首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uniparental disomy for maternal chromosome 7 has been described in three patients with recessive disorders. Short stature in each of these patients has been explained by the effect of imprinting of growth-related genes on maternal chromosome 7. Alternatively, although less likely, all these patients may be homozygous for a rare recessive mutation. Here we report both paternal isodisomy for chromosome 7 and normal growth in a patient with a recessive disorder, congenital chloride diarrhea. She had inherited only paternal alleles at 10 loci and was homozygous for another 10 chromosome 7 loci studied. Her physical status and laboratory tests were normal except for a mild high-frequency sensorineural hearing loss. As the patient has normal stature, it is likely that the paternal chromosome 7 lacks the suggested maternal imprinting effect on growth. Paternal isodisomy for human chromosome 7 may have no phenotypic effect on growth.  相似文献   

2.
This paper describes a molecular investigation of a woman with an apparent large pericentric inversion of chromosome 5, inv(5)(p14;q35), and one normal chromosome 5 and her child, who was born with cri-du-chat syndrome. The four chromosome 5 homologs from the proband and his mother were isolated in somatic cell hybrids, and their haplotypes were determined at nine loci polymorphic for restriction enzyme sites. The deleted chromosome in the proband was shown to carry alleles from both maternal homologs, verifying molecularly that a meiotic recombination event in the mother gave rise to her son's deleted chromosome 5. The single crossover was presumably near the centromere.  相似文献   

3.
Molecular analysis of a patient affected by the autosomal recessive skeletal dysplasia, pycnodysostosis (cathepsin K deficiency; MIM 265800), revealed homozygosity for a novel missense mutation (A277V). Since the A277V mutation was carried by the patient's father but not by his mother, who had two normal cathepsin K alleles, paternal uniparental disomy was suspected. Karyotyping of the patient and of both parents was normal, and high-resolution cytogenetic analyses of chromosome 1, to which cathepsin K is mapped, revealed no abnormalities. Evaluation of polymorphic DNA markers spanning chromosome 1 demonstrated that the patient had inherited two paternal chromosome 1 homologues, whereas alleles for markers from other chromosomes were inherited in a Mendelian fashion. The patient was homoallelic for informative markers mapping near the chromosome 1 centromere, but he was heteroallelic for markers near both telomeres, establishing that the paternal uniparental disomy with partial isodisomy was caused by a meiosis II nondisjunction event. Phenotypically, the patient had normal birth height and weight, had normal psychomotor development at age 7 years, and had only the usual features of pycnodysostosis. This patient represents the first case of paternal uniparental disomy of chromosome 1 and provides conclusive evidence that paternally derived genes on human chromosome 1 are not imprinted.  相似文献   

4.
Maternal isodisomy for chromosome 7 was observed in a 4-year-old cystic fibrosis patient with very short stature. In an examination of 11 DNA polymorphisms spanning the entire length of chromosome 7, no paternal contribution could be shown in seven informative loci. Paternity was examined with probes for five polymorphic loci on the Y chromosome, for the pseudo beta-globin locus on chromosome 11 and by Jeffreys's hypervariable probes. The results with the latter gave a probability of 3.7 x 10(-9) for nonpaternity. Chromosomal examination revealed a centromeric heteromorphism of chromosome 7 in the mother, for which the proband was homozygous. Isodisomy of the patient was thus shown for the entire length of a maternal chromosome 7. The mechanisms leading to this isodisomy involve at least two events of abnormal cell division, events that may be meiotic, postzygotic, or both. This proband is the second reported maternal isodisomy; both were detected through homozygosity for CF. Both patients had short stature, which could have been caused by parental imprinting, since similar results have been observed in isodisomic mice. Homozygosity due to uniparental descent in man should be kept in mind as a mechanism for recessive disorders, especially for chromosome 7.  相似文献   

5.
Uniparental disomy as a mechanism for human genetic disease.   总被引:54,自引:26,他引:28       下载免费PDF全文
A female with cystic fibrosis and short stature was investigated for molecular or cytogenetic abnormalities that might explain the combined phenotype. Analysis with polymorphic DNA markers indicated that the father did not contribute alleles to the propositus for markers near the CF locus or for centromeric markers on chromosome 7. High-resolution cytogenetic analysis was normal, and the result could not be explained on the basis of nonpaternity or a submicroscopic deletion. All of the data indicate that the propositus inherited two identical copies of maternal sequences for much or all of chromosome 7. The occurrence of uniparental disomy could be explained by models postulating postfertilization error, gamete complementation, monosomic conception with subsequent chromosome gain, or trisomic conception followed by chromosome loss. Uniparental disomy in an individual with a normal chromosome analysis is a novel mechanism for the occurrence of human genetic disease.  相似文献   

6.
We have simulated the evolution of sexually reproducing populations composed of individuals represented by diploid genomes. A series of eight bits formed an allele occupying one of 128 loci of one haploid genome (chromosome). The environment required a specific activity of each locus, this being the sum of the activities of both alleles located at the corresponding loci on two chromosomes. This activity is represented by the number of bits set to zero. In a constant environment the best fitted individuals were homozygous with alleles’ activities corresponding to half of the environment requirement for a locus (in diploid genome two alleles at corresponding loci produced a proper activity). Changing the environment under a relatively low recombination rate promotes generation of more polymorphic alleles. In the heterozygous loci, alleles of different activities complement each other fulfilling the environment requirements. Nevertheless, the genetic pool of populations evolves in the direction of a very restricted number of complementing haplotypes and a fast changing environment kills the population. If simulations start with all loci heterozygous, they stay heterozygous for a long time.  相似文献   

7.
We investigated the parental origin of the extra chromosome 14 and of the two chromosomes 14 of the euploid cell line, in a case of fetal mosaicism 46,XX/47,XX+14 diagnosed at amniocentesis. Molecular analysis of five polymorphic loci of the short tandem repeat type was performed. Markers D14S43 and D14S49 showed the presence of maternal uniparental disomy of chromosome 14 in the apparently normal cell line. The distribution of the markers analysed along the chromosome suggests maternal heterodisomy with a large isodisomic segment in the telomeric region, possibly caused by meiotic crossing-over.  相似文献   

8.
Uniparental disomy (UPD) for particular chromosomes is increasingly recognized as a cause of abnormal phenotypes in humans. We recently studied a 9-year-old female with a de novo Robertsonian translocation t(13;14), short stature, mild developmental delay, scoliosis, hyperextensible joints, hydrocephalus that resolved spontaneously during the first year of life, and hypercholesterolemia. To determine the parental origin of chromosomes 13 and 14 in the proband, we have studied the genotypes of DNA polymorphic markers due to (GT)n repeats in the patient and her parents' blood DNA. The genotypes of markers D14S43, D14S45, D14S49, and D14S54 indicated maternal UPD for chromosome 14. There was isodisomy for proximal markers and heterodisomy for distal markers, suggesting a recombination event on maternal chromosomes 14. In addition, DNA analysis first revealed--and subsequent cytogenetic analysis confirmed--that there was mosaic trisomy 14 in 5% of blood lymphocytes. There was normal (biparental) inheritance for chromosome 13, and there was no evidence of false paternity in genotypes of 11 highly polymorphic markers on human chromosome 21. Two cases of maternal UPD for chromosome 14 have previously been reported, one with a familial rob t(13;14) and the other with a t(14;14). There are several similarities among these patients, and a "maternal UPD chromosome 14 syndrome" is emerging; however, the contribution of the mosaic trisomy 14 to the phenotype cannot be evaluated. The study of de novo Robertsonian translocations of the type reported here should reveal both the extent of UPD in these events and the contribution of particular chromosomes involved in certain phenotypes.  相似文献   

9.
Uniparental disomy (UPD) involving several different chromosomes has been described in several cases of human pathologies. In order to investigate whether UPD for chromosome 21 is associated with abnormal phenotypes, we analyzed DNA polymorphisms in DNA from a family with de novo Robertsonian translocation t(21q;21q). The proband was a healthy male with 45 dup(21q) who was ascertained through his trisomy 21 offspring. No phenotypic abnormalities were noted in the physical exam, and his past medical history was unremarkable. We obtained genotypes for the proband and his parents' leukocyte DNAs from 17 highly informative short sequence repeat polymorphisms that map in the pericentromeric region and along the entire length of 21q. The order of the markers has been previously determined through the linkage and physical maps of this chromosome. For the nine informative markers there was no maternal allele contribution to the genotype of the proband; in addition, there was always reduction to homozygosity of a paternal allele. These data indicated that there was paternal uniparental isodisomy for chromosome 21 (pUPiD21). We conclude that pUPiD21 is not associated with abnormal phenotypes and that there are probably no imprinted genes on chromosome 21.  相似文献   

10.
Thirty-three androgenetic progeny groups of common carp were analysed using 11 microsatellite markers to (i) verify the homozygous status of the 566 androgenetic individuals, (ii) analyse the microsatellite allele segregation, and (iii) study the possible association of microsatellite alleles with phenotypic traits. In total, 92% of the androgenetic individuals proved to be homozygous at all 11 loci. Forty-three of the 47 heterozygous individuals were heterozygous at a single locus only. This heterozygosity was probably due to DNA fragments caused by UV irradiation of the eggs. although the maternal origin of the fragments could not be proved beyond doubt. Screening with 11 microsatellites also revealed two linkage groups, a segregation distortion at two microsatellite loci, and the possible association of some microsatellites with mass, length, stress-related plasma cortisol levels, and basal plasma glucose levels. The success of the linkage and association study could be explained by a low recombination frequency due to high chiasma interference. This would imply a relatively short genetic map for common carp.  相似文献   

11.
Uniparental disomy (UPD) is a rare condition in which a diploid offspring carries a chromosomal pair from a single parent. We now report the first two cases of UPD resulting in retinal degeneration. We identified an apparently homozygous loss-of-function mutation of RPE65 (1p31) in one retinal dystrophy patient and an apparently homozygous loss-of-function mutation of MERTK (2q14.1) in a second retinal dystrophy patient. In both families, the gene defect was present in the patient's heterozygous father but not in the patient's mother. Analysis of haplotypes in each nuclear kindred, by use of DNA polymorphisms distributed along both chromosomal arms, indicated the absence of the maternal allele for all informative markers tested on chromosome 1 in the first patient and on chromosome 2 in the second patient. Our results suggest that retinal degeneration in these individuals is due to apparently complete paternal isodisomy involving reduction to homoallelism for RPE65 or MERTK loss-of-function alleles. Our findings provide evidence for the first time, in the case of chromosome 2, and confirm previous observations, in the case of chromosome 1, that there are no paternally imprinted genes on chromosomes 1 and 2 that have a major effect on phenotype.  相似文献   

12.
Uniparental disomy (UPD)-the inheritance of two homologous chromosomes from a single parent-may be unmasked in humans by the unexpected appearance of developmental abnormalities, genetic disorders resulting from genomic imprinting, or recessive traits. Here we report a female patient with familial chylomicronemia resulting from complete lipoprotein-lipase (LPL) deficiency due to homozygosity for a frameshift mutation in exon 2 of the LPL gene. She was the normal term product of an unremarkable pregnancy and had shown normal development until her current age of 5.5 years. The father (age 33 years) and the mother (age 24 years) were unrelated and healthy, with no family history of stillbirths or malformations. The father was a heterozygous carrier of the mutation, whereas no mutation in the LPL gene was detected in the mother. Southern blotting did not reveal any LPL gene rearrangement in the proband or her parents. The proband was homozygous for 17 informative markers spanning both arms of chromosome 8 and specifically for the haplotype containing the paternally derived LPL gene. This shows that homozygosity for the defective mutation in the LPL gene resulted from a complete paternal isodisomy for chromosome 8. This is the first report of UPD for chromosome 8 unmasked by LPL deficiency and suggests that normal development can occur with two paternally derived copies of human chromosome 8.  相似文献   

13.
Uniparental isodisomy resulting from the simultaneous presence of isochromosomes of the p and q arms of a chromosome and absence of a normal homologue is an exceptionally rare event. We have observed a growth-retarded female infant in whom the normal chromosome 7 homologues were replaced by what appeared cytogenetically to be isochromosomes of 7p and 7q. Polymorphic microsatellite loci spanning the length of 7p and 7q were analyzed in the proband and her parents to ascertain the parental origin and extent of heterozygosity of the proband's rearranged chromosomes. These studies demonstrated that the 7p alleles of the proband were derived only from the father, the 7q alleles were derived only from the mother, and there was homozygosity for all chromosome 7 loci analyzed. The mechanisms leading to the formation of the proband's isochromosomes could reflect abnormalities of cell division occurring at meiosis, postfertilization mitosis, or both. We believe that the present case may result from incomplete mitotic interchange in the pericentromeric regions of chromosome 7 homologues, with resolution by sister-chromatid reunion in an early, if not first, zygotic division. Phenotypically, our proband resembled three previously reported cases of maternal isodisomy for chromosome 7, suggesting that lack of paternal genes from 7q may result in a phenotype of short stature and growth retardation.  相似文献   

14.
15.
A female child with mild dysmorphisms, motor and mental retardation had a 45,XX,-8,-8,+psu dic(8)(p23.3) karyotype in blood lymphocytes, skin fibroblasts and in a lymphoblastoid cell line. DNA analysis showed that the proposita was nullisomic for the 8pter region distal to D8S264, at less than 1 cM from the telomere. Analysis of DNA polymorphisms of 38 loci spread along the entire chromosome 8 revealed that only maternal alleles were present, distributed in four heterozygous and four homozygous regions. This finding indicated that the rearrangement occurred during maternal meiosis in a chromosome recombinant with a minimum of seven crossovers. To our knowledge this is the first case of uniparental maternal disomy for chromosome 8 and of nullisomy for the distal 1-cM portion of the short arm. The available data are in favour of the assumption that no imprinted genes are present on chromosome 8. Thus, dysmorphisms, motor and mental retardation of the proposita are likely to be caused by the nullisomy for the region distal to D8S264, a region in which a recessive gene for epilepsy with progressive mental retardation is known to be located. Received: 16 December 1996 / Revised: 24 January 1997  相似文献   

16.
Somatic cell hybrids heterozygous at the emetine resistance locus (emtr/emt+) or the chromate resistance locus (chrr/chr+) are known to segregate the recessive drug resistance phenotype at high frequency. We have examined mechanisms of segregation in Chinese hamster cell hybrids heterozygous at these two loci, both of which map to the long arm of Chinese hamster chromosome 2. To follow the fate of chromosomal arms through the segregation process, our hybrids were also heterozygous at the mtx (methotrexate resistance) locus on the short arm of chromosome 2 and carried cytogenetically marked chromosomes with either a short-arm deletion (2p-) or a long-arm addition (2q+). Karyotype and phenotype analysis of emetine- or chromate-resistant segregants from such hybrids allowed us to distinguish four potential segregation mechanisms: (i) loss of the emt+- or chr+-bearing chromosome; (ii) mitotic recombination between the centromere and the emt or chr loci, giving rise to homozygous resistant segregants; (iii) inactivation of the emt+ or chr+ alleles; and (iv) loss of the emt+- or chr+-bearing chromosome with duplication of the homologous chromosome carrying the emtr or chrr allele. Of 48 independent segregants examined, only 9 (20%) arose by simple chromosome loss. Two segregants (4%) were consistent with a gene inactivation mechanism, but because of their rarity, other mechanisms such as mutation or submicroscopic deletion could not be excluded. Twenty-one segregants (44%) arose by either mitotic recombination or chromosome loss and duplication; the two mechanisms were not distinguishable in that experiment. Finally, in hybrids allowing these two mechanisms to be distinguished, 15 segregants (31%) arose by chromosome loss and duplication, and none arose by mitotic recombination.  相似文献   

17.
A female frog heterozygous at two unlinked loci, specifying electrophoretic forms of mannosephosphate isomerase (MPI) and malate dehydrogenase (MDH) was crossed to male frogs homozygous for different alleles at each locus. In the offspring approximately ten percent proved to be triploid according to nucleolar and chromosome counts of tail tip cells. Most of these triploids had both maternal alleles at the MDH and MPI loci suggesting that the first meiotic division was repressed. Others seemed to represent a repressed second meiotic division and one animal, a pentaploid, could only have resulted from inhibition of both meiotic divisions of the egg. Densitometer tracings of starch gels stained for 6 phosphogluconate and isocitrate dehydrogenases, expected to be heterozygous in a particular cross, demonstrated that the triploids had twice as much maternal as paternal gene product for each locus, similar to patterns found in triploids produced by nuclear transplantation.  相似文献   

18.
Appelgren H  Cederberg H  Rannug U 《Gene》1999,239(1):29-38
Tandem repetitive DNA sequences such as minisatellites include the most polymorphic loci yet identified in the human genome. The high mutation rates at many of these loci are driven by incompletely understood recombination-based mechanisms that operate in the germline. To analyse aspects of minisatellite mutation processes and general eukaryotic recombination in meiosis that cannot be studied in humans or other mammals, including crosstalk and interplay between all four chromatids, we have previously constructed a eukaryotic model system, enabling the analysis of all four products of meiosis. In this system we have integrated alleles of the human minisatellite MS32, flanked by synthetic markers, in the vicinity of a meiotic recombination hot spot in chromosome III of Saccharomyces cerevisiae. In the present study, tetrad analysis showed that gene conversion is the predominant and possibly the universal pathway leading to interallelic transfer of repeats, with or without exchange of flanking regions. The data also suggest a hyper-recombinogenic state, triggered by interallelic mutation processes which generate a cascade of mutant alleles in the same meiosis. A number of tetrads contained identical mutant alleles of meiotic origin. Several tetrads could not be explained by the current models for minisatellite mutation. Accordingly, we here present a modified model based on the successive repair of multiple double-strand breaks.  相似文献   

19.
A child with maple syrup urine disease type 2 (MSUD2) was found to be homozygous for a 10-bp MSUD2-gene deletion on chromosome 1. Both purported parents were tested, and neither carries the gene deletion. Polymorphic simple-sequence repeat analyses at 15 loci on chromosome 1 and at 16 loci on other chromosomes confirmed parentage and revealed that a de novo mutation prior to maternal meiosis I, followed by nondisjunction in maternal meiosis II, resulted in an oocyte with two copies of the de novo mutant allele. Fertilization by a sperm that did not carry a paternal chromosome 1 or subsequent mitotic loss of the paternal chromosome 1 resulted in the propositus inheriting two mutant MSUD2 alleles on two maternal number 1 chromosomes.  相似文献   

20.
Summary A girl with ornithine transcarbamylase (OTC) deficiency was investigated for molecular and cytogenetic abnormalities that might explain this phenotype. Analysis with polymorphic DNA markers indicated that the patient did not inherit paternal alleles of the OTC locus, but that she did inherit the proximal locus DXS7 and the long arm of chromosome X. High-resolution cytogenetic analysis of the patient indicated a deletion of Xp11.4-p21, whereas both parents had normal karytoypes. Since the mother might be heterozygous according to biochemical tests, a second mutation within the maternal OTC gene cannot be excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号