首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mouse Igf2 and H19 genes lie 70-kb apart on chromosome 7 and are reciprocally imprinted. Two regulatory regions are important for their parental allele-specific expression: a differentially methylated region (DMR) upstream of H19 and a set of tissue-specific enhancers downstream of H19. The enhancers specifically activate Igf2 on the paternal chromosome and H19 on the maternal chromosome. The interactions between the enhancers and the genes are regulated by the DMR, which works as a selector by exerting dual functions: a methylated DMR on the paternal chromosome inactivates adjacent H19 and an unmethylated DMR on the maternal chromosome insulates Igf2 from the enhancers. These processes appear to involve methyl-CpG-binding proteins, histone deacetylases and the formation of chromatin insulator complexes. The Igf2/H19 region provides a unique model in which to study the roles of DNA methylation and chromatin structure in the regulation of chromosome domains.  相似文献   

2.
DNA methylation and histone H4 acetylation play a role in gene regulation by modulating the structure of the chromatin. Recently, these two epigenetic modifications have dynamically and physically been linked. Evidence suggests that both modifications are involved in regulating imprinted genes - a subset of genes whose expression depends on their parental origin. Using immunoprecipitation assays, we investigate the relationship between DNA methylation, histone H4 acetylation and gene expression in the well-characterised imprinted Igf2-H19 domain on mouse chromosome 7. A systematic regional analysis of the acetylation status of the domain shows that parental-specific differences in acetylation of the core histone H4 are present in the promoter regions of both Igf2 and H19 genes, with the expressed alleles being more acetylated than the silent alleles. A correlation between DNA methylation, histone hypoacetylation and gene repression is evident only at the promoter region of the H19 gene. Treatment with trichostatin A, a specific inhibitor of histone deacetylase, reduces the expression of the active maternal H19 allele and this can be correlated with regional changes in acetylation within the upstream regulatory domain. The data suggest that histone H4 acetylation and DNA methylation have distinct functions on the maternal and paternal Igf2-H19 domains.  相似文献   

3.
Reed MR  Huang CF  Riggs AD  Mann JR 《Genomics》2001,74(2):186-196
Imprinting of the mouse H19 and Igf2 genes is dependent on the presence of an intervening imprinting control region (ICR) situated 2 kb upstream of H19 and approximately 70 kb downstream of Igf2. Several recent studies have provided substantial evidence that the unmethylated maternal ICR acts as an insulator that prevents activation of Igf2 by a suite of enhancers downstream of the H19 gene. The methylated paternal ICR and H19 promoter have no activity, allowing sole activation of Igf2 expression. We have produced mice in which a duplication of the H19/Igf2 ICR produces, in each generation, two classes of methylation levels that correlated with two Igf2 imprinting phenotypes. One hypermethylated class also shows activation of the normally silent Igf2 gene, whereas the other hypomethylated class shows only slight activation of Igf2, in agreement with methylation's role in ICR function. This study describes a rare, possibly unique type of mutation that induces two distinct phenotypes in each generation.  相似文献   

4.
5.
6.
7.
8.
9.
Alternate interactions between the H19 imprinting control region (ICR) and one of the two Igf2 differentially methylated regions has been proposed as a model regulating the reciprocal imprinting of Igf2 and H19. To study the conformation of this imprint switch, we performed a systematic structural analysis across the 140 kb of the mouse Igf2-H19 region, which includes enhancers located both between the two genes as well as downstream of H19, by using a scanning chromosome conformation capture (3C) technique. Our results suggest that on the active paternal Igf2 allele, the various enhancers have direct access to the Igf2 promoters, whereas the imprinted silent maternal Igf2 allele assumes a complex three-dimensional knotted loop that keeps the enhancers away from the Igf2 promoters and allows them to interact with the H19 promoter. This complex DNA looping of the maternal allele is formed by interactions involving differentially methylated region 1, the ICR, and enhancers. Binding of CTC-binding factor to the maternal, unmethylated ICR in conjunction with the presence of multicomplex components including interchromosomal interactions, create a barrier blocking the access of all enhancers to Igf2, thereby silencing the maternal Igf2. This silencing configuration exists in newborn liver, mouse embryonic fibroblast, and embryonic stem cells and persists during mitosis, conferring a mechanism for epigenetic memory.  相似文献   

10.
11.
A approximately 2.4-kb imprinting control region (ICR) regulates somatic monoallelic expression of the Igf2 and H19 genes. This is achieved through DNA methylation-dependent chromatin insulator and promoter silencing activities on the maternal and paternal chromosomes, respectively. In somatic cells, the hypomethylated maternally inherited ICR binds the insulator protein CTCF at four sites and blocks activity of the proximal Igf2 promoter by insulating it from its distal enhancers. CTCF binding is thought to play a direct role in inhibiting methylation of the ICR in female germ cells and in somatic cells and, therefore, in establishing and maintaining imprinting of the Igf2/H19 region. Here, we report on the effects of eliminating ICR CTCF binding by severely mutating all four sites in mice. We found that in the female and male germ lines, the mutant ICR remained hypomethylated and hypermethylated, respectively, showing that the CTCF binding sites are dispensable for imprinting establishment. Postfertilization, the maternal mutant ICR acquired methylation, which could be explained by loss of methylation inhibition, which is normally provided by CTCF binding. Adjacent regions in cis-the H19 promoter and gene-also acquired methylation, accompanied by downregulation of H19. This could be the result of a silencing effect of the methylated maternal ICR.  相似文献   

12.
The H19/Igf2 imprinting control region (ICR) is a DNA methylation-dependent chromatin insulator in somatic cells. The hypomethylated maternally inherited ICR binds the insulator protein CTCF at four sites, and blocks activity of the proximal Igf2 promoter by insulating it from the shared distal enhancers. The hypermethylated paternally inherited ICR lacks CTCF binding and insulator activity, but induces methylation-silencing of the paternal H19 promoter. The paternal-specific methylation of the ICR is established in the male germ cells, while the ICR emerges from the female germ line in an unmethylated form. Despite several attempts to find cis-regulatory elements, it is still unknown what determines these male and female germ cell-specific epigenetic modifications. We recently proposed that five in vivo footprints spanning fifteen half nuclear hormone receptor (NHR) binding sites within the ICR might be involved, and here we report on the effects of mutagenizing all of these half sites in mice. No effect was obtained--in the female and male germ lines the mutant ICR remained hypomethylated and hypermethylated, respectively. The ICR imprinting mechanism remains undefined.  相似文献   

13.
Chromatin insulators are boundary elements between distinctly regulated, neighboring chromosomal domains, and they function by blocking the effects of nearby enhancers in a position-dependent manner. Here, we show that the SNF2-like chromodomain helicase protein CHD8 interacts with the insulator binding protein CTCF. Chromatin immunoprecipitation analysis revealed that CHD8 was present at known CTCF target sites, such as the differentially methylated region (DMR) of H19, the locus control region of beta-globin, and the promoter region of BRCA1 and c-myc genes. RNA interference-mediated knockdown of CHD8 significantly abolished the H19 DMR insulator activity that depends highly on CTCF, leading to reactivation of imprinted IGF2 from chromosome of maternal origin. Further, the lack of CHD8 affected CpG methylation and histone acetylation around the CTCF binding sites, adjacent to heterochromatin, of BRCA1 and c-myc genes. These findings provide insight into the role of CTCF-CHD8 complex in insulation and epigenetic regulation at active insulator sites.  相似文献   

14.
Genomic imprinting at the H19/Igf2 locus is governed by a cis-acting Imprinting-Control Region (ICR), located 2 kb upstream of the H19 gene. This region possesses an insulator function which is activated on the unmethylated maternal allele through the binding of the CTCF factor. It has been previously reported that paternal transmission of the H19(SilK) deletion, which removes the 3' portion of H19 ICR, leads to the loss of H19 imprinting. Here we show that, in the liver, this reactivation of the paternal H19 gene is concomitant to a dramatic decrease in Igf2 mRNA levels. This deletion alters higher-order chromatin architecture, Igf2 promoter usage and tissue-specific expression. Therefore, when methylated, the 3' portion of the H19 ICR is a bi-functional regulatory element involved not only in H19 imprinting but also in 'formatting' the higher-order chromatin structure for proper tissue-specific expression of both H19 and Igf2 genes.  相似文献   

15.
16.
Parent-of-origin-specific expression of the mouse insulin-like growth factor 2 (Igf2) gene and the closely linked H19 gene are regulated by an intervening 2 kb imprinting control region (ICR), which displays parentspecific differential DNA methylation [1] [2]. Four 21 bp repeats are embedded within the ICR and are conserved in the putative ICR of human and rat Igf2 and H19, suggesting that the repeats have a function [3] [4]. Here, we report that prominent DNA footprints were found in vivo on the unmethylated maternal ICR at all four 21 bp repeats, demonstrating the presence of protein binding. The methylated paternal ICR displayed no footprints. Significantly, the maternal-specific footprints were localized to putative binding sites for CTCF, a highly conserved zinc-finger DNA-binding protein with multiple roles in gene regulation including that of chromatin insulator function [5] [6]. These results strongly suggest that the maternal ICR functions as an insulator element in regulating mutually exclusive expression of Igf2 and H19 in cis.  相似文献   

17.
18.
19.
The mouse insulin-like growth factor II (Igf2) and H19 genes are located adjacent to each other on chromosome 7q11-13 and are reciprocally imprinted. It is believed that the allelic expression of these two genes is regulated by the binding of CTCF insulators to four parent-specific DNA methylation sites in an imprinting control center (ICR) located between these two genes. Although monoallelically expressed in peripheral tissues, Igf2 is biallelically transcribed in the CNS. In this study, we examined the allelic DNA methylation and CTCF binding in the Igf2/H19 imprinting center in CNS, hypothesizing that the aberrant CTCF binding as one of the mechanisms leads to biallelic expression of Igf2 in CNS. Using hybrid F1 mice (M. spretus males x C57BL/6 females), we showed that in CNS, CTCF binding sites in the ICR were methylated exclusively on the paternal allele, and CTCF bound only to the unmethylated maternal allele, showing no differences from the imprinted peripheral tissues. Among three other epigenetic modifications examined, histone H3 lysine 9 methylation correlated well with Igf2 allelic expression in CNS. These results suggest that CTCF binding to the ICR alone is not sufficient to insulate the Igf2 maternal promoter and to regulate the allelic expression of the gene in the CNS, thus challenging the aberrant CTCF binding as a common mechanism for lack of Igf2 imprinting in CNS. Further studies should be focused on the identification of factors that are involved in histone methylation and CTCF-associated factors that may be needed to coordinate Igf2 imprinting.  相似文献   

20.
High-resolution profiling of histone methylations in the human genome   总被引:75,自引:0,他引:75  
Barski A  Cuddapah S  Cui K  Roh TY  Schones DE  Wang Z  Wei G  Chepelev I  Zhao K 《Cell》2007,129(4):823-837
Histone modifications are implicated in influencing gene expression. We have generated high-resolution maps for the genome-wide distribution of 20 histone lysine and arginine methylations as well as histone variant H2A.Z, RNA polymerase II, and the insulator binding protein CTCF across the human genome using the Solexa 1G sequencing technology. Typical patterns of histone methylations exhibited at promoters, insulators, enhancers, and transcribed regions are identified. The monomethylations of H3K27, H3K9, H4K20, H3K79, and H2BK5 are all linked to gene activation, whereas trimethylations of H3K27, H3K9, and H3K79 are linked to repression. H2A.Z associates with functional regulatory elements, and CTCF marks boundaries of histone methylation domains. Chromosome banding patterns are correlated with unique patterns of histone modifications. Chromosome breakpoints detected in T cell cancers frequently reside in chromatin regions associated with H3K4 methylations. Our data provide new insights into the function of histone methylation and chromatin organization in genome function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号