels showed a large and uneven porous network structure, without showing the common PNIPAAm hydrogel structure. The paper moreover studied their swelling properties, such as temperature dependence of equilibrium swelling ratio, shrinking kinetics, re-swelling kinetics and oscillatory swelling behavior in water. The swelling experiment results revealed that IPN hydrogels exhibited much faster shrinking and re-swelling in function of the composition ratio of the two network components. These fast responsive hydrogels foster potential applications in biomedical and biotechnology fields.  相似文献   

19.
Material barrier properties to microbes are an important issue in many pharmaceutical applications like wound dressings. A wide range of biomaterials has been used to manage the chronic inflamed wounds. Eight hydrogel membranes of poly vinyl alcohol (PVA) with κ-carrageenan (KC) and Lactobacillus bulgaricus extract (LAB) have been prepared by using freeze–thawing technique. To evaluate the membranes efficiency as wound dressing agents, various tests have been done like gel fraction, swelling behavior, mechanical properties, etc. The antibacterial activities of the prepared membranes were tested against the antibiotic-resistant bacterial isolates. In addition, the safety usage of the prepared hydrogel was checked on human dermal fibroblast cells. The anti-inflammatory properties of the prepared hydrogel on LPS-PBMC cell inflammatory model were quantified using enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-qPCR). The analysis data of TGA, SEM, gel fraction, and swelling behavior showed changes in properties of prepared PVA\KC\LAB hydrogel membrane than pure PVA hydrogel membrane. The antibacterial activities of the prepared membranes augmented in LAB extract-prepared membranes. Out of the eight used hydrogel membranes, the PVAKC4 hydrogel membrane is the safest one on fibroblast cellular proliferation with a maximum proliferation percentage 97.3%. Also, all the used hydrogel membrane showed abilities to reduce the concentration of IL-2 and IL-8 compared with both negative and positive control. In addition, almost all the prepared hydrogel membrane showed variable abilities to downregulate the expression of TNF-α gene with superior effect of hydrogel membrane KC1. PVA/KC/LAB extract hydrogel membrane may be a promising material for wound dressing application and could accelerate the healing process of the chronic wound because of its antimicrobial and anti-inflammatory properties.  相似文献   

20.
Tan H  Rubin JP  Marra KG 《Organogenesis》2010,6(3):173-180
An injectable, biodegradable and glucose-responsive hydrogel derived from natural polysaccharide derivatives was synthesized to deliver adipogenic factor of insulin in vitro for adipose tissue engineering. The biodegradable hydrogel based N-succinyl-chitosan (SCS) and aldehyde hyaluronic acid (AHA) with covalently conjugated glucose oxidase and catalase. The gelation is attributed to the Schiff-base reaction between amino and aldehyde groups of SCS and AHA, respectively. The morphologies and compressive modulus of the freeze-dried hydrogels demonstrated that the incorporated insulin and enzymes results in the formation of a tighter network structure in composite hydrogels. The immobilized enzymes triggered conversion of glucose reduces the pH value of the microenvironment, and results in hydrolysis and increasing swelling of the network basing on Schiff-base cross-linking. The pH inside the hydrogel, kept in PBS solution at pH 7.4 and 37°C, linearly dropped from 7.40 to 7.17 during 4 h of initial period, then slowly increased to 7.36 after 24 h. Correspondingly, the swelling ratio increased from 20.8 to 28.6 at 37°C in PBS with 500 mg/dL glucose. In PBS buffer with 500 mg/dL glucose, about 10.8% of insulin was released from the hydrogel after 8 h of incubation while upon observation. The results demonstrated that the adipogenic factor of insulin would be released from this biodegradable hydrogel device into the local microenvironment in a controlled fashion by the swelling of hydrogel network. These preliminary studies indicate that the biodegradable and glucose-responsive hydrogel may have potential uses in adipose tissue engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号