首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Benzo[a]pyrene [B(a)P], a potent procarcinogen found in combustion products such as diesel exhaust and cigarette smoke, has been recently shown to activate the c-Jun NH(2)-terminal kinase 1 (JNK1) and induce caspase-3-mediated apoptosis in Hepa1c1c7 cells. However, the molecules of the signaling pathway that control the mitogen-activated protein kinase cascades induced by B(a)P and the interaction between those and apoptosis by B(a)P have not been well defined. We report here that B(a)P promoted Cdc42/Rac1, p21-activated kinase 1 (PAK1), and JNK1 activities in 293T and HeLa cells. Moreover, alpha-PAK-interacting exchange factor (alpha PIX) mRNA and its protein expression were upregulated by B(a)P. While overexpression of an active mutant of alpha PIX (DeltaCH) facilitated B(a)P-induced activation of Cdc42/Rac1, PAK1, and JNK1, overexpression of mutated alphaPIX (L383R, L384S), which lacks guanine nucleotide exchange factor activity, SH3 domain-deleted alphaPIX (Delta SH3), which lacks the ability to bind PAK, kinase-negative PAK1 (K299R), and kinase-negative SEK1 (K220A, K224L) inhibited B(a)P-triggered JNK1 activation. Interestingly, overexpression of alphaPIX (Delta CH) and a catalytically active mutant PAK1 (T423E) accelerated B(a)P-induced apoptosis in HeLa cells, whereas alphaPIX (Delta SH3), PAK1 (K299R), and SEK 1 (K220A, K224L) inhibited B(a)P-initiated apoptosis. Finally, a preferential caspase inhibitor, Z-Asp-CH2-DCB, strongly blocked the alphaPIX (Delta CH)-enhanced apoptosis in cells treated with B(a)P but did not block PAK1/JNK1 activation. Taken together, these results indicate that alphaPIX plays a crucial role in B(a)P-induced apoptosis through activation of the JNK1 pathway kinases.  相似文献   

2.
Podosomes are actin-rich adhesion structures typical for monocytic cells and are implicated in migration and invasion. Major modes of podosome regulation include RhoGTPase signaling and actin regulatory pathways. However, it is not clearly understood how these signals induce highly localized changes in podosome formation and dynamics. Here, we show that the RhoGTPase effector PAK4, a member of the p21 associated kinase family, and its regulator alphaPIX (PAK-interacting exchange factor), are central to podosome formation in primary human macrophages. Immunofluorescence, biochemical and microarray data indicate that PAK4 acts as physiological regulator of podosomes in this system. Accordingly, transfection of a specific shRNA, as well as expression of PAK4 truncation mutants, resulted in reduced numbers of podosomes per cell. Moreover, expression of kinase active or inactive PAK4 mutants enhanced or reduced the size of individual podosomes, respectively, indicating a modulatory influence of PAK4 kinase activity on podosome size. Similar to the results gained with PAK4, cellular/overexpressed PIX was shown to be closely associated with podosomes. Moreover, both overexpression of alphaPIX wt and a mutant lacking the SH3 domain led to coalescence of podosomes. In sum, we propose that PAK4 and alphaPIX can induce highly localized changes in actin dynamics and thereby regulate size and number of podosomes in primary human macrophages.  相似文献   

3.
Guanine nucleotide exchange factors (GEFs) have been implicated in growth factor-induced neuronal differentiation through the activation of small GTPases. Although phosphorylation of these GEFs is considered an activation mechanism, little is known about the upstream of PAK-interacting exchange factor (PIX), a member of the Dbl family of GEFs. We report here that phosphorylation of p85 betaPIX/Cool/p85SPR is mediated via the Ras/ERK/PAK2 pathway. To understand the role of p85 betaPIX in basic fibroblast growth factor (bFGF)-induced neurite outgrowth, we established PC12 cell lines that overexpress the fibroblast growth factor receptor-1 in a tetracycline-inducible manner. Treatment with bFGF induces the phosphorylation of p85 betaPIX, as determined by metabolic labeling and mobility shift upon gel electrophoresis. Interestingly, phosphorylation of p85 betaPIX is inhibited by PD98059, a specific MEK inhibitor, suggesting the involvement of the ERK cascade. PAK2, a major PAK isoform in PC12 cells as well as a binding partner of p85 betaPIX, also functions upstream of p85 betaPIX phosphorylation. Surprisingly, PAK2 directly binds to ERK, and its activation is dependent on ERK. p85 betaPIX specifically localizes to the lamellipodia at neuronal growth cones in response to bFGF. A mutant form of p85 betaPIX (S525A/T526A), in which the major phosphorylation sites are replaced by alanine, shows significant defect in targeting. Moreover, expression of the mutant p85 betaPIX efficiently blocks PC12 cell neurite outgrowth. Our study defines a novel signaling pathway for bFGF-induced neurite outgrowth that involves activation of the PAK2-p85 betaPIX complex via the ERK cascade and subsequent translocation of this complex.  相似文献   

4.
p21-activated kinases (PAKs) are implicated in integrin signalings, and have been proposed to associate with paxillin indirectly. We show here that paxillin can bind directly to PAK3. We examined several representative focal adhesion proteins, and found that paxillin is the sole protein that associates with PAK3. PAK3 associated with the alpha and beta isoforms of paxillin, but not with gamma. We also show that paxillin alpha associated with both the kinase-inactive and the Cdc42-activated forms of PAK3 in vivo, without affecting the activation states of the kinase. A number of different functions have been ascribed to PAKs; and PAKs can bind directly to growth factor signaling-adaptor molecule, Nck, and a guanine nucleotide exchanger, betaPIX. Our results revealed that paxillin alpha can compete with Nck and betaPIX in the binding of PAK3. Moreover, paxillin alpha can be phosphorylated by PAK3 at serine. Therefore, paxillin alpha, but not gamma, appears to be capable of linking both the kinase-inactive and activated forms of PAK3 to integrins independent of Nck and betaPIX, as Nck links PAK1 to growth factor receptors. Our results also revealed that paxillin is involved in highly complexed protein-protein interactions in integrin signaling.  相似文献   

5.
The process of cell motility involves coordinate signaling events among proteins associated in interactive integrin-linked networks. Mass spectrometric analysis of immunoprecipitation-derived protein mixtures have provided efficient means of identifying proteomes. In this study, we investigate strategies to enhance the detection of interactome proteins for the known signaling module: PAK1, betaPIX, GIT1, and paxillin. Our results indicate that near-endogenous expression levels of bait protein enhances the identification of associated proteins, and that phosphatase inhibition augments the detection of specific protein interactions. Following the analysis of a large pool of spectral data, we have identified and mapped clusters of proteins that either share common interactions among the four bait proteins of interest or are exclusive to single bait proteins. Taken together, these data indicate that biochemical manipulations can enhance the ability for LC-MS/MS to identify interactome proteins, and that qualitative screening of multiple samples leads to the compilation of proteins associated with a known plexus.  相似文献   

6.
Affixin/beta-parvin is an integrin-linked kinase (ILK)-binding focal adhesion protein highly expressed in skeletal muscle and heart. To elucidate the possible role of affixin in skeletal muscle, we established stable C2C12 cell line expressing T7-tagged human affixin (C2C12-affixin cells). Exogenous expression of affixin promotes lamellipodium formation where affixin, ILK alphap21-activated kinase (PAK)-interactive exchange factor (PIX) and betaPIX accumulate. The association of affixin and betaPIX was confirmed by immunoprecipitation and pull down assay. In C2C12-affixin cells, an increased level of activated Rac1 but not Cdc42 was observed, and mutant betaPIX lacking guanine nucleotide exchange factor activity inhibited lamellipodium formation. These results suggest that affixin is involved in reorganization of subsarcolemmal cytoskeletal actin by activation of Rac1 through alpha and betaPIXs in skeletal muscle.  相似文献   

7.
In a previous study (Shin, E. Y., Shin, K. S., Lee, C. S., Woo, K. N., Quan, S. H., Soung, N. K., Kim, Y. G., Cha, C. I., Kim, S. R., Park, D., Bokoch, G. M., and Kim, E. G. (2002) J. Biol. Chem. 277, 44417-44430) we reported that phosphorylation of p85 betaPIX, a guanine nucleotide exchange factor (GEF) for Rac1/Cdc42, is a signal for translocation of the PIX complex to neuronal growth cones and is associated with basic fibroblast growth factor (bFGF)-induced neurite outgrowth. However, the issue of whether p85 betaPIX phosphorylation affects GEF activity on Rac1/Cdc42 is yet to be explored. Here we show that Rac1 activation occurs in a p85 betaPIX phosphorylation-dependent manner. A GST-PBD binding assay reveals that Rac1 is activated in a dose- and time-dependent manner in PC12 cells in response to bFGF. Inhibition of ERK or PAK2, the kinases upstream of p85 betaPIX in the bFGF signaling, prevents Rac1 activation, suggesting that phosphorylation of p85 betaPIX functions upstream of Rac1 activation. To directly address this issue, transfection studies with wild-type and mutant p85 betaPIX (S525A/T526A, a non-phosphorylatable form) were performed. Expression of mutant PIX markedly inhibits both bFGF- and nerve growth factor (NGF)-induced activation of Rac1, indicating that phosphorylation of p85 betaPIX is responsible for activation of this G protein. Both wild-type and mutant p85 betaPIX displaying negative GEF activity (L238R/L239S) are similarly recruited to growth cones, suggesting that Rac1 activation is not essential for translocation of the PIX complex (PAK2-p85 betaPIX-Rac1). However, expression of mutant p85 betaPIX (L238R/L239S) results in retraction of the pre-existing neurites. Our results provide evidence that bFGF- and NGF-induced phosphorylation of p85 betaPIX mediates Rac1 activation, which in turn regulates cytoskeletal reorganization at growth cones, but not translocation of the PIX complex.  相似文献   

8.
Many signaling pathways regulate the function of the cellular cytoskeleton. Yet we know very little about the proteins involved in the cross-talk between the signaling and the cytoskeletal systems. Here we show that myosin II-B, an important cytoskeletal protein, resides in a complex with p21-activated kinase 1 (PAK1) and atypical protein kinase C (PKC) zeta (aPKCzeta) and that the interaction between these proteins is EGF-dependent. We further show that PAK1 is involved in aPKCzeta phosphorylation and that aPKCzeta phosphorylates myosin II-B directly on a specific serine residue in an EGF-dependent manner. This latter phosphorylation is specific to isoform B of myosin II, and it leads to slower filament assembly of myosin II-B. Furthermore, a decrease in aPKCzeta expression in the cells alters myosin II-B cellular organization. Our finding of a new signaling pathway involving PAK1, aPKCzeta, and myosin II-B, which is implicated in myosin II-B filament assembly and cellular organization, provides an important link between the signaling system and cytoskeletal dynamics.  相似文献   

9.
10.
Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) exhibits potent barrier protective effects on pulmonary endothelium, which are mediated by small GTPases Rac and Cdc42. However, upstream mechanisms of OxPAPC-induced small GTPase activation are not known. We studied involvement of Rac/Cdc42-specific guanine nucleotide exchange factors (GEFs) Tiam1 and betaPIX in OxPAPC-induced Rac activation, cytoskeletal remodeling, and barrier protective responses in the human pulmonary endothelial cells (EC). OxPAPC induced membrane translocation of Tiam1, betaPIX, Cdc42, and Rac, but did not affect intracellular distribution of Rho and Rho-specific GEF p115-RhoGEF. Protein depletion of Tiam1 and betaPIX using siRNA approach abolished OxPAPC-induced activation of Rac and its effector PAK1. EC transfection with Tiam1-, betaPIX-, or PAK1-specific siRNA dramatically attenuated OxPAPC-induced barrier enhancement, peripheral actin cytoskeletal enhancement, and translocation of actin-binding proteins cortactin and Arp3. These results show for the first time that Tiam1 and betaPIX mediate OxPAPC-induced Rac activation, cytoskeletal remodeling, and barrier protective response in pulmonary endothelium.  相似文献   

11.
Binding of integrins to the extracellular matrix results in actin cytoskeletal rearrangements, e.g. during cell spreading, by regulating the activity of Rho GTP-ases. We have shown previously that alphaPIX (Cool-2 or ARHGEF6), a Rac1/Cdc42-specific guanine nucleotide exchange factor (GEF), binds to beta-parvin/affixin and colocalizes with integrin-linked kinase in actively spreading cells, suggesting that alphaPIX is involved in integrin-induced signaling leading to activation of Rac1/Cdc42. Here we report calpain 4, the small subunit of the proteases mu-calpain and m-calpain, as a novel binding partner of alphaPIX. This association was identified by the CytoTrap system and confirmed by coimmunoprecipitation and glutathione S-transferase pull-down assays. The alphaPIX triple domain SH3-DH-PH was found to be required for calpain 4 binding. During integrin-dependent spreading of CHO-K1 cells, alphaPIX colocalized with mu- and m-calpain, integrin-linked kinase, and beta1 integrin in early integrin-containing clusters. Overexpression of alphaPIX wild type but not the GEF-deficient mutant (L386R/L387S) resulted in enhanced formation of characteristic cellular protrusions during cell spreading, suggesting that alphaPIX GEF activity is necessary for this specific actin cytoskeletal reorganization. The calpain inhibitors calpeptin and calpain inhibitor IV significantly inhibited integrin-dependent cell spreading. However, concomitant overexpression of alphaPIX wild type or the L386R/L387S mutant restored cell spreading. Together, these data suggest that alphaPIX is a component of early integrin clusters and plays a dual role in integrin-dependent cell spreading. Whereas alphaPIX GEF activity contributes to enhanced formation of cellular protrusions, the GEF-independent association with calpain 4 leads to induction of a yet unknown signaling cascade resulting in cell spreading.  相似文献   

12.
A novel role for p21-activated protein kinase 2 in T cell activation   总被引:5,自引:0,他引:5  
To identify novel components of the TCR signaling pathway, a large-scale retroviral-based functional screen was performed using CD69 expression as a marker for T cell activation. In addition to known regulators, two truncated forms of p21-activated kinase 2 (PAK2), PAK2DeltaL(1-224) and PAK2DeltaS(1-113), both lacking the kinase domain, were isolated in the T cell screen. The PAK2 truncation, PAK2DeltaL, blocked Ag receptor-induced NFAT activation and TCR-mediated calcium flux in Jurkat T cells. However, it had minimal effect on PMA/ionomycin-induced CD69 up-regulation in Jurkat cells, on anti-IgM-mediated CD69 up-regulation in B cells, or on the migratory responses of resting T cells to chemoattractants. We show that PAK2 kinase activity is increased in response to TCR stimulation. Furthermore, a full-length kinase-inactive form of PAK2 blocked both TCR-induced CD69 up-regulation and NFAT activity in Jurkat cells, demonstrating that kinase activity is required for PAK2 function downstream of the TCR. We also generated a GFP-fused PAK2 truncation lacking the Cdc42/Rac interactive binding region domain, GFP-PAK2(83-149). We show that this construct binds directly to the kinase domain of PAK2 and inhibits anti-TCR-stimulated T cell activation. Finally, we demonstrate that, in primary T cells, dominant-negative PAK2 prevented anti-CD3/CD28-induced IL-2 production, and TCR-induced CD40 ligand expression, both key functions of activated T cells. Taken together, these results suggest a novel role for PAK2 as a positive regulator of T cell activation.  相似文献   

13.
Activation of actomyosin II by phosphorylation of its regulatory light chain is one of the main factors involved in the regulation of cytoskeletal dynamics. Phosphorylation of myosin regulatory light chain may be mediated directly and indirectly by several kinases including myosin light chain kinase (MLCK) and kinases activated by small GTP-binding proteins. Most of the myosin kinases, including PAK, can also interact with other proteins through binding sites located outside of their catalytic domains. In an attempt to study the effects due only to phosphorylation of myosin light chain, we expressed the constitutively active catalytic domain of ameba PAK in HeLa cells. The catalytic domain phosphorylates myosin light chain in vitro with high specific activity but has none of the sequences that target mammalian PAK to other proteins and membranes. Expression of the catalytic domain caused disassembly of focal adhesions and stress fibers in the cell center and accumulation of focal adhesions and F-actin at the cell periphery. There was a twofold increase in the phosphorylation level of endogenous myosin light chain and changes in cell shape consistent with enhanced cell contractility. The phenotype was independent of MLCK, ROCK, MEK, Rac, and Rho activities but was abolished by blebbistatin, a specific inhibitor of myosin II activity. Our data are consistent with myosin being directly phosphorylated by the expressed catalytic domain of ameba PAK with the induced phenotype resulting from cell retraction driven by contraction of peripheral actomyosin. The phenotype induced by expression of the catalytic domain is reminiscent of that caused by expression of active mammalian PAK, suggesting that myosin phosphorylation may play an important role in PAK-induced cytoskeletal changes. The catalytic domain of ameba PAK may be a useful tool for studying the effects of myosin light chain phosphorylation in other cells.  相似文献   

14.
The Ets family members Spi-1 and Spi-B have been implicated in the regulation of genes important for B cell antigen receptor (BCR) signaling. Mice deficient in Spi-B exhibit reduced B cell proliferation in response to BCR cross-linking and impaired T cell-dependent immune responses. This defect is exacerbated in the presence of Spi-1 haplo-insufficiency (Spi1+/- SpiB-/-). Tyrosine phosphorylation and calcium mobilization induced by BCR engagement is diminished in Spi1+/- SpiB-/- B lymphocytes, although many key BCR signaling proteins are expressed, suggesting that Spi-1 and Spi-B regulate expression of additional, unidentified signaling molecules. We now demonstrate that expression of the adaptor protein Grap2 is impaired in Spi1+/- SpiB+/- and Spi1+/- SpiB-/- B lymphocytes. Analysis of two alternate murine Grap2 promoters revealed a functionally important Spi-1 and Spi-B DNA binding element located in the downstream promoter. Ectopic expression of Grap2 in Grap2-deficient B cells reduced the recruitment of BLNK to Igalpha and the phosphorylation of specific substrates. Regulation of BLNK recruitment was dependent upon the Grap2 proline-rich domain, while modulation of phosphorylation was dependent upon both the proline-rich and SH2 domains. These data indicate that Spi-1 and Spi-B directly regulate the expression of Grap2 and that Grap2 functions to modulate BCR signaling, but that reduced Grap2 expression is unlikely to account for the BCR signaling defects observed in Spi1+/- SpiB-/- B cells.  相似文献   

15.
Regulatory NK cell receptors can contribute to antigen-specific adaptive immune responses by modulating T cell receptor (TCR)-induced T cell activation. We investigated the potential of the NK cell receptor 2B4 (CD244) to enhance tumor antigen-induced activation of human T cells. 2B4 is a member of the CD2 receptor subfamily with both activating and inhibitory functions in NK cells. In T cells, its expression is positively associated with the acquisition of a cytolytic effector memory phenotype. Recombinant chimeric receptors that link extracellular single-chain Fv fragments specific for the tumor-associated surface antigens CD19 and GD2 to the signaling domains of human 2B4 and/or TCRζ were expressed in non-specifically activated peripheral blood T cells by retroviral gene transfer. While 2B4 signaling alone failed to induce T cell effector functions or proliferation, it significantly augmented the antigen-specific activation responses induced by TCRζ. 2B4 costimulation did not affect the predominant effector memory phenotype of expanding T cells, nor did it increase the proportion of T cells with regulatory phenotype (CD4+CD25hiFoxP3+). These data support a costimulatory role for 2B4 in human T cell subpopulations. As an amplifier of TCR-mediated signals, 2B4 may provide a powerful new tool for immunotherapy of cancer, promoting sustained activation and proliferation of gene-modified antitumor T cells.  相似文献   

16.
Regulatory T cells (Tregs) participate in the control of the immune response. In the human system, an IL-10-secreting, T regulatory type 1 cell (Tr1)-like subset of Tregs can be induced by concurrent cross-linking of the TCR and CD46 on naive CD4(+) T cells. Because many viral and bacterial pathogens, including the major human pathogen Streptococcus pyogenes, bind to CD46, we asked whether this bacterium can directly induce Tr1-like cells through the streptococcal ligand for CD46, the M protein. The M5 and M22 proteins were found to induce T cells to develop into the IL-10-producing Tr1-like phenotype. Moreover, whole M5-expressing bacteria, but not isogenic M-negative bacteria, led to proliferation and IL-10 secretion by T cells. The interaction between the M5 protein and T cells was dependent on CD46 and the conserved C repeat region of M5. Supernatants derived from T cells stimulated with M proteins or M protein-expressing bacteria suppressed bystander T cell proliferation through IL-10 secretion. In addition, activation of CD46 through streptococcal M protein induced the expression of granzyme B, providing a second means for these cells to regulate an immune response. These findings suggest that binding to CD46 and exploiting its signaling pathway may represent a strategy employed by a number of important human pathogens to induce directly an immunosuppressive/regulatory phenotype in T cells.  相似文献   

17.
The innate ability of B lymphoma cells to escape control by tumor-reactive T cells must be overcome to develop effective immunotherapies for these diseases. Because signals from both the innate and adaptive immune systems direct the acquisition of strong immunogenicity by professional APCs, the effects of IL-2 and the TLR-7 agonist, S28690, on the immunogenic properties of chronic lymphocytic leukemia (CLL) B cells were studied. IL-2 with S28690 caused CLL cells to proliferate and increased their expression of B7-family members, production of TNF-alpha and IL-10, and levels of tyrosine-phosphorylated STAT-1 and STAT-3 proteins. S28690 increased CD25 expression on CLL cells and sensitized them to IL-2 signaling. However, IL-2 did not change TLR-7 expression or signaling in CLL cells. The ability to stimulate T cell proliferation required additional activation of protein kinase C, which inhibited tumor cell proliferation, "switched off" IL-10 production, and caused essentially all CLL cells (regardless of clinical stage) to acquire a CD83(high)CD80(high)CD86(high)CD54(high) surface phenotype marked by the activation of STAT-1 without STAT-3. These findings suggest that TLR-7 "licenses" human B cells to respond to cytokines of the adaptive immune system (such as IL-2) and provide a strategy to increase the immunogenicity of lymphoma cells for therapeutic purposes.  相似文献   

18.
19.
The immune system provides a highly sophisticated surveillance mechanism to detect diverse antigens and to protect the host organism from invading pathogens and altered cells (e.g., virus-infected and tumor cells). Adaptive immune responses depend on the recognition of antigen by specific antigen receptors that are expressed on the surface of T and B lymphocytes. Helper T cells provide regulatory functions and direct the adaptive immune system to respond appropriately to a particular antigen (i.e., cytotoxic T cell responses against viral infections and tumor cells, humoral responses against extracellular bacteria and parasitic worms). Helper T cells express CD4 coreceptors, which recognize conserved domains on proteins expressed by the class II major histocompatibility complex, the same proteins that present antigen to the T cell receptor. Recent progress in T cell biology has identified multiple regulatory functions of CD4 during thymocyte development and antigen stimulation of mature T helper cells. Signaling pathways induced by engagement of CD4 independently of T cell receptor signaling mediate these regulatory functions. In this review, we discuss the regulation of T cell signaling and emphasize the functional consequences of proper and improper CD4 coreceptor signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号