首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thylakoid membranes were subjected to photoinhibitory illumination. The use of oxygen-consuming enzymes to obtain strictly anaerobic conditions showed that while the absence of oxygen is a prerequisite for the formation of a reversibly photoinhibited state, the presence of oxygen is required for the recovery in the dark. The formation of the reversibly photoinhibited state did not protect the thylakoid membranes against irreversible damage. The effects of both bicarbonate and formate were found to be qualitatively different for photoinhibition under strictly anaerobic conditions compared to the effects observed under normal aerobic photoinhibition. It is suggested that there are two different mechanisms of photoinhibition, occurring to different extent under aerobic and anaerobic conditions, respectively, involving QA in both cases, but the QB-site in the former only.Abbreviations chl chlorophyll - PpBQ phenyl-p-benzoquinone - PS 2 Photosystem 2 - QA and QB primary and secondary quinone acceptors of Photosystem 2  相似文献   

2.
Activation of the redox-controlled protein kinase of thylakoid membranes is detectable in vivo by measuring radioisotope incorporation into the light-harvesting Chl a/b protein and four photosystem II proteins (8.3, 32, 34, and 44 kDa). In normal barley leaves, the kinase is active under both aerobic and anaerobic (N2) conditions, but in the Chl b-less chlorina f2 mutant it is active only under anaerobic conditions. The responsiveness of this enzyme in the mutant to changes in the gas phase has been exploited to distinguish its protein substrates from those of other leaf protein kinases. Most of the soluble phosphoproteins of normal and mutant leaves (including a conspicuously labeled 67-kDa polypeptide) are labeled equally under both aerobic and anaerobic conditions, indicating that they are not substrates of the redox-controlled protein kinase. The major exception is a 12-kDa phosphoprotein, which is labeled in the mutant only under anaerobic conditions. The 67- and 12-kDa phosphoproteins are located in the chloroplast and are labeled when isolated organelles are incubated with [32P]orthophosphate in the light. When thylakoids and stroma are prepared from chloroplasts and are incubated with [gamma-32P]ATP in vitro, the 12-kDa protein is phosphorylated in the thylakoid preparation and then released from the membranes into the medium. The electron transport inhibitor diuron blocks activation of the redox-controlled kinase and prevents phosphorylation of the 12-kDa protein, which is thus the first example of a soluble protein to be phosphorylated by the thylakoid-bound protein kinase. The 67-kDa protein is phosphorylated by a distinct stromal kinase whose activity is not sensitive to diuron.  相似文献   

3.
Using a new method of delayed luminescence digital imaging, mutants of Chlorella sorokiniana lacking the chloroplast CF0CF1 ATP synthase were isolated for the first time. Biochemical characterization of these strains indicates a lack of detectable synthesis and accumulation of the ATP synthase subunits alpha-CF1 and beta-CF1. Functional characterization indicates the presence of a permanent electrochemical gradient (DeltaMu) across the thylakoid membrane in the dark-adapted state, which is not suppressed under anaerobic conditions. Contrary to what is observed in the presence of the CF0CF1 ATP synthase, this gradient is essentially due to an electric field component DeltaPsi with no detectable DeltapH component, under both aerobic and anaerobic conditions. Neither the CF0CF1 ATP synthase nor a respiratory process can thus be responsible for a permanent gradient detected under these conditions. The previous proposal of a new ATP-dependent electrogenic pump in thylakoid membranes is supported by these results that, in addition, indicate a specificity of this new pump for ions other than protons.  相似文献   

4.
根系渗透胁迫时杨树光合作用光抑制与活性氧的关系   总被引:13,自引:7,他引:13  
为更多地了解自然条件下活体叶片的光抑制,研究了渗透胁迫时杨树无性系幼苗叶片的光抑制与活性氧代谢的关系.结果表明,随胁迫时间的延长和胁迫强度的增大,杨树叶片O2^-生成加快,H2O2和丙二醛(MDA)含量增多,超氧物歧化酶(SOD)活性升高,过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性降低,活性氧代谢失衡,光合作用的光抑制加剧.用二乙基二硫代氨基甲酸铜盐抑制SOD活性,或用甲基紫精加速O2^-的生成,亦可使杨树叶片发生光抑制.渗透胁迫时杨树无性系幼苗清除H2O2能力降低,限制了叶片通过Mehler反应耗散过剩光能,防御光破坏作用的发挥;光抑制的发生与活性氧的积累有关.  相似文献   

5.
Induced metabolic alkalosis and its effects on 400-m racing time   总被引:2,自引:0,他引:2  
Six trained male athletes who competed regularly in 400 metre races, were studied under control, alkalotic (NaHCO3) and placebo (CaCO3) conditions to study the effect of induced metabolic alkalosis on 400 m racing time. Pre and post exercise blood samples in the three conditions were analysed for pH, bicarbonate and base excess. Following ingestion of NaHCO3, pre-exercise pH, bicarbonate and base excess levels were significantly higher than either control or placebo conditions. In the alkalotic condition the subjects ran significantly (p less than 0.005) faster (1.52 s) than either the control of placebo conditions. The post-exercise pH, bicarbonate and base excess levels were all lower in the alkalotic condition than in the others. The results suggest that NaH-CO3 can be used as an effective ergogenic aid and support the speculation that the increased extracellular buffering afforded by NaHCO3 ingestion facilitated efflux of H+ from the working tissues, thus decreasing intracellular pH and hence offsetting fatigue.  相似文献   

6.
Sporozoites of Eimeria tenella (Wisconsin strain) were inoculated onto monolayers of normal chicken kidney fibroblasts and cultured in RPMI-1640 supplemented with 5% fetal bovine serum, sodium bicarbonate, and gentamicin under either aerobic, 5% CO2/95% air, or anaerobic conditions. Penetration of fibroblasts by sporozoites under CO2 or anaerobic conditions at 2 and 24 hr postinoculation was 3-4 times greater than that in the aerobic atmosphere. Effect of reduced oxygen concentrations, i.e., 20.0, 12.5, and 5.0% oxygen, was also investigated in an N2-O2-CO2 incubator. Under 5.0 and 12.5% oxygen at 2 and 24 hr postinoculation, the number of sporozoites that penetrated was about 4 and 2 times greater, respectively, than under 20.0% O2. These results indicate that lower oxygen concentrations provide for greater penetration by E. tenella sporozoites in cultured cells.  相似文献   

7.
The stability of cnidarian-dinoflagellate endosymbioses is dependent upon communication between the host gastrodermal cell and the symbionts housed within it. Although the molecular mechanisms remain to be elucidated, existing evidence suggests that the establishment of these endosymbioses may involve the sorting of membrane proteins. The present study examined the role of host gastrodermal membranes in regulating symbiont (genus Symbiodinium) photosynthesis in the stony coral Euphyllia glabrescens. In comparison with the photosynthetic behavior of Symbiodinium in culture, the Symbiodinium populations within isolated symbiotic gastrodermal cells (SGCs) exhibited a significant degree of photo-inhibition, as determined by a decrease in the photochemical efficiency of photosystem II (F v/F m). This photo-inhibition coincided with increases in plasma membrane perturbation and oxidative activity in the SGCs. Membrane trafficking in SGCs was examined using the metabolism of a fluorescent lipid analog, N-[5-(5,7-dimethyl boron dipyrromethene difluoride)-1-pentanoyl]-D-erythro-Sphingosylphosphoryl-choline (BODIPY-Sphingomyelin or BODIPY-SM). Light irradiation altered both membrane distribution and trafficking of BODIPY-SM, resulting in metabolic changes. Cholesterol depletion of the SGC plasma membranes by methyl-??-cyclodextrin retarded BODIPY-SM degradation and further augmented Symbiodinium photo-inhibition. These results indicate that Symbiodinium photo-inhibition may be related to perturbation of the host gastrodermal membrane, providing evidence for the pivotal role of host membrane trafficking in the regulation of this environmentally important coral-dinoflagellate endosymbiosis.  相似文献   

8.
The filamentous fungus Fusarium oxysporum is known for its ability to produce ethanol by simultaneous saccharification and fermentation (SSF) of cellulose. However, the conversion rate is low and significant amounts of acetic acid are produced as a by-product. In this study, the growth characteristics of F. oxysporum were evaluated in a minimal medium using glucose as the sole carbon source in aerobic, anaerobic and oxygen-limited batch cultivations. Under aerobic conditions the maximum specific growth rate was found to be 0.043 h(-1), and the highest ethanol yield (1.66 mol/mol) was found under anaerobic conditions. During the different phases of the cultivations, the intracellular profiles were determined under aerobic and anaerobic conditions. The profiles of the phosphorylated intermediates indicated that there was a high glycolytic flux at anaerobic growth conditions, characterized by high efflux of glyceraldehyde-3-phosphate (G3P) and fructose-6-phosphate (F6P) from the pentose phosphate pathway (PPP) to the Embden-Meyerhof-Parnas (EMP) pathway, resulting in the highest ethanol production under these conditions. The amino acid profile clearly suggests that the TCA cycle was primarily active under aerobic cultivation. On the other hand, the presence of high levels of gamma-amino-n-butyric acid (GABA) under anaerobic conditions suggests a functional GABA bypass and a possible block in the TCA cycle at these conditions.  相似文献   

9.
We investigated the effect of intravenous sodium bicarbonate (2 mmol x kg-1) on the arterial blood-spinal fluid PO2 gradient in twelve anaesthetized hyperoxaemic human subjects who were in preparation for surgical procedures The steady-state samples of arterial blood and lumbar fluid were withdrawn for the assessment of the acid-base status and electrolyte content in both fluid compartments before and after NaHCO3 injection. We found that NaHCO3 increased the arterial pH and PCO2, and decreased the blood-spinal fluid PO2 gradient significantly. The latter was a result of an increase in spinal fluid PO2 and a decrease in PaO2. The diminished PO2 gradient can be accounted for by the specific effect of carbamate and bicarbonate, distinct from that of pH, lowering the affinity of haemoglobin for oxygen. This might favor the maintenance of an adequate oxygen supply in the brain tissue under unfavorable conditions.  相似文献   

10.
Moderate heat stress (40 degrees C for 30 min) on spinach thylakoid membranes induced cleavage of the reaction center-binding D1 protein of photosystem II, aggregation of the D1 protein with the neighboring polypeptides D2 and CP43, and release of three extrinsic proteins, PsbO, -P, and -Q. These heat-induced events were suppressed under anaerobic conditions or by the addition of sodium ascorbate, a general scavenger of reactive oxygen species. In accordance with this, singlet oxygen and hydroxyl radicals were detected in spinach photosystem II membranes incubated at 40 degrees C for 30 min with electron paramagnetic resonance spin-trapping spectroscopy. The moderate heat stress also induced significant lipid peroxidation under aerobic conditions. We suggest that the reactive oxygen species are generated by heat-induced inactivation of a water-oxidizing manganese complex and through lipid peroxidation. Although occurring in the dark, the damages caused by the moderate heat stress to photosystem II are quite similar to those induced by excessive illumination where reactive oxygen species are involved.  相似文献   

11.
Little is known about the HRP-mediated oxidations of 3-alkylindoles. Whereas 3-methylindole and 3-ethylindole were found to be turned over smoothly by HRP, reactions of tryptophol and N-acetyltryptamine were inefficient. Oxidations of the former two indoles by HRP under aerobic conditions led to the corresponding ring-opened o-acylformanilides and oxindoles, whereas anaerobic oxidations resulted in oxidative dimerization. The major products of anaerobic oxidation of 3-methylindole were shown to be two hydrated dimers, while anhydrodimers were obtained in the 3-ethyl case. The proposed mechanism involves HRP-mediated one-electron oxidation to give an indole radical that either dimerizes (anaerobic conditions) or reacts with O2 (aerobic conditions). Measured kinetics of indole oxidation by HRP compounds I and II mirrored their relative reactivities under turnover conditions. The observed comparable binding affinities for all four indole substrates investigated suggest that the low reactivity of tryptophol and N-acetyltryptamine reflect binding to HRP in an orientation that is disadvantageous to electron transfer oxidation of the indole ring.  相似文献   

12.
Illumination of isolated spinach thylakoid membranes under anaerobic conditions gave rise to severe inhibition of photosystem II electron transport but did not result in D1-protein degradation. When these photoinhibited thylakoids were incubated in total darkness the photosystem II activity could be fully restored in vitro in a process that required 1-2 h for completion.  相似文献   

13.
The effects of culture conditions (aerobic or anaerobic) and glucose in the medium on the production of spirosomes in Escherichia coli B were studied by SDS-PAGE and electron microscopy. The Mr of the spirosome of E. coli B was estimated to be 97,000. Electron microscopy revealed that the amount of spirosomes derived from anaerobic cultures was about eightfold larger than that from aerobic cultures. In SDS-PAGE, the bands of spirosome protein derived from anaerobic cultures were more intense than those derived from aerobic cultures, either in peptone water or in Davis-Mingioli's minimal medium. With increased glucose concentration under aerobic conditions, the intensity of the band of spirosome protein was similar to that observed under anaerobic conditions in basal media. These results suggest that spirosome production by E. coli B is related to its anaerobic glycolysis activity.  相似文献   

14.
The motility of bovine and ovine spermatozoa has been studied under aerobic and anaerobic conditions, using a dual beam laser velocimeter. Cells swimming under aerobic conditions were found to be characterized by a translational swimming speed and a rotation rate that were approximately double those of cells swimming in an anaerobic environment. Both types of spermatozoa have been found to exhibit a sudden coordinated transition between fast and slow swimming states when the available oxygen is exhausted. This transition from aerobic to anaerobic swimming states has also been shown to be reversible. Studies of the duration of aerobic motility using the same apparatus have shown that the cells have a constant motile efficiency over the temperature range 32 degrees-42 degrees C.  相似文献   

15.
Antibacterial activity of dioxidine against aerobic and facultative anaerobic organisms under conditions of anaerobiosis i. e. conditions really observed for example in abscess cavities or necrotic tissues is 30 to 100 times as high as that under aerobic conditions. There is a relationship between sensitivity of bacteria to dioxidine under aerobic and anaerobic conditions which is expressed by the regression equation. Therefore, comparison of the MICs determined under anaerobic conditions with the growth inhibition zones formed by disks with the drug under aerobic conditions is possible. The MIC of dioxidine was determined under anaerobic conditions for 179 clinical strains of aerobic and facultative anaerobic bacteria and the growth inhibition zones of the same bacteria under aerobic conditions were evaluated with the use of disks containing 100, 75, 50, 25, 20, and 15 micrograms of the drug. The border line. MIC differentiating between resistant and sensitive strains was chosen to be equal to 4 micrograms/ml. Differentiation of the strains into sensitive and resistant ones by the values of the growth inhibition zones was performed with the method of error minimization described by C. Metzler and R. De Haan in 1974. Disks containing 25 micrograms of the drug allowed one to differentiate the strains under aerobic conditions into sensitive and resistant ones: the growth inhibition zones greater than 11 mm corresponded to the sensitive strains (the MIC smaller than 4 micrograms/ml) and the growth inhibition zones smaller than 11 mm corresponded to the resistant strains (the MIC greater than 4 micrograms/ml).  相似文献   

16.
The effects of bicarbonate and oxygen on photoinhibition of thylakoid membranes were investigated by varying their concentrations independently of each other. A pretreatment of the thylakoid suspension which lowered the bicarbonate concentration of the medium without affecting its oxygen content, increased the degree of photoinhibition upon illumination. This showed that the normal bicarbonate content of a thylakoid suspension, originating from dissolved carbondioxide from the air, protects against photoinhibition. The resistance against photoinhibition was further increased by addition of extra NaHCO3 up to about 5 mM. The normal oxygen content can be decreased profoundly without affecting the degree of photoinhibition; in contrast, even small changes from the normal bicarbonate content affected photoinhibition.At oxygen concentrations approximately below 25 M, added NaHCO3 not only did not protect, but caused a more severe PS 2 inactivation. This was due to a blockage by added NaHCO3 of the recovery from a reversible photoinhibited state.Furthermore, it is shown that if the bicarbonate ions bound to high-affinity sites in PS 2 were replaced by formate ions, the thylakoid membranes became less susceptible to photoinhibition under normal oxygen tension.Abbreviations chl chlorophyll - HEPES (N-[2-Hydroxyethyl]piperazine-N-[2-ethanesulfonic acid]) - PpBQ phenyl-p-benzoquinone - PS 2 Photosystem 2 - QA and QB primary and secondary quinone acceptors of Photosystem 2  相似文献   

17.
Oxygen requirement of photosynthetic CO2 assimilation   总被引:6,自引:0,他引:6  
In the absence of electron acceptors and of oxygen a proton gradient was supported across thylakoid membranes of intact spinach chloroplasts by far-red illumination. It was decreased by red light. Inhibition by red light indicates effective control of cyclic electron flow by Photosystem II. Inhibition was released by oxygen which supported a large proton gradient. Oxygen appeared to act as electron acceptor simultaneously preventing over-reduction of electron carriers of the cyclic electron transport pathway. It thus has an important regulatory function in electron transport. Under anaerobic conditions, the inhibition of electron transport caused by red illumination could also be released and a large proton gradient could be established by oxaloacetate, nitrite and 3-phosphoglycerate, but not by bicarbonate. In the absence of oxygen, ATP levels remained low in chloroplasts illuminated with red light even when bicarbonate was present. They increased when electron acceptors were added which could release the over-reduction of the electron transport chain. Inhibition of electron transport in the presence of bicarbonate was relieved and CO2-fixation was initiated by oxygen concentrations as low as about 10 microM. Once CO2 fixation was initiated, very low oxygen levels were sufficient to sustain it. The results support the assumption that pseudocyclic electron transport is necessary to poise the electron transport chain so that a proper balance of linear and cyclic electron transport is established to supply ATP for CO2 reduction.  相似文献   

18.
Incubation of thylakoid membranes from spinach with low concentrations of mercuric chloride induces the loss of one of the iron-sulfur centers, FB, in Photosystem I (PS I) and inhibits the electron transfer from PS I to the soluble electron carrier, ferredoxin. Reconstitution of this damaged iron-sulfur center has been carried out by incubating treated thylakoid membranes with exogenous FeCl3 and Na2S in the presence of-mercaptoethanol under anaerobic conditions. Low temperature EPR measurements indicate that center FB is largely restored. Kinetic experiments show that the restored FB can be photoreduced from P700. However, these reconstituted thylakoid membranes are still incompetent in the photoreduction of ferredoxin and NADP+, even though ferredoxin binding to the modified membranes was not impaired, indicating additional changes in the structure of the PS I complex must have occurred.  相似文献   

19.
Euglena gracilis cells grown under aerobic and anaerobic conditions were compared for their whole cell rhodoquinone and ubiquinone content and for major protein spots contained in isolated mitochondria as assayed by two-dimensional gel electrophoresis and mass spectrometry sequencing. Anaerobically grown cells had higher rhodoquinone levels than aerobically grown cells in agreement with earlier findings indicating the need for fumarate reductase activity in anaerobic wax ester fermentation in Euglena. Microsequencing revealed components of complex III and complex IV of the respiratory chain and the E1beta subunit of pyruvate dehydrogenase to be present in mitochondria of aerobically grown cells but lacking in mitochondria from anaerobically grown cells. No proteins were identified as specific to mitochondria from anaerobically grown cells. cDNAs for the E1alpha, E2, and E3 subunits of mitochondrial pyruvate dehydrogenase were cloned and shown to be differentially expressed under aerobic and anaerobic conditions. Their expression patterns differed from that of mitochondrial pyruvate:NADP(+) oxidoreductase, the N-terminal domain of which is pyruvate:ferredoxin oxidoreductase, an enzyme otherwise typical of hydrogenosomes, hydrogen-producing forms of mitochondria found among anaerobic protists. The Euglena mitochondrion is thus a long sought intermediate that unites biochemical properties of aerobic and anaerobic mitochondria and hydrogenosomes because it contains both pyruvate:ferredoxin oxidoreductase and rhodoquinone typical of hydrogenosomes and anaerobic mitochondria as well as pyruvate dehydrogenase and ubiquinone typical of aerobic mitochondria. Our data show that under aerobic conditions Euglena mitochondria are prepared for anaerobic function and furthermore suggest that the ancestor of mitochondria was a facultative anaerobe, segments of whose physiology have been preserved in the Euglena lineage.  相似文献   

20.
Liu XD  Shen YG 《FEBS letters》2004,569(1-3):337-340
Light could induce phosphorylation of light harvesting chlorophyll a/b binding proteins (LHCII) in Dunaliella salina and spinach thylakoid membranes. We found that neither phosphorylation was affected by glycerol, whereas treatment with NaCl significantly enhanced light-induced LHCII phosphorylation in D. salina thylakoid membranes and inhibited that in spinach. Furthermore, even in the absence of light, NaCl and several other salts induced LHCII phosphorylation in D. salina thylakoid membranes, but not in spinach thylakoid membranes. In addition, hypertonic shock induced LHCII phosphorylation in intact D. salina under dark conditions and cells adapted to different NaCl concentrations exhibited similar LHCII phosphorylation levels. Taken together, these results show for the first time that while LHCII phosphorylation of D. salina thylakoid membranes resembles that of spinach thylakoid membranes in terms of light-mediated control, the two differ with respect to NaCl sensitivity under light and dark conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号