首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Density dependence is the effect of density on population growth. Density dependence is an aggregate term for a suite of complex interactions between animals and their environment. 2. Mechanistic studies of density dependence in mosquito ecology are sparse, and the role of environmental factors is poorly understood. 3. Two empirical study designs were compared to consider the interaction between nutritional availability and density in Aedes aegypti. First, larvae were fed per capita. Second, larvae were fed a fixed amount of food unadjusted for the number of individuals; therefore, at higher densities, individuals received less per capita. 4. Survivorship, wing length, and development rate were lower at high densities when larvae were fed a fixed, unadjusted amount of food. The opposite was observed when food was adjusted per capita, suggesting that high densities may be beneficial for larval development when per capita nutrition is held constant 5. These results demonstrate that negative associations between Ae. aegypti larval density and larval development are a manifestation of decreased per capita nutrient uptake at high densities. 6. Population regulation is a proportional response to environmental variability in Ae. aegypti. Increased survivorship at high densities when larvae were fed per capita demonstrates that nutritional availability is not the only mechanism of density dependence in mosquitoes. Further studies should characterise density dependence in mosquitoes by using mechanistic study designs across diverse environmental conditions.  相似文献   

2.
1. This study investigated the effects of strong density dependence on larval growth, development, and survival of the mosquito Culex restuans (Theobald). It also tested the hypothesis that density reduction early in larval development could result in as many or more individuals surviving to adulthood (compensation or over‐compensation, respectively), or increased reproductive performance via rapid development and greater adult size. 2. In a field study of a natural population of C. restuans, the effects of a 75% lower density on percentage survivorship to adulthood, number of adults, development time, adult size, adult longevity, and size dependent fecundity were tested. 3. No evidence was found of compensation or over‐compensation in adult production, or of effects of lower density on percentage survivorship. Low density yielded significant increases in adult size, adult longevity, and size‐dependent fecundity, and a decrease in development time. 4. Estimated per‐capita population growth rate was significantly greater in the low‐density treatment than in the high‐density treatment. It is inferred that this difference was due to greater per‐capita resources, which increased female size and fecundity, and reduced development time. Greater per‐capita population growth could therefore result from early mortality of larvae, meaning that the hydra effect, which predicts greater equilibrium population with, as opposed to without, extrinsic mortality, may be possible for these mosquitoes.  相似文献   

3.
Interannual population oscillations ofMonoporeia affinis and sedentary chironomids are negatively correlated in Lake Mälaren. Sedentary chironomid abundance regressed againstM. affinis density was highly significant at a lag response of one year (adj. R2=0.54, P=0.0001). The inverse correlation between Tanytarsini (Micropsectra sp. andTanytarsus sp.) andM. affinis densities supports a recruitment limitation hypothesis,viz. that the growth or survival of early instar chironomids is low at high amphipod densities. Microcosm studies showed density-dependent effects on the growth and survival of second instarCh. riparius larvae across an amphipod density gradient. No significant effects were found on growth or survival of third instars. These findings support the chironomid recruitment limitation hypothesis. Amphipod predation on early instar chironomid larvae is suggested as a population controlling mechanism.  相似文献   

4.
The impact of climate change on strongly age‐structured populations is poorly understood, despite the central role of temperature in determining developmental rates in ectotherms. Here we examine the effect of warming and its interactions with resource availability on the population dynamics of the pyralid moth Plodia interpunctella, populations of which normally show generation cycles, a consequence of strong and asymmetric age‐related competition. Warming by 3°C above the standard culture temperature led to substantial changes in population density, age structure, and population dynamics. Adult populations were some 50% larger in warmed populations, probably because the reduced fecundity associated with warming leads to reduced larval competition, allowing more larvae to develop to adulthood. Warming also interacted with resource availability to alter population dynamics, with the generation cycles typical of this species breaking down in the 30° populations when standard laboratory diet was provided but not when a reduced nutrient poor diet was used. Warming by 6° led to either rapid extinction or the persistence of populations at low densities for the duration of the experiment. We conclude that even moderate warming can have considerable effects on population structure and dynamics, potentially leading to complete changes in dynamics in some cases. These results are particularly relevant given the large number of economically important species that exhibit generation cycling, in many cases arising from similar mechanisms to those operating in P. interpunctella.  相似文献   

5.
幼虫密度对草地螟生长发育及繁殖的影响   总被引:1,自引:0,他引:1  
孔海龙  罗礼智  江幸福  张蕾  胡毅 《昆虫学报》2011,54(12):1384-1390
为了明确幼虫密度对草地螟Loxostege sticticalis种群增长的影响, 对室内条件下(温度22±1℃, RH 70%±5%, 光周期16L∶ 8D)不同幼虫密度[1, 10, 20, 30和40头/瓶(650 mL)]饲养的草地螟生长发育及繁殖进行了研究。结果表明: 幼虫密度对草地螟幼虫体色、 发育历期和存活率, 以及蛹重和成虫生殖等有显著影响。随着幼虫密度的增加, 幼虫体色黑化程度呈增强趋势, 幼虫密度大于10头/瓶时的体色黑化值均显著大于幼虫密度为1头/瓶时的体色黑化值(P<0.05)。20头/瓶的幼虫和蛹历期最短, 且随幼虫密度的增加而显著延长(P<0.05)。幼虫存活率以10头/瓶最高, 其他幼虫密度的幼虫存活率显著较低(P<0.05)。蛹重以1头/瓶的最重, 并随幼虫密度增加而显著下降(P<0.05)。成虫产卵量和交配率分别以1和20头/瓶的幼虫密度最高, 幼虫密度升高则产卵量、 交配率逐渐降低。成虫产卵历期随着幼虫密度的增加逐渐缩短。雌、 雄蛾寿命分别以10和20头/瓶幼虫密度时最长, 幼虫密度过高时雌雄蛾寿命又显著缩短(P<0.05)。生命表分析表明, 幼虫密度对草地螟种群增长指数有显著影响, 以10头/瓶幼虫密度的种群增长指数最高, 幼虫密度过高或过低时种群增长指数下降。据此认为, 幼虫密度是影响草地螟种群增长的重要因子之一。  相似文献   

6.
1. Antagonistic interactions in herbivorous insects are often density‐dependent, so rates are predicted to vary dynamically over time as density changes. Fatal intraspecific interactions, especially cannibalism, occur between equal‐aged larvae in young first‐ and second‐instar Spodoptera frugiperda (J.E. Smith). 2. A cannibalism experiment was conducted, starting with seven different densities of neonate S. frugiperda larvae, each replicated 50 times. Larvae were examined daily for the duration of the first and second instars (7 days). Seven‐day mortality was density‐dependent. 3. A stochastic mathematical model was developed in which per‐capita mortality from antagonistic interactions among equal‐aged larvae varies dynamically as density changes. A maximum likelihood method was developed to estimate the conditional per‐capita mortality rate from antagonistic interactions given an intraspecific encounter. An alternative model with mean‐mortality from antagonistic interactions that depends only on the initial larval density was also developed. 4. The models were fitted to the experimental data, and compared using log‐likelihood. The dynamic model fitted the cannibalism data significantly better than the time‐averaged mortality model for all starting densities for the experimental data, implying that density‐dependent mortality varied dynamically over time even within short 7‐day periods. 5. The conditional per‐capita mortality rate from antagonistic interactions was also density‐dependent, possibly because encounters became more aggregated at higher density, or because the probability that a larva died from the interaction was higher at higher density, or both.  相似文献   

7.
8.
Calotropis procera (Ait.) R.Br. (Apocynaceae), an invasive woody milkweed, has expanded its range in northern Australia affecting rangeland and pastoral productivity. While self‐compatibility should enhance the species range expansion, spread of C. procera is limited by the availability of larger wasp and bee species that are able to vector its solid pollinia. Pollination efficiency is thus likely dependent on both pollinator abundance and plant density. Calotropis procera flowers year round in Australia but fruiting is limited to the warm months of the year when pollinators are most abundant, indicating that seasonal regulation of reproduction may be due to pollinator limitation. We examine the propositions that C. procera reproduction is regulated by the interaction between plant population density and pollinator pressure and that low pollinator pressure causes low per capita plant fecundity. All pollinators belonged to Order Hymenoptera and pollinator composition was similar at six of the seven sites. Fruit production per plant (fecundity) was lower above and below intermediate densities (350–550 plants ha?1) of flowering plants with evidence of a weak Allee effect at lower plant density. Pollinator visitation rates per plant were low at high and low plant densities, and greatest at intermediate densities, while pollen supplementation experiments showed that C. procera is pollen limited (Pollen Limitation Indexfruit = 0.9) even at intermediate densities. Pollen limitation caused by low pollinator pressure at low plant densities and pollinator satiation at high plant densities may account for these fruit production trends. Management should be conducted in the colder months when pollinator pressure is low and plants are not reproducing. In addition, where stand eradication cannot be achieved in one attempt, management should reduce flowering plants to below intermediate densities where the fecundity per plant is low.  相似文献   

9.
1. Competition was created between the larvae of two life‐history strains of the blowfly Lucilia cuprina (Wiedemann) that have different requirements for larval resource acquisition. Adult females of one strain had the ability to mature eggs in the absence of adult feeding (autogeny) whereas the other strain lacked this ability. Autogeny shifts the burden of resource acquisition from adults to larvae, potentially leading to greater competition at this earlier life history stage. 2. A replacement series was used to determine the per‐capita competitive effect between strains relative to the intra‐strain effect, and density‐ and frequency‐dependent variation in this per‐capita effect was then evaluated. Evidence was found of competitive superiority of autogenous larvae when they occurred at a low frequency and low density, but their competitive ability was lost or reversed at higher frequencies and densities. 3. A dynamic competitive environment created by frequency and density dependence can account for the maintenance of genetic diversity for major life‐history traits. Such competition may explain why autogeny is rare in field populations of L. cuprina even although underlying genetic variation for the trait seems to be present.  相似文献   

10.
1. Predator and alternative food density are important factors influencing herbivore suppression by generalist predators. Herbivore suppression can be reduced if predators forage preferentially on alternative foods. Cannibalism can increase at high predator densities, further reducing herbivore suppression. However, complex interactions are possible, as alternative food can increase predator abundance and survival restoring top‐down effects on herbivores. 2. In two species of carabid larvae (Poecilus chalcites and Anisodactylus ovularis), we studied how alternative foods (fly pupae and grass seeds) and predator density affect predation of black cutworm larvae and how alternative foods affect cannibalism among carabid larvae. 3. Adding alternative food to microcosms generally reduced total predation of cutworms. However, the strength of this effect was dependent on carabid species, larval density, and food type. 4. Increasing larval density from one to three per microcosm reduced per‐capita predation by both species irrespective of alternative food treatment. 5. Alternative food reduced cannibalism in both carabid species and increased survival of carabid larvae in field plots, such that twice as many were captured in plots subsidised with pupae than plots with no alternative food. 6. These results provide new insight into the complex interactions that influence predator survival and herbivore suppression in resource diverse habitats by demonstrating the primacy of intraguild interactions among carabid larvae.  相似文献   

11.
Outbreak densities of autumnal moth, Epirrita autumnata (Borkhausen) (Lepidoptera: Geometridae), lead to high larval crowding. Phenotypic responses of E. autumnata to larval crowding and to food quality were studied by measuring growth and consumption as well as pupal weight and fecundity. Crowding may trigger increased consumption and faster development to avoid impending food shortage on good quality food. This is suggested by the result that on a good‐quality diet, the growth of crowded larvae was better than that of solitary larvae, though they did not consume more food than solitary larvae. Crowded larvae also completed the last instar earlier than solitary larvae. The fecundity of crowded autumnal moths was not lower than the fecundity of solitarily grown autumnal moths. This may provide conditions for extra rapid population build‐up of E. autumnata. During the population increase phase the crowding effect may facilitate larval performance; however, at peak density the crowding starts to have negative effects on the performance of larvae. On a poor‐quality diet, the performance of crowded and solitary larvae did not differ. The growth of larvae was better on a good‐quality diet than on a poor‐quality diet, due to higher efficiency in food utilization. Larvae feeding on low‐quality diet did not prolong their development time, but pupated at smaller size; this resulted in lower fecundity. A decrease in food quality can be seen as a cue of oncoming food shortage and resource depletion; it may be advantageous to pupate at a smaller size and ensure survival till reproduction, rather than risk prolonging development to achieve larger size and higher fecundity.  相似文献   

12.
1. Per‐capita resource availability in aquatic habitats is influenced directly by consumer density via resource competition and indirectly via delayed resource competition when temporally non‐overlapping cohorts of larvae exploit the same resources. In detritus‐based systems, resources are likely to be influenced by the age of the aquatic habitat, as detritus changes in quality over time and may be replenished by new inputs. 2. For aquatic insects that exploit detritus‐based habitats, feeding conditions experienced during immature stages can influence fitness directly via effects on development and survivorship, but also indirectly by influencing adult traits such as fecundity and longevity. 3. Larval habitat age and prior resource exploitation were manipulated in a field experiment using the container mosquito Aedes triseriatus. 4. It was found that A. triseriatus from older habitats had greater larval survival, faster development and greater adult longevity. Exploitation of larval habitats by a prior cohort of larvae had a significant negative effect on subsequent cohorts of larvae by delaying development. 5. It is suggested that extended conditioning of detritus probably resulted in conversion of recalcitrant resources to more available forms which improved the quality of the habitat. 6. In a parallel study, evidence was found of carry‐over effects of habitat age and prior exploitation on adult longevity for A. triseriatus and Aedes japonicus collected from unmanipulated aquatic habitats. 7. These results indicate the importance of detritus dynamics and the discontinuous nature of resource competition in these mosquito‐dominated aquatic systems.  相似文献   

13.
The Australian snout beetle, Oxyops vitiosa, was introduced to south Florida, USA, as a biological control agent of the invasive tree Melaleuca quinquenervia during the spring of 1997. As part of ongoing post-release evaluations of this weevil, we sought to quantify the population density that can be maintained by O. vitiosa larvae when fully exploiting the available melaleuca foliage. Seasonal population densities were modeled as a function of tree size distribution and density, plant phenology, quantity of acceptable foliage (suitable for larval development) and larval consumption values. Larval densities varied dramatically due to fluctuating resource availability and ranged from 830 946 larvae/ha in July–August to >4.5 million larvae/ha in January–February. The expected population density for a generalized (mixed sized) tree distribution was estimated to be 13.9 million larvae/ha. Larval densities increased to 18.8 million larvae/ha per year when large trees (>20 cm diameter at breast height) represented the dominant size class, whereas habitats dominated by medium (10–19 cm) and small (1.3–9 cm) trees were predicted to have larval densities of 11.3 and 6.3 million/year, respectively. Validation data obtained from smaller, more accessible plants suggested that the model overestimated realized yearly larval densities by 9% or 15 416 larvae/ha per year.  相似文献   

14.
Mosquito larvae face numerous biotic and abiotic challenges that affect their development and survivorship, as well as adult fitness. We conducted two experiments under semi‐natural conditions to evaluate the effects of intraspecific competition, nutrient limitation and sub‐lethal doses of malathion on individual life history traits in adult Culex pipiens (Diptera: Culicidae). In the first experiment, larvae of Cx. pipiens were reared at different intraspecific densities and exposed to sub‐lethal doses of malathion. In the second experiment, different intraspecific densities of Cx. pipiens larvae were reared under conditions of low or high larval nutrients, and subsequent adults were fed on either water or 10% sucrose solution. Malathion treatment had relatively minor effects compared with density, which had significant negative effects on development rate, survivorship to adulthood, body size (wing length) and longevity. As larval density increased, a sex ratio distortion in survivorship to adulthood emerged, in which a bias towards males was apparent. Nutrient‐rich larval environments alleviated, in part, the effects of increasing density and extended the lifespan of mosquitoes fed on water and 10% sucrose. Density‐dependent alterations in adult longevity attributable to the larval environment are complex and show contrasting results depending on interactions with other environmental factors. This study suggests that larval resource availability and competition influence Cx. pipiens population growth correlates and have lasting effects on traits that relate to a mosquito's ability to vector pathogens.  相似文献   

15.
Variation in food availability impacts the performance of insects in terms of their size and age to maturity and fecundity. Age at maturity determines how quickly individuals in a population can start to reproduce and how much they can reproduce. Results from studies on various insect species show that food availability influences the size and fecundity of adult females. It is predicted that under poor growth conditions, variation in size is low, but variation in age at maturity is considerable. This prediction was examined in a widely distributed lady beetle species, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), a predator of aphids and coccids. Using a food gradient from low to high aphid prey density, performance of females that were reared on excess food was recorded for pre‐reproductive duration, size at reproductive maturity, number of aphids consumed, and fecundity in the first 10 days of their reproductive period. Results suggested that female H. axyridis that were reared on surplus food when kept at low prey density (poor growth condition) took, on average, three times longer to attain maturity and produced, on average, 14 times fewer eggs than females that were also reared on surplus food, but kept at high prey density (good growth condition). Females performed best at a prey density of 30 aphids per female per 150 cm2. Results suggested that the current food availability significantly influenced the age and size of females at maturity and their fecundity. Age and size at maturity of female lady beetles showed non‐linear responses to prey density as well as the occurrence of a minimum size of females, below which H. axyridis females fail to mature. The steep slope recorded at lower prey densities suggests relatively high variation in age at maturity but low variation in size.  相似文献   

16.
The spatial arrangement of resources in patchy habitats influences the distribution of individuals and their ability to acquire resources. We used Chironomus riparius, a ubiquitous aquatic insect that uses leaf particles as an important resource, to ask how the dispersion of resource patches influences the distribution and resource acquisition of mobile individuals in patchy landscapes. Two experiments were conducted in replicated laboratory landscapes (38×38 cm) created by arranging sand and leaf patches in a 5×5 grid so that the leaf patches were either aggregated or uniformly dispersed in the grid. One-day-old C. riparius larvae were introduced into the landscapes in one of three densities (low, medium, high). In experiment 1, we sampled larvae and pupae by coring each patch in each landscape 3, 6, 12, or 24 days after adding larvae. In experiment 2, emerging adults were collected daily for 42 days from each patch in each landscape. In aggregated landscapes, individuals were aggregated in one patch type or the other during a particular developmental stage, but the ”preferred” type changed depending on developmental stage and initial density. Adult emergence was lower by about 30% in all aggregated landscapes. In dispersed landscapes, individuals used both types of patch throughout their life cycles at all initial densities. Thus, patch arrangement influences the distribution of mobile individuals in landscapes, and it influences resource acquisition even when average resource abundance is identical among landscapes. Regardless of patch arrangement, high initial density caused accumulation of early instars in edge patches, 75% mortality of early instars, a 25% increase in development time, and a 60% reduction in adult emergence. Because mortality was extremely high among early-instar larvae in high-density treatments, we do not have direct evidence that the mechanism by which patch arrangement operates is density dependent. However, the results of our experiments strongly suggest that dispersion of resource patches across a landscape reduces local densities by making non-resource patches available for use, thereby reducing intraspecific competition. Received: 20 July 1999 / Accepted: 28 January 2000  相似文献   

17.
The feedbacks from population density to demographic parameters, which drive population regulation, are the accumulated results of several ecological processes. The compensatory feedback from increased population density to fertility includes at least two distinct factors, the effects of decreases in per capita food level and increases in the social density (the number of interacting individuals). Because these effects have been studied separately, their relative importance is unknown. It is also unclear whether food limitation and social density combine additively to influence fertility. We investigated these questions with two factorial experiments on reproduction in the Least Killifish, Heterandria formosa. In one experiment, we crossed two levels of density with two levels of a total food ration that was distributed to all individuals. In the other experiment, we crossed two levels of density with two levels of per capita food. Whereas the first experiment suggested that the effects of variation in food level and density were synergistic, the second experiment indicated that they were not. The apparent synergism—the statistical interaction of food and density levels—was the result of confounding per capita food with social density in that design. In the second experiment, the effects of social density on reproductive rate were stronger than the effects of food level, whereas the effects of food level were stronger on offspring size at parturition than those of social density. The results suggest that the social stresses that emerge at higher densities play an important role in the compensatory response of fertility to density, a role, that is, at least as important as that of decreased per capita food levels.  相似文献   

18.
Two hypotheses have been proposed to link population regulation to density‐dependent changes in demographical parameters: the habitat heterogeneity hypothesis (HHH) states that, as population density rises, an increasing proportion of individuals are forced to occupy low‐quality territories, which provokes a decline in average per‐capita survival and/or productivity although some individuals show no decline in fecundity; and the individual adjustment hypothesis (IAH), which suggests that increased densities lead to reductions in survival and/or fecundity by enhancing agonistic interactions, which affect all individuals to a similar extent. However, density‐dependent effects can be affected by density‐independent factors (DIF), such as weather. We test the effects of density dependence on annual reproductive success in Griffon Vultures Gyps fulvus at four spatial scales, nest‐site, cliff, colony and metacolony, in northern Spain from 2008 to 2015. Our results showed most support for the HHH at all scales. At the colony and cliff scale, IAH and DIF had similar importance, whereas there was little evidence of IAH at the metacolony and the nest scale. The best protected eyries (caves, potholes and sheltered ledges) produced the most fledglings and were used preferentially, whereas low‐quality eyries (exposed ledges or open crevices) were used only when the number of breeders increased. The significant interaction between breeding failure and density found for the more exposed eyries suggests that at higher densities, breeding pairs are forced to use poorer nesting areas, and the negative effect of density at the cliff scale could be due to the combined effect of a higher proportion of pairs using low‐quality eyries and the negative effect of rainfall.  相似文献   

19.
When a limiting resource (e.g. food) varies drastically between years, and population density is measured in the conventional way as individuals per area, demographic processes such as productivity and survival may erroneously be considered density-independent. We tested the hypothesis that if the variation in a limiting resource is not taken into account in the density measure, this may lead to erroneous conclusions about the density-dependence of demographic variables. We studied the food-related variation in productivity of bramblings Fringilla montifringilla , an insectivorous passerine bird, using 19 years of standardised insect censusing, bird censusing and mist-netting of birds in subalpine birch forest in Swedish Lapland. The yearly variation in our measure of brambling per capita productivity (numbers of juveniles per adult trapped) was explained to 30–40% by the larvae abundance of the moth Epirrita autumnata . Taking larvae density into account, no other environmental variable (inferred predation pressure, breeding phenology, and summer temperature) was significantly related to variation in reproductive output. There was no effect of brambling population density on per capita productivity, that is, when density was measured the conventional way, productivity seemed density-independent. However, per capita productivity was significantly and negatively correlated to the food-related population density (population density divided by larval density), supporting the hypothesis that not including a limiting resource into the density measure may indeed lead to erroneous conclusions about the density-dependence of demographic variables.  相似文献   

20.
Increasingly, ecologists emphasize that prey frequently change behaviour in the presence of predators and these behavioural changes can reduce prey survival and reproduction as much or more than predation itself. However, the effects of behavioural changes on survival and reproduction may vary with prey density due to intraspecific competition. In field experiments, we varied grasshopper density and threat of avian predation and measured grasshopper behaviour, survival and reproduction. Grasshopper behaviour changed with the threat of predation and these behavioural changes were invariant with grasshopper density. Behavioural changes with the threat of predation decreased per capita reproduction over all grasshopper densities; whereas the behavioural changes increased survival at low grasshopper densities and then decreased survival at high densities. At low grasshopper densities, the total reproductive output of the grasshopper population remained unchanged with predation threat, but declined at higher densities. The effects of behavioural changes with predation threat varied with grasshopper density because of a trade-off between survival and reproduction as intraspecific competition increased with density. Therefore, resource availability may need to be considered when assessing how prey behavioural changes with predation threat affect population and food web dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号