首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effects of irradiance during growth on biomass allocation, growth rates, leaf chlorophyll and protein contents, and on gas exchange responses to irradiance and CO2 partial pressures of the evergreen, sclerophyllous, chaparral shrub, Ceanothus megacarpus were determined. Plants were grown at 4 irradiances for the growth experiments, 8, 17, 25, 41 nE cm-2 sec-1, and at 2 irradiances, 9 and 50 nE cm-2 sec-1, for the other comparisons.At higher irradiances root/shoot ratios were somewhat greater and specific leaf weights were much greater, while leaf area ratios were much lower and leaf weight ratios were slightly lower than at lower irradiances. Relative growth rates increased with increasing irradiance up to 25 nE cm-2 sec-1 and then leveled off, while unit leaf area rates increased steeply and unit leaf weight rates increased more gradually up to the highest growth irradiance.Leaves grown at 9 nE cm-2 sec-1 had less total chlorophyll per unit leaf area and more per unit leaf weight than those grown at 50 nE cm-2 sec-1. In a reverse of what is commonly found, low irradiance grown leaves had significantly higher chlorophyll a/b than high irradiance grown leaves. High irradiance grown leaves had much more total soluble protein per unit leaf area and per unit dry weight, and they had much higher soluble protein/chlorophyll than low irradiance grown leaves.High irradiance grown leaves had higher rates of respiration in very dim light, required higher irradiances for photosynthetic saturation and had higher irradiance saturated rates of photosynthesis than low irradiance grown leaves. CO2 compensation irradiances for leaves of both treatments were very low, <5 nE cm-2 sec-1. Leaves grown under low and those grown under high irradiances reached 95% of their saturated photosynthetic rates at 65 and 85 nE cm-2 sec-1, respectively. Irradiance saturated rates of photosynthesis were high compared to other chaparral shrubs, 1.3 for low and 1.9 nmol CO2 cm-2 sec-1 for high irradiance grown leaves. A very unusual finding was that leaf conductances to H2O were significantly lower in the high irradiance grown leaves than in the low irradiance grown leaves. This, plus the differences in photosynthetic rates, resulted in higher water use efficiencies by the high irradiance grown leaves. High irradiance grown leaves had higher rates of photosynthesis at any particular intercellular CO2 partial pressure and also responded more steeply to increasing CO2 partial pressure than did low irradiance grown leaves. Leaves from both treatments showed reduced photosynthetic capability after being subjected to low CO2 partial pressures (100 bars) under high irradiances. This treatment was more detrimental to leaves grown under low irradiances.The ecological implications of these findings are discussed in terms of chaparral shrub community structure. We suggest that light availability may be an important determinant of chaparral community structure through its effects on water use efficiencies rather than on net carbon gain.  相似文献   

2.
To investigate differences in leaf structure, chlorophyll and nutrients on terminal branches of the understory tree Asimina triloba, the first (proximal) and the last (distal) leaves to develop in the spring were compared. Proximal leaf expansion was completed before the overstory canopy was fully closed but distal leaf expansion occurred during and after the development of the overstory canopy. Fully expanded proximal leaves were 76% smaller in area, were 18% thicker and had 36% more stomates per m of leaf area when compared to distal leaves. In addition, maximum stomatal conductance to water vapor was greater (150 vs. 120 mmol m−-2s−-1) and the minimum PPFD required for maximum conductance was higher (200 vs. 150 μmol m−-2s−-1) for the proximal leaves. Chlorophyll content was also greater for proximal leaves, but nitrogen and phosphorus contents were lower throughout the entire summer. Seasonal measurements indicated an increase in chlorophyll a content and reductions in nitrogen content throughout the summer growth period for leaves from both positions. The results suggest that distal and proximal leaves differed physiologically and that the measured differences were related to the changing irradiance environment during leaf development. The time of leaf expansion, as indicated by leaf position on the branch, may be an important consideration when examining the water and photosynthetic relations of understory trees.  相似文献   

3.
The present study investigated the interaction of growth irradiance (Qint) with leaf capacity for and kinetics of adjustment of the pool size of xanthophyll cycle carotenoids (sum of violaxanthin, antheraxanthin and zeaxanthin; VAZ) and photosynthetic electron transport rate (Jmax) after changes in leaf light environment. Individual leaves of lower‐canopy/lower photosynthetic capacity species Tilia cordata Mill. and upper canopy/higher photosynthetic capacity species Populus tremula L. were either illuminated by additional light of 500–800 µmol m?2 s?1 for 12 h photoperiod or enclosed in shade bags. The extra irradiance increased the total amount of light intercepted by two‐fold for the upper and 10–15‐fold for the lower canopy leaves, whereas the shade bags transmitted 45% of incident irradiance. In control leaves, VAZ/area, VAZ/Chl and Jmax were positively associated with leaf growth irradiance (Qint). After 11 d extra illumination, VAZ/Chl increased in all cases due to a strong reduction in foliar chlorophyll, but VAZ/area increased in the upper canopy leaves of both species, and remained constant or decreased in the lower canopy leaves of T. cordata. The slope for VAZ/area changes with cumulative extra irradiance was positively associated with Qint only in T. cordata, but not in P. tremula. Nevertheless, all leaves of P. tremula increased VAZ/area more than the most responsive leaves of T. cordata. Shading reduced VAZ content only in P. tremula, but not in T. cordata, again demonstrating that P. tremula is a more responsive species. Compatible with the hypothesis of the role of VAZ in photoprotection, the rates of photosynthetic electron transport declined less in P. tremula than in T. cordata after the extra irradiance treatment. However, foliar chlorophyll contents of the exposed leaves declined significantly more in the upper canopy of P. tremula, which is not consistent with the suggestion that the leaves with the highest VAZ content are more resistant to photoinhibition. This study demonstrates that previous leaf light environment may significantly affect the adaptation capacity of foliage to altered light environment, and also that species differences in photosynthetic capacity and acclimation potentials importantly alter this interaction.  相似文献   

4.
Changes in specific leaf area (SLA, projected leaf area per unit leaf dry mass) and nitrogen partitioning between proteins within leaves occur during the acclimation of plants to their growth irradiance. In this paper, the relative importance of both of these changes in maximizing carbon gain is quantified. Photosynthesis, SLA and nitrogen partitioning within leaves was determined from 10 dicotyledonous C3 species grown in photon irradiances of 200 and 1000 µmol m?2 s?1. Photosynthetic rate per unit leaf area measured under the growth irradiance was, on average, three times higher for high‐light‐grown plants than for those grown under low light, and two times higher when measured near light saturation. However, light‐saturated photosynthetic rate per unit leaf dry mass was unaltered by growth irradiance because low‐light plants had double the SLA. Nitrogen concentrations per unit leaf mass were constant between the two light treatments, but plants grown in low light partitioned a larger fraction of leaf nitrogen into light harvesting. Leaf absorptance was curvilinearly related to chlorophyll content and independent of SLA. Daily photosynthesis per unit leaf dry mass under low‐light conditions was much more responsive to changes in SLA than to nitrogen partitioning. Under high light, sensitivity to nitrogen partitioning increased, but changes in SLA were still more important.  相似文献   

5.
Photosynthesis and nitrogen relationships in leaves of C3 plants   总被引:53,自引:0,他引:53  
Summary The photosynthetic capacity of leaves is related to the nitrogen content primarily bacause the proteins of the Calvin cycle and thylakoids represent the majority of leaf nitrogen. To a first approximation, thylakoid nitrogen is proportional to the chlorophyll content (50 mol thylakoid N mol-1 Chl). Within species there are strong linear relationships between nitrogen and both RuBP carboxylase and chlorophyll. With increasing nitrogen per unit leaf area, the proportion of total leaf nitrogen in the thylakoids remains the same while the proportion in soluble protein increases. In many species, growth under lower irradiance greatly increases the partitioning of nitrogen into chlorophyll and the thylakoids, while the electron transport capacity per unit of chlorophyll declines. If growth irradiance influences the relationship between photosynthetic capacity and nitrogen content, predicting nitrogen distribution between leaves in a canopy becomes more complicated. When both photosynthetic capacity and leaf nitrogen content are expressed on the basis of leaf area, considerable variation in the photosynthetic capacity for a given leaf nitrogen content is found between species. The variation reflects different strategies of nitrogen partitioning, the electron transport capacity per unit of chlorophyll and the specific activity of RuBP carboxylase. Survival in certain environments clearly does not require maximising photosynthetic capacity for a given leaf nitrogen content. Species that flourish in the shade partition relatively more nitrogen into the thylakoids, although this is associated with lower photosynthetic capacity per unit of nitrogen.  相似文献   

6.
从形态、生理角度研究了杭州园林中应用最广泛的杜鹃‘紫萼’(Rhododendron mucronatum cv Plenum)的光适应性和最适光强生境。结果表明:随着叶片遮荫程度的增加,杜鹃的叶面积和叶绿素含量增加;光补偿点、光饱和点及暗呼吸强度下降,说明杜鹃对弱光生境有一定的适应性。另一方面,随着相对光强的增加,叶片厚度,比叶重以及栅栏组织、海绵组织厚度及其比值,可溶性蛋白质及净光合速率增加,表现出对阳生生境更好的适应性。在生境65%全光照时,植株在形态,解剖及生理上均处于最佳状态。因此,65%全光照的生境是毛鹃‘紫萼’的最佳光生境。  相似文献   

7.
The azimuth of vertical leaves of Silphium terebinthinaceum profoundly influenced total daily irradiance as well as the proportion of direct versus diffuse light incident on the adaxial and abaxial leaf surface. These differences caused structural and physiological adjustments in leaves that affected photosynthetic performance. Leaves with the adaxial surface facing East received equal daily integrated irradiance on each surface, and these leaves had similar photosynthetic rates when irradiated on either the adaxial or abaxial surface. The adaxial surface of East-facing leaves was also the only surface to receive more direct than diffuse irradiance and this was the only leaf side which had a clearly defined columnar palisade layer. A potential cost of constructing East-facing leaves with symmetrical photosynthetic capcity was a 25% higher specific leaf mass and increased leaf thickness in comparison to asymmetrical South-facing leaves. The adaxial surface of South-facing leaves received approximately three times more daily integrated irradiance than the abaxial surface. When measured at saturating CO2 and irradiance, these leaves had 42% higher photosynthetic rates when irradiated on the adaxial surface than when irradiated on the abaxial surface. However, there was no difference in photosynthesis for these leaves when irradiated on either surface when measurements were made at ambient CO2. Stomatal distribution (mean adaxial/abaxial stomatal density = 0.61) was unaffected by leaf orientation. Thus, the potential for high photosynthetic rates of adaxial palisade cells in South-facing leaves at ambient CO2 concentrations may have been constrained by stomatal limitations to gas exchange. The distribution of soluble protein and chlorophyll within leaves suggests that palisade and spongy mesophyll cells acclimated to their local light environment. The protein/chlorophyll ratio was high in the palisade layers and decreased in the spongy mesophyll cells, presumably corresponding to the attentuation of light as it penetrates leaves. Unlike some species, the chlorophyll a/b ratio and the degree of thylakoid stacking was uniform throughout the thickness of the leaf. It appears that sun-shade acclimation among cell layers of Silphium terebinthinaceum leaves is accomplished without adjustment to the chlorophyll a/b ratio or to thylakoid membrane structure.  相似文献   

8.
Alterations in light quality affect plant morphogenesis and photosynthetic responses but the effects vary significantly between species. Roses exhibit an irradiance‐dependent flowering control but knowledge on light quality responses is scarce. In this study we analyzed, the responses in morphology, photosynthesis and flowering of Rosa × hybrida to different blue (B) light proportions provided by light‐emitting diodes (LED, high B 20%) and high pressure sodium (HPS, low B 5%) lamps. There was a strong morphological and growth effect of the light sources but no significant difference in total dry matter production and flowering. HPS‐grown plants had significantly higher leaf area and plant height, yet a higher dry weight proportion was allocated to leaves than stems under LED. LED plants showed 20% higher photosynthetic capacity (Amax) and higher levels of soluble carbohydrates. The increase in Amax correlated with an increase in leaf mass per unit leaf area, higher stomata conductance and CO2 exchange, total chlorophyll (Chl) content per area and Chl a/b ratio. LED‐grown leaves also displayed a more sun‐type leaf anatomy with more and longer palisade cells and a higher stomata frequency. Although floral initiation occurred at a higher leaf number in LED, the time to open flowers was the same under both light conditions. Thereby the study shows that a higher portion of B light is efficient in increasing photosynthesis performance per unit leaf area, enhancing growth and morphological changes in roses but does not affect the total Dry Matter (DM) production or time to open flower.  相似文献   

9.
Feng  Y.-L.  Cao  K.-F.  Zhang  J.-L. 《Photosynthetica》2004,42(3):431-437
We investigated the effect of growth irradiance (I) on photon-saturated photosynthetic rate (P max), dark respiration rate (R D), carboxylation efficiency (CE), and leaf mass per unit area (LMA) in seedlings of the following four tropical tree species with contrasting shade-tolerance. Anthocephalus chinensis (Rubiaceae) and Linociera insignis (Oleaceae) are light-demanding, Barringtonia macrostachya (Lecythidaceae) and Calophyllum polyanthum (Clusiaceae) are shade-tolerant. Their seedlings were pot-planted under shading nets with 8, 25, and 50 % daylight for five months. With increase of I, all species displayed the trends of increases of LMA, photosynthetic saturation irradiance, and chlorophyll-based P max, and decreases of chlorophyll (Chl) content on both area and mass bases, and mass-based P max, R D, and CE. The area-based P max and CE increased with I for the light-demanders only. Three of the four species significantly increased Chl-based CE with I. This indicated the increase of nitrogen (N) allocation to carboxylation enzyme relative to Chl with I. Compared to the two shade-tolerants, under the same I, the two light-demanders had greater area- and Chl-based P max, photosynthetic saturation irradiance, lower Chl content per unit area, and greater plasticity in LMA and area- or Chl-based P max. Our results support the hypothesis that light-demanding species is more plastic in leaf morphology and physiology than shade-tolerant species, and acclimation to I of tropical seedlings is more associated with leaf morphological adjustment relative to physiology. Leaf nitrogen partitioning between photosynthetic enzymes and Chl also play a role in the acclimation to I.  相似文献   

10.
Ancymidol foliar spray at 132 mg·liter–1 a.i. modified leaf anatomy of developing Helianthus annuus L. Mammoth Russian leaves, but not of mature leaves. Ancymidol was effective in retarding plant growth when applied at the young seedling or at a more mature stage of growth. Ancymidol increased leaf weight per unit area and chlorophyll content on an area and unit weight basis, regardless of stage of leaf development. Total chlorophyll per leaf was also increased in mature leaves. Thus, darker green foliage due to increased chlorophyll content and modified leaf anatomy responses were determined to be independent effects.Texas Agricultural Experiment Station paper no. 22927.  相似文献   

11.
Sugar maple (Acer saccharum Marsh.) seedlings were grown in a nursery for three years in 13, 25, 45 and 100 per cent of full daylight. During the third year of growth, the rates of their apparent photosynthesis and respiration were measured periodically with an infra-red gas analyzer at various light intensities and normal CO2 concentration. In addition, the rates of apparent photosynthesis of a single attached leaf of the same seedlings were measured at saturating light intensity, hut varying CO2 concentrations. An increase in the light intensity in which seedlings were grown had no effect on their height or mean leaf area, hut resulted in thicker leaves, an increase in the total leaf area per seedling due to an increase in the number of leaves, an increase in the dry weight especially of roots and a decrease in the chlorophyll content of leaves. Throughout the growing season seedlings grown in full daylight, as compared with those grown in lower light intensities, had the lowest rates of apparent photosynthesis measured at standard conditions (21,600 lux light intensity and 300 ul/l of CO2), when this was expressed per unit leaf area, hut the highest rates on a per seedling basis. Thus dry matter production attained at the end of the growing season correlated positively with the photosynthetic rate per seedling, but not per unit leaf area. The rates of apparent photosynthesis of seedlings grown at lower light intensities were more responsive to changes in light intensity or CO2 concentration than those of seedlings grown in full daylight intensity.  相似文献   

12.
The photosynthetic CO2-fixation rates, chlorophyll content, chloroplast ultrastructure and other leaf characteristics (e.g. variable fluorescence, stomata density, soluble carbohydrate content) were studied in a comparative way in sun and shade leaves of beech (Fagus sylvatica) and in high-light and low-light seedlings.
  1. Sun leaves of the beech possess a smaller leaf area, higher dry weight, lower water content, higher stomata density, higher chlorophyll a/b ratios and are thicker than the shade leaves. Sun leaves on the average contain more chlorophyll in a leaf area unit; the shade leaf exhibits more chlorophyll on a dry weight basis. Sun leaves show higher rates for dark respiration and a higher light saturation of photosynthetic CO2-fixation. Above 2000 lux they are more efficient in photosynthetic quantum conversion than the shade leaves.
  2. The development of HL-radish plants proceeds much faster than that of LL-plants. The cotyledons of HL-plants show a higher dry weight, lower water content, a higher ratio of chlorophyll a/b and a higher gross photosynthesis rate than the cotyledons of the LL-plants, which possess a higher chlorophyll content per dry weight basis. The large area of the HL-cotyledon on the one hand, as well as the higher stomata density and the higher respiration rate in the LL-cotyledon on the other hand, are not in agreement with the characteristics of sun and shade leaves respectively.
  3. The development, growth and wilting of wheat leaves and the appearance of the following leaves (leaf succession) is much faster at high quanta fluence rates than in weak light. The chlorophyll content is higher in the HL-leaf per unit leaf area and in the LL-leaf per g dry weight. There are no differences in the stomata density and leaf area between the HL- and LL-leaf. There are fewer differences between HL- and LL-leaves than in beech or radish leaves.
  4. The chloroplast ultrastructure of shade-type chloroplasts (shade leaves, LL-leaves) is not only characterized by a much higher number of thylakoids per granum and a higher stacking degree of thylakoids, but also by broader grana than in sun-type chloroplasts (sun leaves, HL-leaves). The chloroplasts of sun leaves and of HL-leaves exhibit large starch grains.
  5. Shade leaves and LL-leaves exhibit a higher maximum chlorophyll fluorescence and it takes more time for the fluorescence to decline to the steady state than in sun and HL-leaves. The variable fluorescence VF (ratio of fluorescence decrease to steady state fluorescence) is always higher in the sun and HL-leaf of the same physiological stage (maximum chlorophyll content of the leaf) than in the shade and LL-leaf. The fluorescence emission spectra of sun and HL-leaves show a higher proportion of chlorophyli fluorescence in the second emission maximum F2 than shade and LL-leaves.
  6. The level of soluble carbohydrates (reducing sugars) is significantly higher in sun and HL-leaves than in shade and LL-leaves and even reflects changes in the amounts of the daily incident light.
  7. Some but not all characteristics of mature sun and shade leaves are found in HL- and LL-leaves of seedlings. Leaf thickness, dry weight, chlorophyll content, soluble carbohydrate level, photosynthetic CO2-fixation, height and width of grana stacks and starch content, are good parameters to describe the differences between LL- and HL-leaves; with some reservations concerning age and physiological stage of leaf, a/b ratios, chlorophyll content per leaf area unit and the variable fluorescence are also suitable.
  相似文献   

13.
Ball MC  Critchley C 《Plant physiology》1982,70(4):1101-1106
Photosynthetic responses to irradiance by the grey mangrove, Avicennia marina (Forstk.) Vierh var. australasica (Walp.) Moldenke, were studied using seedlings grown under natural understory shade and exposed conditions as well as in the laboratory under high and low light regimes, i.e. 100% and 6% sunlight, respectively. Leaves in exposed locations were subjected to daylight quantum flux densities greater than 1,000 microeinsteins per square meter per second from 0900 to 1700 hours, whereas those in understory shade experienced only 30 to 120 microeinsteins per square meter per second, interrupted for brief periods by sunflecks ranging in quantum flux density from 800 to 1,500 microeinsteins per square meter per second. The low light regime was similar in light intensity to that of the understory environment, but lacked sunflecks.

Leaves from the understory environment showed several properties of `shade' leaves; i.e. they contained more chlorophyll on both a leaf area and fresh weight basis but had a lower specific weight and greater area than exposed leaves, and were enriched in chlorophyll b relative to a. However, there were no significant differences in either the gas exchange or leaf chlorophyll fluorescence characteristics of the two populations, both being typical of `sun' leaves.

Leaves grown in the laboratory under low and high light regimes had similar properties. However, light saturated assimilation rates in the leaves from the low light treatment were 20% less and became light saturated at a lower quantum flux density than those of leaves grown under the high light regime. The ecological significance of these results is discussed.

  相似文献   

14.
Benzyladenine (BA) was applied to intact bean (Phaseolus vulgaris) leaves at different stages of their growth. Changes in the amounts of cellular constituents resulting from the different treatments were followed and compared. RNA, protein, and chlorophyll contents, dry weight, fresh weight, and leaf area per single leaf continued increasing when leaves were treated with BA from an early stage, whereas in untreated leaves all these values levelled off or declined with advancing age. Besides these changes, BA treatment induced an increase in the DNA content. Changes in RNA content was more remarkable in response to application or deprival of BA treatment than the corresponding ones in protein and chlorophyll contents. The pattern of response to BA varied greatly according to the age at which the leaf received the treatment. As leaves aged, they lost the ability to increase their area and fresh weight in response to BA. However, continuous treatment with BA from an early stage kept the leaves young and able to respond.  相似文献   

15.
Sack  Lawren  Grubb  Peter J.  Marañón  Teodoro 《Plant Ecology》2003,168(1):139-163
It has been hypothesized that plants cannot tolerate combined shade and drought, as a result of morphological trade-offs. However, numerous plant species are reportedly widespread in shaded forest understories that face drought, whether seasonal or occasional. We studied juveniles of six plant species that cope with strong summer drought in the understoreys of mixed Quercus forests in southern Spain: the tall-shrubs Phillyrea latifolia and Viburnum tinus, the perennial herb Rubia peregrina, the small shrub Ruscus aculeatus, and climbers Hedera helix and Smilax aspera. All of these species persist in evergreen shade (c. 3% daylight). Two other species were studied as comparators, Ruscus hypoglossum, less tolerant of drought, and Ceratonia siliqua, less tolerant of shade. Morphological and chemical variables relevant to shade and drought tolerance were measured for juveniles in a range of sizes, and also for the leaves of mature plants. The species converge in features that confer tolerance of shade plus drought by reducing demand for resources. Demand for water is reduced through a moderate to high below-ground mass fraction and low to moderate specific leaf area (respectively 0.22–0.52 and 112–172 cm2 g–1 at 1.00 g total dry mass). Demand for both irradiance and water is reduced through a low to moderate foliar nitrogen concentration and long-lived, physically protected leaves (2 yr). The species also converge in features that confer tolerance of either low irradiance or drought through specialized capture of resource, without precluding the other tolerance. These features include deep roots relative to shoot size, moderately higher specific leaf area in shade (1.2–2.0 × that in sun) and higher chlorophyll:nitrogen ratio in shade. Foliar chlorophyll per unit mass was higher in shade, but chlorophyll was not necessarily synthesized in greater amounts; rather, it was higher apparently due to shade effects on structural features linked with specific leaf area. In contrast, N per unit mass was higher in sun leaves independently of specific leaf area. Despite these convergences, the species diverge considerably in their root mass allocation and architecture, leaf saturated water content, density of stomata and guard cell size. No single narrowly defined functional type is needed for tolerance of shade plus drought.  相似文献   

16.
Sour orange (Citrus aurantium L.) seedlings grown for six months under covers transmitting light of different spectral composition, were compared with others grown under a white cover (control) and outside in full daylight. The intensity of transmitted light was equalized under all covers and attained only 20% of full daylight. Seedlings grown in daylight were shorter, had more internodes, smaller leaves, less chlorophyll and more ascorbic acid than the others. Blue + far-red covers (no transmission between 560–700 nm) enhanced seedling length, the protein and chlorophyll content and peroxidase activity of leaves. When also the wave-range above 700 nm was cut out (blue) seedlings were the shortest, and leaves had very high protein and chlorophyll content, but much less ascorbic acid and lower peroxidase activity. Red + far-red covers (no transmission below 500 nm) enhanced seedling length more than blue + far-red; leaves contained as much protein as control, but had relatively high chlorophyll and peroxidase activity. Ascorbic acid was as low as in blue light.  相似文献   

17.
Three-week-old sugar beet (Beta vulgaris L.) seedlings were grown for an additional four weeks under controlled conditions: in river sand watered with a modified Knop mixture containing one half-fold (0.5N), standard (1N), and or threefold (3N) nitrate amount, at the irradiance of 90 W/m2 PAR, and at the carbon dioxide concentrations of 0.035% (1C treatment) or 0.07% (2C treatment). The increase in the carbon dioxide concentration and in the nitrogen dose resulted in an increase in the leaf area and the leaf and root dry weight per plant. With the increase in the nitrogen dose, morphological indices characterizing leaf growth increased more noticeably in 1C plants than in 2C plants. And vice versa, the effects of increased CO2 concentration were reduced with the increase in the nitrogen dose. Roots responded to the changes in the CO2 and nitrate concentrations otherwise than leaves. At a standard nitrate dose (1N), the contents of proteins and nonstructural carbohydrates (sucrose and starch) in leaves depended little on the CO2 concentration. At a double CO2 concentration, the content of chlorophyll somewhat decreased, and the net photosynthesis rate (P n) calculated per leaf area unit increased. An increase in the nitrogen dose did not affect the leaf carbohydrate content of the 1C and 2C plants except the leaves of the 2C-3N plants, where the carbohydrate content decreased. In 1C and 2C plants, an increase in the nitrogen dose caused an increase in the protein and chlorophyll content. Specific P n values somewhat decreased in 1C-0.5N plants and had hardly any dependence on the nitrate dose in the 2C plants. The carbohydrate content in roots did not depend on the CO2 concentration, and the content was the highest at 0.5N. Characteristic nitrogen dose-independent acclimation of photosynthesis to an increased carbon dioxide concentration, which was postulated previously [1], was not observed in our experiments with sugar beet grown at doubled carbon dioxide concentration.  相似文献   

18.
Plants need to allocate some of their limited resources for defense against herbivores as well as for growth and reproduction. However, the priority of resource allocation within plants has not been investigated. We hypothesized that plants with extrafloral nectaries (EFNs) invest more chlorophyll around their EFNs—to support a high rate of carbon fixation there—than in other leaf parts of young leaves. Additionally, this chlorophyll may remain around EFNs rather than in the other leaf parts. We used Mallotus japonicus plants to investigate the chlorophyll content at leaf centers and edges and around EFNs at four stages of leaf development: middle‐expanded young leaves, fully expanded mature leaves, senior leaves, and leaves prior to abscission. These four stages of development were located at the third, fifth, eighth, and eleventh leaf positions from the apex, respectively. The results revealed that the chlorophyll content around the EFN side of the third‐position leaves was higher than that at the leaf center or edge. Although the chlorophyll content in the fifth‐position leaves did not differ between those at the leaf edge and around EFNs, the chlorophyll content around EFNs in the eighth‐position leaves was higher than that at the leaf centre and edge. The volume of EF nectar was positively correlated with the chlorophyll content around EFN during the leaf stage, but it was not correlated with the chlorophyll content in the leaf center and edge, except in fifth‐position leaves. These findings suggest that M. japonicus plants facilitate and maintain secretion of EF nectar in their young and old leaves, respectively, through the concentration and retention of chlorophyll around EFNs.  相似文献   

19.
NILWIK  H. J. M. 《Annals of botany》1981,48(2):129-136
A growth analysis was carried out with sweet pepper grown ina glasshouse. The plants received natural daylight or additionalillumination applied either during or after the natural photopenod.All irradiance conditions were applied at three temperatureregimes. Additional illumination increased leaf number, leaf area andtotal dry weight. At all temperatures the long-day treatmentsshowed a smaller number of leaves, but a larger leaf area whencompared to the short-day treatments with the same daily radiationsum. A lower temperature progressively reduced leaf area. The derived growth analysis quantities showed strong ontogenetictrends. When comparing both methods of applying additional illuminationhigher mean relative growth rates were observed for the long-daytreatments, especially at the lowest temperature. No differencesin mean net assimilation rate were found, but the short-daytreatments showed a reduced mean leaf area ratio. A lower nighttemperature decreased RGR and NAR but did not affect LAR, alower day temperature increased NAR and decreased LAR. Changesin LAR were largely mediated by changes in specific leaf weight. Capsicum annuum L., sweet pepper, growth analysis, irradiance, temperature  相似文献   

20.
Gratani  L. 《Photosynthetica》1997,33(1):139-149
The studied evergreen forest dominated by Quercus ilex showed a leaf area index (LAI) of 4.5, of which 61 % was accumulated within the tree layer, 30 % within the shrub layer, and 9 % within the herb layer. The leaves of all the species were ± horizontally oriented (41°), absorbing a relevant percentage of incident irradiance. The high LAI drastically modified the quality and quantity of solar radiation on the forest underground. The spectral distribution of the radiation under the forest was markedly deficient in blue and red wavelengths. The maximum absorption in these spectral bands was found in spring, when net photosynthetic rate (P N ) was at its maximum, and in summer, when new leaves reached 90 % of their definitive structure. The vertical radiation profile showed an evident reduction of the red-far red ratio (R/FR). Radiation quality and quantity influenced leaf physiology and morphology. Clear differences in leaf size, leaf water content per area (LWC) and specific leaf area (SLA) on the vertical profile of the forest were observed. All the shrub species showed similar SLA (12.02 m2 kg-1, mean value). The ability to increase SLA whilst simultaneously reducing leaf thickness maximized the carbon economy. The high chlorophyll (Chl) content of shrub layer leaves (1.41 g kg-1, mean value) was an expression of shade adaptation. Both leaf morphology and leaf physiology expressed the phenotypic plasticity. Q. ilex, Phillyrea latifolia and Pistacia lentiscus of the forest shrub layer showed wide differences in leaf structure and function with respect to the same species developing under strong irradiance (low maquis): a 57 % mean increase of SLA and a 86 % mean decrease of PN. They showed high leaf plasticity. Leaf plasticity implies that the considered sclerophyllous species has an optimum developmental pattern achieving adaptation to environments. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号