首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To gain insight into the biogenesis of photosystem II (PSII) and to identify auxiliary factors required for this process, we characterized the mutant hcf173 of Arabidopsis thaliana. The mutant shows a high chlorophyll fluorescence phenotype (hcf) and is severely affected in the accumulation of PSII subunits. In vivo labeling experiments revealed a drastically decreased synthesis of the reaction center protein D1. Polysome association experiments suggest that this is primarily caused by reduced translation initiation of the corresponding psbA mRNA. Comparison of mRNA steady state levels indicated that the psbA mRNA is significantly reduced in hcf173. Furthermore, the determination of the psbA mRNA half-life revealed an impaired RNA stability. The HCF173 gene was identified by map-based cloning, and its identity was confirmed by complementation of the hcf phenotype. HCF173 encodes a protein with weak similarities to the superfamily of the short-chain dehydrogenases/reductases. The protein HCF173 is localized in the chloroplast, where it is mainly associated with the membrane system and is part of a higher molecular weight complex. Affinity chromatography of an HCF173 fusion protein uncovered the psbA mRNA as a component of this complex.  相似文献   

3.
Hcf101-1 is a high-chlorophyll-fluorescence (hcf) Arabidopsis mutant that lacks photosystem I (1). Photosystem I subunits are synthesized in the mutant but do not assemble into a stable complex. hcf101 was isolated by map-based cloning and encodes an MRP-like protein with a nucleotide-binding domain. The protein is localized in the chloroplast stroma. In green tissue, the Hcf101 level is stimulated by light, and the protein is not detectable in roots. Two independent knock-out lines, hcf101-2 and hcf101-3, are also impaired in Hcf101 accumulation, although to different extents. Like hcf101-1, hcf101-2 and hcf01-3 are hcf mutants with impaired photosystem I. Our results indicate that Hcf101 is a novel component required for photosystem I biosynthesis.  相似文献   

4.
5.
6.
7.
8.
9.
Zhang D  Zhou G  Liu B  Kong Y  Chen N  Qiu Q  Yin H  An J  Zhang F  Chen F 《Plant physiology》2011,157(2):608-619
Numerous auxiliary nuclear factors have been identified to be involved in the dynamics of the photosystem II (PSII) complex. In this study, we characterized the high chlorophyll fluorescence243 (hcf243) mutant of Arabidopsis (Arabidopsis thaliana), which shows higher chlorophyll fluorescence and is severely deficient in the accumulation of PSII supercomplexes compared with the wild type. The amount of core subunits was greatly decreased, while the outer antenna subunits and other subunits were hardly affected in hcf243. In vivo protein-labeling experiments indicated that the synthesis rate of both D1 and D2 proteins decreased severely in hcf243, whereas no change was found in the rate of other plastid-encoded proteins. Furthermore, the degradation rate of the PSII core subunit D1 protein is higher in hcf243 than in the wild type, and the assembly of PSII is retarded significantly in the hcf243 mutant. HCF243, a nuclear gene, encodes a chloroplast protein that interacts with the D1 protein. HCF243 homologs were identified in angiosperms with one or two copies but were not found in lower plants and prokaryotes. These results suggest that HCF243, which arose after the origin of the higher plants, may act as a cofactor to maintain the stability of D1 protein and to promote the subsequent assembly of the PSII complex.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
Photosystem biogenesis in the thylakoid membrane is a highly complicated process that requires the coordinated assembly of nucleus-encoded and chloroplast-encoded protein subunits as well as the insertion of hundreds of cofactors, such as chromophores (chlorophylls, carotenoids) and iron-sulfur clusters. The molecular details of the assembly process and the identity and functions of the auxiliary factors involved in it are only poorly understood. In this work, we have characterized the chloroplast genome-encoded ycf4 (for hypothetical chloroplast reading frame no. 4) gene, previously shown to encode a protein involved in photosystem I (PSI) biogenesis in the unicellular green alga Chlamydomonas reinhardtii. Using stable transformation of the chloroplast genome, we have generated ycf4 knockout plants in the higher plant tobacco (Nicotiana tabacum). Although these mutants are severely affected in their photosynthetic performance, they are capable of photoautotrophic growth, demonstrating that, different from Chlamydomonas, the ycf4 gene product is not essential for photosynthesis. We further show that ycf4 knockout plants are specifically deficient in PSI accumulation. Unaltered expression of plastid-encoded PSI genes and biochemical analyses suggest a posttranslational action of the Ycf4 protein in the PSI assembly process. With increasing leaf age, the contents of Ycf4 and Y3IP1, another auxiliary factor involved in PSI assembly, decrease strongly, whereas PSI contents remain constant, suggesting that PSI is highly stable and that its biogenesis is restricted to young leaves.  相似文献   

19.
20.
Yu QB  Li G  Wang G  Sun JC  Wang PC  Wang C  Mi HL  Ma WM  Cui J  Cui YL  Chong K  Li YX  Li YH  Zhao Z  Shi TL  Yang ZN 《Cell research》2008,18(10):1007-1019
Chloroplast is a typical plant cell organelle where photosynthesis takes place. In this study, a total of 1 808 chloroplast core proteins in Arabidopsis thaliana were reliably identified by combining the results of previously published studies and our own predictions. We then constructed a chloroplast protein interaction network primarily based on these core protein interactions. The network had 22 925 protein interaction pairs which involved 2 214 proteins. A total of 160 previously uncharacterized proteins were annotated in this network. The subunits of the photosynthetic complexes were modularized, and the functional relationships among photosystem Ⅰ (PSI), photosystem Ⅱ (PSII), light harvesting complex of photosystem Ⅰ (LHC Ⅰ) and light harvesting complex of photosystem Ⅰ (LHC Ⅱ) could be deduced from the predicted protein interactions in this network. We further confirmed an interaction between an unknown protein AT1G52220 and a photosynthetic subunit PSI-D2 by yeast two-hybrid analysis. Our chloroplast protein interaction network should be useful for functional mining of photosynthetic proteins and investigation of chloroplast-related functions at the systems biology level in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号