共查询到20条相似文献,搜索用时 0 毫秒
1.
Analyzing all the deterministic dynamics of a Boolean regulatory network is a difficult problem since it grows exponentially with the number of nodes. In this paper, we present mathematical and computational tools for analyzing the complete deterministic dynamics of Boolean regulatory networks. For this, the notion of alliance is introduced, which is a subconfiguration of states that remains fixed regardless of the values of the other nodes. Also, equivalent classes are considered, which are sets of updating schedules which have the same dynamics. Using these techniques, we analyze two yeast cell cycle models. Results show the effectiveness of the proposed tools for analyzing update robustness as well as the discovery of new information related to the attractors of the yeast cell cycle models considering all the possible deterministic dynamics, which previously have only been studied considering the parallel updating scheme. 相似文献
2.
Motivation
Conventional identification methods for gene regulatory networks (GRNs) have overwhelmingly adopted static topology models, which remains unchanged over time to represent the underlying molecular interactions of a biological system. However, GRNs are dynamic in response to physiological and environmental changes. Although there is a rich literature in modeling static or temporally invariant networks, how to systematically recover these temporally changing networks remains a major and significant pressing challenge. The purpose of this study is to suggest a two-step strategy that recovers time-varying GRNs.Results
It is suggested in this paper to utilize a switching auto-regressive model to describe the dynamics of time-varying GRNs, and a two-step strategy is proposed to recover the structure of time-varying GRNs. In the first step, the change points are detected by a Kalman-filter based method. The observed time series are divided into several segments using these detection results; and each time series segment belonging to two successive demarcating change points is associated with an individual static regulatory network. In the second step, conditional network structure identification methods are used to reconstruct the topology for each time interval. This two-step strategy efficiently decouples the change point detection problem and the topology inference problem. Simulation results show that the proposed strategy can detect the change points precisely and recover each individual topology structure effectively. Moreover, computation results with the developmental data of Drosophila Melanogaster show that the proposed change point detection procedure is also able to work effectively in real world applications and the change point estimation accuracy exceeds other existing approaches, which means the suggested strategy may also be helpful in solving actual GRN reconstruction problem. 相似文献3.
4.
5.
6.
7.
Understanding network robustness against failures of network units is useful for preventing large-scale breakdowns and damages in real-world networked systems. The tolerance of networked systems whose functions are maintained by collective dynamical behavior of the network units has recently been analyzed in the framework called dynamical robustness of complex networks. The effect of network structure on the dynamical robustness has been examined with various types of network topology, but the role of network assortativity, or degree–degree correlations, is still unclear. Here we study the dynamical robustness of correlated (assortative and disassortative) networks consisting of diffusively coupled oscillators. Numerical analyses for the correlated networks with Poisson and power-law degree distributions show that network assortativity enhances the dynamical robustness of the oscillator networks but the impact of network disassortativity depends on the detailed network connectivity. Furthermore, we theoretically analyze the dynamical robustness of correlated bimodal networks with two-peak degree distributions and show the positive impact of the network assortativity. 相似文献
8.
David Melamed 《PloS one》2014,9(5)
Identifying communities or clusters in networked systems has received much attention across the physical and social sciences. Most of this work focuses on single layer or one-mode networks, including social networks between people or hyperlinks between websites. Multilayer or multi-mode networks, such as affiliation networks linking people to organizations, receive much less attention in this literature. Common strategies for discovering the community structure of multi-mode networks identify the communities of each mode simultaneously. Here I show that this combined approach is ineffective at discovering community structures when there are an unequal number of communities between the modes of a multi-mode network. I propose a dual-projection alternative for detecting communities in multi-mode networks that overcomes this shortcoming. The evaluation of synthetic networks with known community structures reveals that the dual-projection approach outperforms the combined approach when there are a different number of communities in the various modes. At the same time, results show that the dual-projection approach is as effective as the combined strategy when the number of communities is the same between the modes. 相似文献
9.
Hendrik Hache Hans Lehrach Ralf Herwig 《EURASIP Journal on Bioinformatics and Systems Biology》2009,2009(1):617281
Reverse engineering of gene regulatory networks has been an intensively studied topic in bioinformatics since it constitutes an intermediate step from explorative to causative gene expression analysis. Many methods have been proposed through recent years leading to a wide range of mathematical approaches. In practice, different mathematical approaches will generate different resulting network structures, thus, it is very important for users to assess the performance of these algorithms. We have conducted a comparative study with six different reverse engineering methods, including relevance networks, neural networks, and Bayesian networks. Our approach consists of the generation of defined benchmark data, the analysis of these data with the different methods, and the assessment of algorithmic performances by statistical analyses. Performance was judged by network size and noise levels. The results of the comparative study highlight the neural network approach as best performing method among those under study. 相似文献
10.
调控网络的研究对于深入理解细胞的决定和分化、多细胞生物的生长发育至关重要。在调控网络中调控元件、基序(motif)、组件(module)、网络整体的拓扑学结构等4个结构层次进行的研究已经发展出了几类主要方法,但仍然有些问题需要解决。用理论方法及基于生物工程技术和合成生物学中研究成果的方法,建立调控网络Circuit的可计算模型的标准和数据库也在不断发展中。新近的研究还显示,高拟真度的Circuit模型与Circuit重建的研究方法联用,可以切实地解决许多调控网络研究中的重要问题。 相似文献
11.
Richard A. Goldstein 《Origins of life and evolution of the biosphere》2006,36(4):381-389
The origin of auto-catalytic networks has been proposed as an initial step in pre-biotic evolution. It is possible to derive simple models where auto-catalytic networks naturally arise from simple chemical mixtures. In order for such a system to develop, there needs to be some degree of stability, what is characterised as `robustness'. We demonstrate that competing systems generate this robustness as they create a distributed network of catalytic pathways. 相似文献
12.
The advent of high-throughput technology like microarrays has provided the platform for studying how different cellular components work together, thus created an enormous interest in mathematically modeling biological network, particularly gene regulatory network (GRN). Of particular interest is the modeling and inference on time-series data, which capture a more thorough picture of the system than non-temporal data do. We have given an extensive review of methodologies that have been used on time-series data. In realizing that validation is an impartible part of the inference paradigm, we have also presented a discussion on the principles and challenges in performance evaluation of different methods. This survey gives a panoramic view on these topics, with anticipation that the readers will be inspired to improve and/or expand GRN inference and validation tool repository. 相似文献
13.
Attack Robustness and Centrality of Complex Networks 总被引:1,自引:0,他引:1
Many complex systems can be described by networks, in which the constituent components are represented by vertices and the connections between the components are represented by edges between the corresponding vertices. A fundamental issue concerning complex networked systems is the robustness of the overall system to the failure of its constituent parts. Since the degree to which a networked system continues to function, as its component parts are degraded, typically depends on the integrity of the underlying network, the question of system robustness can be addressed by analyzing how the network structure changes as vertices are removed. Previous work has considered how the structure of complex networks change as vertices are removed uniformly at random, in decreasing order of their degree, or in decreasing order of their betweenness centrality. Here we extend these studies by investigating the effect on network structure of targeting vertices for removal based on a wider range of non-local measures of potential importance than simply degree or betweenness. We consider the effect of such targeted vertex removal on model networks with different degree distributions, clustering coefficients and assortativity coefficients, and for a variety of empirical networks. 相似文献
14.
15.
Dirk Repsilber Thomas Martinetz Mats Bj?rklund 《EURASIP Journal on Bioinformatics and Systems Biology》2009,2009(1):618502
To accomplish adaptability, all living organisms are constructed of regulatory networks on different levels which are capable to differentially respond to a variety of environmental inputs. Structure of regulatory networks determines their phenotypical plasticity, that is, the degree of detail and appropriateness of regulatory replies to environmental or developmental challenges. This regulatory network structure is encoded within the genotype. Our conceptual simulation study investigates how network structure constrains the evolution of networks and their adaptive abilities. The focus is on the structural parameter network size. We show that small regulatory networks adapt fast, but not as good as larger networks in the longer perspective. Selection leads to an optimal network size dependent on heterogeneity of the environment and time pressure of adaptation. Optimal mutation rates are higher for smaller networks. We put special emphasis on discussing our simulation results on the background of functional observations from experimental and evolutionary biology. 相似文献
16.
17.
Microarrays are commonly used in biology because of their ability to simultaneously measure thousands of genes under different conditions. Due to their structure, typically containing a high amount of variables but far fewer samples, scalable network analysis techniques are often employed. In particular, consensus approaches have been recently used that combine multiple microarray studies in order to find networks that are more robust. The purpose of this paper, however, is to combine multiple microarray studies to automatically identify subnetworks that are distinctive to specific experimental conditions rather than common to them all. To better understand key regulatory mechanisms and how they change under different conditions, we derive unique networks from multiple independent networks built using glasso which goes beyond standard correlations. This involves calculating cluster prediction accuracies to detect the most predictive genes for a specific set of conditions. We differentiate between accuracies calculated using cross-validation within a selected cluster of studies (the intra prediction accuracy) and those calculated on a set of independent studies belonging to different study clusters (inter prediction accuracy). Finally, we compare our method''s results to related state-of-the art techniques. We explore how the proposed pipeline performs on both synthetic data and real data (wheat and Fusarium). Our results show that subnetworks can be identified reliably that are specific to subsets of studies and that these networks reflect key mechanisms that are fundamental to the experimental conditions in each of those subsets. 相似文献
18.
Design and implementation of robust network modules is essential for construction of complex biological systems through hierarchical assembly of ‘parts’ and ‘devices’. The robustness of gene regulatory networks (GRNs) is ascribed chiefly to the underlying topology. The automatic designing capability of GRN topology that can exhibit robust behavior can dramatically change the current practice in synthetic biology. A recent study shows that Darwinian evolution can gradually develop higher topological robustness. Subsequently, this work presents an evolutionary algorithm that simulates natural evolution in silico, for identifying network topologies that are robust to perturbations. We present a Monte Carlo based method for quantifying topological robustness and designed a fitness approximation approach for efficient calculation of topological robustness which is computationally very intensive. The proposed framework was verified using two classic GRN behaviors: oscillation and bistability, although the framework is generalized for evolving other types of responses. The algorithm identified robust GRN architectures which were verified using different analysis and comparison. Analysis of the results also shed light on the relationship among robustness, cooperativity and complexity. This study also shows that nature has already evolved very robust architectures for its crucial systems; hence simulation of this natural process can be very valuable for designing robust biological systems. 相似文献
19.
20.
Boolean models have been instrumental in predicting general features of gene networks and more recently also as explorative tools in specific biological applications. In this study we introduce a basic quantitative and a limited time resolution to a discrete (Boolean) framework. Quantitative resolution is improved through the employ of normalized variables in unison with an additive approach. Increased time resolution stems from the introduction of two distinct priority classes. Through the implementation of a previously published chondrocyte network and T helper cell network, we show that this addition of quantitative and time resolution broadens the scope of biological behaviour that can be captured by the models. Specifically, the quantitative resolution readily allows models to discern qualitative differences in dosage response to growth factors. The limited time resolution, in turn, can influence the reachability of attractors, delineating the likely long term system behaviour. Importantly, the information required for implementation of these features, such as the nature of an interaction, is typically obtainable from the literature. Nonetheless, a trade-off is always present between additional computational cost of this approach and the likelihood of extending the model’s scope. Indeed, in some cases the inclusion of these features does not yield additional insight. This framework, incorporating increased and readily available time and semi-quantitative resolution, can help in substantiating the litmus test of dynamics for gene networks, firstly by excluding unlikely dynamics and secondly by refining falsifiable predictions on qualitative behaviour. 相似文献